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Abstract

:

This study examines the issues of privacy protection, data security, and query efficiency in blockchain-based electronic medical record (EMR) sharing. It proposes a secure storage and sharing scheme for EMR based on Hyperledger Fabric and the InterPlanetary File System (IPFS). To mitigate the privacy risks of data mining that could reveal patient identities, we establish an attribution channel in Hyperledger Fabric to store EMR ownership information and a data channel to store the storage location, digest, and usage records of medical data. Encrypted medical data are stored in the IPFS. To improve query efficiency in the blockchain, we integrate queryable medical data attributes into a composite key for conditional queries, avoiding complex data filtering processes. Additionally, we use a zero-knowledge proof combined with smart contracts for decentralized identity verification, eliminating reliance on third-party centralized verification services and enhancing system security. We also integrate AES and proxy re-encryption techniques to ensure data security during sharing. This scheme provides a more secure, efficient, and privacy-preserving approach for EMR systems, with significant practical implications and broad application potential.
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1. Introduction


In recent years, with continuous innovation and development, the application research of blockchain technology has gradually expanded to various aspects of socio-economic activities. Blockchain technology plays a crucial role in fields such as supply chain management [1], the Internet of Things [2], identity authentication [3], and healthcare services [4], showing a trend of diversified and cross-industry applications. Despite its vast potential, integrating blockchain into electronic medical record (EMR) data sharing faces significant challenges. Ensuring data privacy, security, and query efficiency is particularly difficult. Protecting sensitive medical information while maintaining efficient data access remains a critical issue.



Data storage is crucial for patient privacy and data usage efficiency. Although research on blockchain-based data storage has made some progress [5,6], there is still room for improvement. On one hand, mainstream storage methods currently fail to effectively isolate the relationship between EMR and patients, making them vulnerable to privacy attacks exploiting this relationship, such as data mining. On the other hand, due to existing performance bottlenecks in blockchain technology, it exhibits inefficiency when facing large-scale data sharing scenarios.



Additionally, current blockchain-based data sharing schemes often use centralized identity authentication to prevent malicious access. However, centralized systems heavily rely on trust in the central authority. If this authority acts dishonestly, maliciously, or suffers a data breach, users’ digital identity information is at serious risk. Moreover, data querying is a crucial part of the data usage process. Improving the query speed can significantly enhance data sharing efficiency. However, there is limited research on improving the efficiency of specific data queries on blockchain.



To address these challenges, this study proposes an efficient and secure EMR storage and sharing scheme based on Hyperledger Fabric and the InterPlanetary File System (IPFS), which works as follows:




	
We propose a storage method that combines dual channels with the IPFS. In Hyperledger Fabric, we create an attribution channel to store EMR’s attribution information and a data channel to store the storage location, summary, and usage records of medical data. The encrypted medical data are then stored in the IPFS. This ensures that patient privacy is not threatened by attacks such as data mining.



	
We integrate medical data attributes that can be used for a conditional query into a composite key. This composite key, along with the medical record number, is then stored as a key–value pair in the blockchain. This approach aims to enhance the efficiency of data querying in the blockchain.



	
We introduce a zero-knowledge proof and combine it with smart contracts to achieve decentralized identity verification for system users. This eliminates the reliance on central third-party verification services, thereby enhancing system security.



	
We combine AES encryption with proxy re-encryption to ensure data security during the sharing process. We provide the principles behind implementing this technique.









2. Related Work


There are already numerous solutions based on blockchain technology that address the issues of secure storage or the sharing of medical data. Cao et al. [7] proposed an EMR management scheme that combines cloud and blockchain technologies, which ensures the secure storage of EMR. However, it does not address the implementation of secure data sharing. Carter et al. [8] proposed an EMR sharing scheme that integrates Ethereum blockchain and cloud computing networks, but it does not fully address privacy concerns. Huang et al. [9] proposed recording the operations of various stages of EMR on the blockchain to ensure traceability and tamper resistance. Xia et al. [10] proposed ensuring the security of data stored in the cloud through access permissions and effectively tracking and monitoring all operations on the data using smart contracts. Ref. [9,10] suggested that monitoring and recording the process of medical record operations can prevent tampering with the records, but they cannot prevent the leakage of patient privacy. Fu et al. [11] encrypted medical data using interleaved coding techniques, effectively protecting personal privacy. Wang et al. [12] proposed a blockchain-based medical data sharing scheme, integrating searchable encryption and proxy re-encryption to achieve secure sharing. Dagher et al. [13] introduced the Ancile framework, which transfers the ownership and control of EMR to data owners via the Ethereum platform and effectively ensures the information security of EMR through proxy re-encryption technology. Akkaoui et al. [14] proposed a secure and efficient data management framework based on Ethereum, utilizing edge computing and blockchain to ensure data security and privacy. Ref. [15] combined searchable encryption algorithms to construct index expressions for EMR data and stored them on the blockchain, allowing data owners to control access permissions for their data. Azaria et al. [16] introduced MedRec, an EMR sharing scheme, employing three Ethereum smart contracts to implement fine-grained access control for patients’ medical records, enabling third-party users to access data upon successful authentication. These approaches [12,13,14,15,16] safeguard data security and protect patient privacy through access control. However, the systems proposed are implemented on Ethereum, where normal transactions require a certain amount of tokens and additional gas expenses, thus increasing system complexity and management costs, which may not be entirely suitable for hospital information systems.



With the evolution of blockchain technology, there have been research efforts adopting the more lightweight Hyperledger Fabric [17] architecture to implement the blockchain network component of the designed systems. Hyperledger Fabric is one of the widely adopted solutions in the current realm of consortium blockchains [18]. It integrates a member management service mechanism, allowing multiple organizational entities to participate in and manage it jointly. Moreover, this solution supports smart contract development in various common programming languages, exhibiting greater flexibility in practical deployment and application. Tanwar et al. [19] proposed an access control policy algorithm aimed at enhancing data accessibility among healthcare providers, enabling the implementation of an EMR sharing system based on Hyperledger Fabric. However, they did not discuss the data integrity aspect of the solution. Ref. [20] used Hyperledger Fabric to enhance interoperability among healthcare institutions and to solve the fragmentation problem.



Table 1 summarizes the limitations of related work and explains how this study addresses these shortcomings. In addition to the issues mentioned in the table, most related work does not separate ownership information from the specific medical data of patients. This makes it difficult to prevent privacy threats from data mining that could reveal patient identities. Our study mitigates this threat by creating an attribution channel and a data channel to store the relevant information separately.




3. Framework Components


This section introduces the main components used in this study and explains the reasons for selecting them. This helps in understanding the proposed scheme.



3.1. Hyperledger Fabric


Hyperledger Fabric is an open-source, enterprise-grade, permissioned distributed ledger technology platform developed under the leadership of the Linux Foundation [17]. It features a highly modular architecture that brings innovation, versatility, and optimization to the healthcare industry. As a consortium blockchain application development platform, Hyperledger Fabric allows only authorized organizations and nodes to join designated blockchains for conducting transactions and recording data. Additionally, Hyperledger Fabric does not rely on cryptocurrencies to incentivize mining or drive smart contract execution, thus avoiding the risks or vulnerabilities associated with cryptocurrency use.



In the Hyperledger Fabric network, smart contracts are referred to as chaincodes. Hyperledger Fabric allows for the creation of different channels as needed, with different chaincodes deployed within each channel. A chaincode is embedded and executed within the nodes, requiring all nodes in the channel to install the chaincode.



There is isolation between channels in Hyperledger Fabric, meaning that data are not exchanged between different channels, and one channel does not depend on others. Each channel can be understood as an independent instance of Hyperledger Fabric, and all channels are completely separate. This feature helps us separate patient ownership information from medical data.




3.2. InterPlanetary File System


The InterPlanetary File System(IPFS) is an open-source distributed file storage and content distribution protocol [21]. Designed to create a more robust, secure, and efficient environment for data sharing and transmission, the IPFS is particularly well suited for applications requiring long-term preservation, high redundancy, and resistance to censorship. When accessing medical data, the IPFS does not rely on server addresses but locates data based on its content hash, ensuring the uniqueness of the data and allowing for the replication and storage of identical content across multiple nodes in the network. When users access content stored on the IPFS, they are actually downloading data from the nearest or available nodes, rather than fetching it from a single server. This approach enhances the reliability and efficiency of the system.




3.3. zk-SNARKs


A zero-knowledge proof (ZKP) requires the participation of both a prover and verifier. In employing the ZKP techniques, the prover can convince the verifier of the truthfulness of a statement without revealing any useful information related to the statement beyond its truth. ZKP has been widely utilized in identity authentication [22].



ZKPs can be categorized into interactive and non-interactive types. A non-interactive proof requires at most one authentication interaction during the verification process, thereby reducing the communication overhead caused by multiple interactions in the proof process, especially in blockchain systems. The Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-SNARKs) [23], Zero-Knowledge Scalable Transparent Argument of Knowledge (zk-STARKs) [24], and Bulletproofs [25] are three typical non-interactive ZKP schemes. Table 2 presents a comparison of three typical non-interactive ZKP technologies. zk-SNARKs have the smallest proof size. Verifiers of zk-SNARKs only need to check a fixed-size structure, such as the verification key and proof. This eliminates the need to reproduce or understand the original computation. Consequently, verifiers can complete the verification in a very short time, which is crucial for enhancing the scalability and efficiency of blockchain systems.



Zokrates [26] is a ZKP toolkit that includes a Domain-Specific Language (DSL) processor, compiler, and zk-SNARKs generator. The zk-SNARKs process is facilitated in Zokrates by initializing a zokratesProvider object, with the option to choose Groth16 [27] as the verification scheme during initialization. This process encompasses the generation of proof key   P K   and verification key   V K  , the generation of proof   p f  , and the verification of   p f  .



Figure 1 illustrates the process of generating proof and verifying it using zk-SNARKs through Zokrates. The steps are as follows:




	
  S e t u p ( f ) → ( P K , V K )  : Use DSL to describe the constraint verification program intended for ZKP implementation, denoted as   s o u r c e C o d e  . Next, compile it to generate the internal arithmetic circuit representation, denoted as   f = c o m p i l e ( s o u r c e C o d e )  . Finally, generate the key pair   ( P K , V K )   by constructing   S e t u p  .



	
  G e n P r o o f ( f , w i t n e s s , P K ) → p r o o f  : Given the public input   i n p u  t  p u b     and the private input   i n p u  t  p r i    , compute   w i t n e s s = c o m p u t e ( f ,  [ i n p u  t  p u b   , i n p u  t  p r i   ]  )  . Finally, generate the proof using Equation  (1):


  p f = G e n P r o o f ( f , w i t n e s s , P K ) .  



(1)







	
  V e r i f y ( V K , p r o o f ) → r e s u l t  : When there is a verification requirement, the correctness of   p f   can be verified by constructing   V e r i f y   and providing   p f   and its corresponding   V K   as inputs.










4. Scheme Model


As shown in Figure 2, the model of the scheme includes six entities: a healthcare management center, healthcare organizations, a data owner, a data user, a blockchain network, and a star file system.



Healthcare Management Center (HMC): The HMC comprises healthcare regulatory bodies responsible for qualifying, registering, and regulating participants, such as healthcare organizations, within the system. Any organization seeking to join the system must undergo registration with the HMC to ensure compliance with regulatory standards and guidelines.



Healthcare Organizations (HOs): The HO include hospitals, medical examination centers, research institutes, and other healthcare-related institutions licensed by the HMC.



Data Owner (DO): The DO is generally the patient. With the consent of the DO, the medical data portion of the EMR can be encrypted and uploaded to a shared network.



Data User (DU): DUs primarily consist of patients, healthcare professionals requiring access to patients’ historical medical records, and authorized members of the other organizations necessitating the sharing and utilization of medical data.



Blockchain (BC): The blockchain employed in this study was deployed utilizing the Hyperledger Fabric framework.



IPFS: The IPFS is used for the distributed storage of medical data ciphertext, wherein it generates a CID representing the hash address of the stored data. This CID is then provided back to the client. The client can query the corresponding data on the IPFS using the CID.




5. Scheme Implementation


Our proposed scheme comprises five crucial phases: the system initialization phase, user registration and identity verification phase, data storage phase, data query phase and data sharing phase.



5.1. System Initialization Phase


The initialization phase aims to establish the blockchain network. It involves setting up the Hyperledger Fabric blockchain network and then integrating HOs authorized by the HMC into this network. Hyperledger Fabric’s Certificate Authority then allocates keys and certificates to them. Following that, the corresponding chaincode is deployed for each channel in the network.




5.2. Registration and Verification Phase


To ensure secure data communication and prevent unauthorized access to the system, all users   U i   who need to join the system must register. Prior to registration, a key pair is generated, where   p k   represents the public key, and   s k   represents the private key. Additionally, users prepare their real identity   I  D R    for registration. The HMC generates a   u i d   and proof.



5.2.1. Generating   u i d  


The   u i d   serves as a unique identity identifier for recording   U i   as a valid user on the blockchain and is used as the unique ID for updating ledger data on the blockchain. During the user registration phase, patients are required to provide basic information and na   I  D R    for registration with healthcare institutions. Subsequently, healthcare institutions confirm the patient’s   u i d   with the HMC: if the patient’s   u i d   does not exist, a new   u i d   is generated by the management center upon request, using a hash function calculation, as shown in Equation (2):


  u i d = H a s h ( E n  c  P K    ( I  D R  )  ) ;  



(2)








5.2.2. Generating   p f  


ZKP is utilized for the decentralized identity verification of all system users. The HMC generates proofs for all registered users. The specific process involves signing with the user’s real identity   I  D R   , timestamp T, and a random number r, using this signed information as privacy input, computing the proof   p  f i    utilizing zk-SNARKs technology, and sending the verification key   V  K i    and   p  f i    to the user for private storage. When identity verification is required, users need to provide   V  K i    and   p  f i    to the system, which then executes the chaincode for decentralized identity verification on the blockchain.




5.2.3. Verification


When a DU wishes to access medical data stored in the system, identity verification and access control are required based on different roles and scenarios. When initiating a data access request, the DU needs to provide   p  f  D U    ,   V  K  D U    , and   u i  d  D U    .



If   E x i s t ( u i  d  D U   ) = t r u e  , the chaincode proceeds to authenticate the identity of the DU and verify the correctness of   p  f  D U    . If   V e r i f y ( V  K  D U   , p r o o  f  D U   ) = t r u e  , the verification result is returned to the data client. Then, the system determines the legitimacy of the user’s request. Otherwise, the verification fails, and the data usage request is rejected.





5.3. Data Storage Phase


To provide a clearer explanation of the sharing scheme proposed in this study, Figure 3 illustrates the entire process from the data storage stage to the data sharing stage.



The scheme creates an attribution channel and a data channel. The attribution channel is specifically designed to record the attribution information of patient records. The data channel records details such as the digests of medical data, storage locations, and usage records of EMR. Simultaneously, the encrypted original medical data are stored in the IPFS. This design effectively segregates medical data from patient identity information, offering a dependable technical solution for safeguarding patient privacy.



5.3.1. Encrypting Medical Records


Patient   U i   undergoes diagnosis and treatment at hospital H, generating medical data plaintext   M  E M R    and its corresponding EMR’s number   N  E M R   . After patient confirmation, H encrypts the medical data excluding the patient’s personal information to obtain the ciphertext of medical data,    C  E M R   = E  n  p k    (  M  E M R   )   , and calculates the message digest of the medical data ciphertext:   M  D  E M R   = H a s h  (  C  E M R   )   .



The doctor uses their private key   s  k  d o c     to sign   M  D  E M R     and   u i  d  d o c    , resulting in a digital signature   D o c S i g  n  E M R     as shown in Equation (3):


  D o c S i g  n  E M R   = S i g  n   s k   d o c     ( M  D  E M R   , u i  d  d o c   )  .  



(3)








5.3.2. Processing Medical Record Numbers


The medical record number   N  E M R    generated in the above process undergoes encryption and hashing. On one hand, the hash value of   N  E M R    is computed as shown in Equation (4):


   N  E M  R  h a s h     = H a s h  (  N  E M R   )  ,  



(4)




where   N  E M  R  h a s h      serves as the unique identifier stored on the data channel for medical data indexes   T r e a t m e n t D a t a   and data usage records   D a t a U s a g e R e c o r d  . On the other hand, the ciphertext of the EMR’s number   C  N  E M R     is generated as shown in Equation (5):


   C  N  E M R    = E  n  p  k i     (  N  E M R   )  ,  



(5)




which is used as the unique identifier for the attribution information   A t t r i b u t i o n I n f o   stored on the attribution channel.




5.3.3. Attribution Channel


The attribution channel stores the attribution information of EMR generated after a patient’s diagnosis, specifically recording the association between the EMR and the patient. Patients can view their own medical record numbers through the ownership relationship established in the attribution channel, thereby accessing their EMR. Since each EMR’s number corresponds uniquely to specific medical data, only the relationship between the patient’s   u i d   and the ciphertext   C  N  E M R     is recorded in the attribution channel, where   C  N  E M R     serves as the unique identifier for the record attribution information   A t t r i b u t i o n I n f o  . Patients compute the signature   P a t S i g n   for   C  N  E M R     as shown in Equation (6);


  P a t S i g n = S i g  n   s k  i    (  C  N  E M R    , u i  d i  )  .  



(6)







Subsequently, the system invokes the chaincode of the attribution channel to upload   A t t r i b u t i o n I n f o = {  C  N  E M R    , u i  d i  , P a t S i g n }   for persistent storage in the attribution channel. If the patient’s keys are not compromised, it is highly difficult for attackers to obtain the plaintext of the EMR number   N  E M R   .




5.3.4. Data Channel


The data channel is primarily used to record the medical data index and the usage records of EMR that are produced following patient diagnosis and treatment.



The medical data index includes the digest of the medical data,   M  D  E M R    , the hash address CID generated from storing the original medical data in the IPFS, the doctor’s signature on the medical data,   D o c S i g n E M R  , and hospital information H. Together, these data form the medical data index   T r e a t m e n t D a t a = {  N  E M  R  h a s h     , C I D , M  D  E M R   , D o c S i g  n  E M R   , H , t }  .



To ensure that the DU cannot obtain the   N  E M R    through reverse engineering, this scheme adopts the hash value generated from the EMR’s number,   N  E M  R  h a s h     , as the key for the medical data index   T r e a t m e n t D a t a  . Differing from the encrypted EMR’s number employed in the attribution channel, using   N  E M  R  h a s h      in the data channel. Because the inverse hash function   h a s  h  − 1     either does not exist or is extremely difficult to solve, the DUs are unable to obtain the plaintext of the EMR’s number. This effectively protects the privacy of medical data attribution relationships.



When patients or other authorized DUs access medical data, the system generates corresponding data usage records,   D a t a U s a g e R e c o r d  , and uploads these records to the blockchain for persistent storage. This mechanism enables patients and the HMC to effectively track and trace the usage of EMR data.




5.3.5. IPFS Stores Medical Data


The encrypted medical data of patients’ EMR are stored in the IPFS, while only the medical data index is saved on the blockchain. This design not only alleviates the burden on the blockchain network but also reduces the risks associated with single points of failure and privacy vulnerabilities caused by centralized storage methods.



After diagnosis and treatment at hospital H, the medical data plaintext   M  E M R   , which does not contain patient privacy, is encrypted by H to generate the corresponding medical data ciphertext   C  E M R   . This ciphertext is then uploaded to an IPFS node for storage. The IPFS calculates a unique data CID identifier from this medical data ciphertext. This CID is subsequently returned to hospital H, which utilizes this identifier to construct the   T r e a t m e n t D a t a   object and uploads it to the data channel for persistent storage. When DUs wish to access the stored data in the IPFS, they must provide the corresponding CID. The IPFS locates and accesses the corresponding medical data based on the CID. If the data are tampered with, the original CID will not match, thereby preventing access to the altered data.





5.4. Data Query Phase


In the scenario of medical data sharing, DUs often need to perform multi-condition queries to obtain corresponding EMR’s numbers, and then execute the chaincode in the data channel to obtain the storage information of EMR. Consider a case of a conditional query Q: querying all medical data records generated in hospital H that include a specific diagnostic result   D R  . After executing the query Q, the query result R should satisfy the following conditions simultaneously:




	
The medical data records were generated in hospital H.



	
The diagnostic result of the medical data records include   D R  .








If the conditional query process is not optimized, in a Hyperledger Fabric blockchain-based system, it would require individual queries for each condition, followed by filtering out results that do not satisfy the other conditions one by one. Consequently, the final result set that satisfies all query conditions would exclude the vast majority of data. With an increasing number of query conditions, the system would need to access and parse a corresponding increasing number of blocks, leading to a significant increase in the total amount of data to be processed and resulting in more redundant data. This inevitably increases the time required for conditional queries, thereby reducing query efficiency and making the entire query process appear both time-consuming and inefficient.



To address the above issue, this scheme proposes a method of creating composite key, which can significantly improve the efficiency of conditional queries.



5.4.1. Creating Composite Key


As shown in Algorithm 1, Hyperledger Fabric provides a specific API for constructing composite keys from different attributes:   c r e a t e C o m p o s i t e K e y ( o b j e c t T y p e , a t t r i b u t e s )  . This method aims to combine the given attributes with the object type to form a composite key, which can then be used to access historical and latest state information.






	Algorithm 1 Create composite key



	Input: a set of attributes   A =  {  a 1  , ⋯ ,  a s  }   ( 1 ≤ s )   

Output: k

	  1:

	
  k ← c r e a t e C o m p o s i t e K e y ( S t r i n g , A )  




	  2:

	
return k














During the process of uploading medical data records for storage, for each record    r i   1 ≤ i ≤ t    in the given collection of medical data records   R =  {  r 1  ,  r 2  , … ,  r t  }   t ≥ 1   , check if there are multiple values corresponding to one attribute. For example, in the “diagnosis" attribute of an EMR, there may be multiple symptoms, such as “hypertension” and “hyperglycemia". If this situation exists, and the attribute corresponds to n values, then split it into n separate records. Then, individually create a composite key for each record, with its corresponding   N  E M  R  h a s  h i       as the value for that key. This results in the EMR having n keys associated with it. As shown in Algorithm 2, we generate a key–value pair for each record and then submit all key–value pairs corresponding to these records to the blockchain for storage.






	Algorithm 2 Generate key–value pairs



	Input: a set of records   R =  {  r 1  ,  r 2  , … ,  r t  }   t ≥ 1   

Output: a set of key–value pairs   K V P  



	  1:

	
Declare an empty set   K V P  




	  2:

	
//    r i  =  {  N  E M  R  h a s  h i      ,  A i  }   , where   A i   is a set of attributes with elements that can be used as a query condition




	  3:

	
for all    r i  ∈ R   do




	  4:

	
 Compute   k i   based on Algorithm 1




	  5:

	
   k v  p i  =  (  k i  ,  N  E M  R  h a s  h i      )   




	  6:

	
 Add   k v  p i    into   K V P  




	  7:

	
end for




	  8:

	
return   K V P  















5.4.2. Executing Conditional Query


When executing query Q, construct all query conditions into a composite key k. This k contains constraint information for all conditions in query Q. Subsequently, use the key k as a parameter and execute the   g e t S t a t e ( k )   function.   g e t S t a t e   is an API provided by Hyperledger Fabric for querying the latest state. After the   g e t S t a t e   function’s execution, the resulting data will contain all the latest records that meet all conditions specified in query Q.




5.4.3. Updating Key–Value Pairs


Using the method of creating composite keys, we can effectively avoid the complex data filtering processes typically involved in conditional queries. When the   g e t S t a t e   method is executed, it retrieves a result set that meets all the criteria, significantly enhancing the efficiency of data queries. However, there may be challenges associated with updating key values when storing data records using composite keys. Specifically, when new records are added to the ledger, the   k j   created for the new record might coincide with one of the existing keys in the ledger, where none of the values corresponding to   k j   match any existing records. In such cases, it becomes necessary to update the existing key–value pairs.



In the method proposed in this scheme, the process for updating key–value pairs involves the following steps. First, query the existing value    N j  =  {    N  E M  R  h a s  h 1       j  ,    N  E M  R  h a s  h 2       j  , … ,    N  E M  R  h a s  h t       j  }   t ≥ 1    associated with the   k j  . Next, combine the new     N  E M  R  h a s  h  t + 1        j   with   N j   to form a new set   N  n e w   , which will serve as the updated value linked with the   k j  . Therefore, Algorithm 2 can be enhanced by introducing a key-value pair updating process, as shown in Algorithm 3. Finally, invoke the   p u t S t a t e (  k j  ,  N  n e w   )   function to submit the new key–value pair to the blockchain for persistent storage.   p u t S t a t e   is an API provided by Hyperledger Fabric for submitting the latest state. In using the   p u t S t a t e   function, the new record value will overwrite the old value in the state database, thereby achieving the objective of updating the data.






	Algorithm 3 Update key–value pairs



	Input: a set of records   R =  {  r 1  ,  r 2  , … ,  r t  }   t ≥ 1   

Output: a set of key–value pairs   K V P  



	  1:

	
Declare an empty set   K V P  




	  2:

	
//    r i  =  {  N  E M  R  h a s  h i      ,  A i  }   , where   A i   is a set of attributes with elements that can be used as a query condition




	  3:

	
for all    r i  ∈ R   do




	  4:

	
 Compute   k i   based on Algorithm 1




	  5:

	
 // Define   l s   as the latest state of   k i   in the blockchain




	  6:

	
   l s ← g e t S t a t e (  k i  )  




	  7:

	
 if   l s   is not null then




	  8:

	
  // Define N as the old set of   N  E M  R  h a s h     




	  9:

	
  Add   N  E M  R  h a s  h i       into N




	  10:

	
    k v  p i  =  (  k i  , N )   




	  11:

	
 else




	  12:

	
    k v  p i  =  (  k i  ,  N  E M  R  h a s  h i      )   




	  13:

	
 end if




	  14:

	
 Add   k v  p i    into   K V P  




	  15:

	
end for




	  16:

	
return   K V P  
















5.5. Data Sharing Phase


During data sharing, the DU must undergo identity verification and validate the legitimacy of the request. The data sharing phase can be roughly divided into two scenarios:




	
Patients query their own EMR and then authorize healthcare service providers to view them.



	
Other DUs, such as medical staff from healthcare units or researchers from research institutions, query the system for medical data available for sharing based on their specific needs.








In the first scenario, patients can query their encrypted medical record number   C  N  E M R     in the attribution channel by decrypting    N  E M R   = D  e  s  k i     (  C  N  E M R    )    and then calculating the hash value    N  E M  R  h a s h     = H a s h  (  N  E M R   )   .



Subsequently, they call the chaincode in the data channel to retrieve   T r e a t m e n t D a t a  . This enables patients to access all of their medical record information, which they can then authorize others to view. To protect patient privacy from being compromised, this method of query can only be initiated by the patients themselves. Under this storage method, it is impossible for anyone to retrieve   C  N  E M R     by querying   N  E M  R  h a s h      in the data channel, thus ensuring the protection of patient privacy.



In the second scenario, DUs can execute a conditional query to obtain the   N  E M  R  h a s h      associated with the medical data that they wish to access. The system can then invoke the chaincode on the data channel to retrieve   T r e a t m e n t D a t a  . Next, they can initiate sharing requests with the medical institutions that hold the data.



5.5.1. Principle of AES-PRE Implementation


To address the potential theft or tampering of shared data during the data sharing process, the system incorporates proxy re-encryption technology [28] to ensure the security of shared data. The nodes in the IPFS only provide proxy services for key transformation and cannot access plaintext data. The proxy re-encryption algorithm, based on asymmetric encryption, is often inefficient for large volumes of data sharing. Therefore, in the proposed method, we introduce the AES encryption algorithm and combine it with proxy re-encryption to improve the efficiency of the encryption process. We assume that Alice and Bob are the data exchangers. The specific process is described as follows:




	
Alice has   s  k A    and   p  k A   , and Bob has   s  k B    and   p  k B   .



	
Alice generates a symmetric key,   k  A E S   , encrypts the plaintext M with   k  A E S    to generate ciphertext C, encrypts   k  A E S    with   p  k A    to generate   C  ( A E S )   , and sends C and   C  ( A E S )    to the proxy.



	
Bob requests data from Alice and sends his public key   p  k B    to Alice.



	
Alice generates the proxy re-encryption key   R e K e  y  A → B     based on   s  k A    and   p  k B    and sends   R e K e  y  A → B     to the proxy.



	
The proxy transforms   C  ( A E S )    into   C   ( A E S )   n e w     based on   R e K e  y  A → B    .



	
Bob retrieves C and   C   ( A E S )   n e w     and then decrypts   C   ( A E S )   n e w     using   s  k B    to obtain   k  A E S   . With   k  A E S   , he decrypts C to retrieve the plaintext data.








With AES-PRE, we can achieve higher efficiency while ensuring data security. We next present one way to implement AES-PRE.



In this method, the AES-256 algorithm is used to encrypt the shared data. A finite field   F r   is defined, where the elements are 256 bits. Let A be the data sender and B be the data receiver. The principle of the AES-PRE process is described as follows.



First, define the generators of two groups. Suppose g and h are generators of groups   G 1   and   G 2  , respectively; then,   Z = e  g , h   ,   e :  G 1  ×  G 2  →  G T   .



Next, generate asymmetric keys for A and B as shown in Equation (7):


        s  k A  ∈  F r  , p  k A  =   g   s  k A    ∈  G 1           s  k B  ∈  F r  , p  k B  =   h   s  k B    ∈  G 2      



(7)







A encrypts the AES key   K  A E S    to obtain the ciphertext    C  ( A E S )   =    ( p  k A  )  k  ,  K  A E S     Z  k    .



Let   α =   ( p  k A  )  k    and   β =  K  A E S     Z  k  =  K  A E S   e    g , h   k   . Decrypting the ciphertext   C  ( A E S )    using A’s private key   s  k A    can be described as shown in Equation (8):


  D e  c  s  k A      C  A E S    =  K  A E S    



(8)







A generates the proxy re-encryption key   R e K e  y  A → B     using   s  k A    and   p  k B   , as shown in Equation (9):


  R e K e  y  A → B   =   ( p  k B  )   1  s  k A     ∈  G 2   



(9)







According to    C  A E S   =  α , β   , then, the Proxy can utilize the re-encryption key   R e K e  y  A → B     to compute     α  ′  = e  α , R e K e  y  A → B      to obtain the re-encryption ciphertext    C   A E S  n e w   =   α ′  , β   .



Finally, data recipient B can decrypt   C   A E S  n e w    using their own private key to obtain    K  A E S   = R e D e  c  s  k B      C   A E S  n e w     . Using   K  A E S    decrypts the ciphertext of medical data to obtain its plaintext. For the correctness of the decryption process, a proof of the re-encryption–decryption process can be constructed as follows:


   β   (  α ′  )   1  s  k B      =    K  A E S   e   ( g , h )  k    e  α , R e K e  y  A → B        1  s  k B       =    K  A E S   e   ( g , h )  k    e   (   ( p  k A  )  k  ,   ( p  k B  )   1  s  k A     )   1  s  k B       =    K  A E S   e   ( g , h )  k    e   (   (   g   s  k A    )  k  ,   (   h   s  k B    )   1  s  k A     )   1  s  k B       =  K  A E S    



(10)







As shown in Equation (10), AES-PRE satisfies correctness.




5.5.2. Sharing Process


The sharing process described in this subsection focuses on the second scenario described above.



Assume that a user   U  r e c    in a healthcare organization   H  O j    as a DU needs to use the medical data in the system. After the authentication and role verification of   U  r e c    is passed, the data index   T r e a t m e n t D a t a   on the blockchain is accessed based on the request to obtain the corresponding   {  N  E M  R  h a s h     , C I D ,  H i  , M  D  E M R   }  . Send the shared request with   {  N  E M  R  h a s h     , C I D , M  D  E M R   }   to hospital   H i  . When   H i   receives the sharing request,   H i   queries the IPFS to obtain the medical data ciphertext   C  E M R    based on the CID. Calculate the digest of   C  E M R   :   M  D  E M R  ′    and compare it with   M  D  E M R     to verify whether the data have been tampered with and to ensure the data integrity.



After verifying integrity,   H i   decrypts   C  E M R    to obtain plaintext   M  E M R   .   H i   randomly generates a shared symmetric key   K e y G e n  (  H i  ,  U  r e c   )   →  A E S    k  A E S     based on the AES algorithm. In using this key,   H i   encrypts the medical data plaintext   M  E M R    and the main information in the   T r e a t m e n t D a t a   record to obtain the shared ciphertext    C  s h a r e ( E M R )   = E n  c  k  A E S     (  M  E M R   ,  H i  ,  N  E M  R  h a s h     )   . Data sharing security is protected through AES-PRE.



After receiving the data forwarded by the IPFS,   U  r e c    decrypts it using private key   s  k  r e c     to obtain the AES key   k  A E S   . With   k  A E S   ,   U  r e c    decrypts   C  s h a r e ( E M R )    to obtain the plaintext medical data   M  E M R   , along with other information such as   N  E M  R  h a s h      and   H i  . Upon obtaining the plaintext medical data,   U  r e c    can encrypt them using the public key of   H i  , calculate the message digest   M  D  E M R  ′   , and sign it as   s i g n = S i g n ( M  D  E M R  ′  ,  U  r e c   )  . In querying the blockchain using   N  E M  R  h a s h      to retrieve the corresponding   T r e a t m e n t D a t a  ,   U  r e c    verifies the integrity of the medical data by comparing the stored   M  D  E M R     in the index. This allows   U  r e c    to determine whether the data have been tampered with by the sender. Upon successful verification,   U  r e c    sends   N  E M  R  h a s h     ,   M  D  E M R  ′   , and   s i g n   to the IPFS.



The IPFS uploads the constructed data structure for   U  r e c   ’s medical data usage record to the blockchain network for persistent storage as follows:   D a t a U s a g e R e c o r d = {  N  E M  R  h a s h     , U I  D  r e c   , M    D  E M R    ′  , s i g n , H  O j  ,  H i  , t }  .






6. Scheme Analysis


6.1. Security Analysis


6.1.1. Medical Data Security


All users requiring access to the data must be authenticated. Data access control is enforced based on the identity of the DU, preventing unauthorized access. The encrypted medical data generated by the system are stored in the IPFS distributed storage servers. Data sharing is protected through proxy re-encryption, ensuring that IPFS nodes only provide computational power for ciphertext transformation and cannot access the plaintext medical data.



For data integrity, on one hand, the IPFS utilizes content addressing, ensuring the integrity of the data. On the other hand, the cryptographic hash of the medical data ciphertext is persistently stored on the blockchain ledger. When users access the data, they are required to sign and verify the integrity of the medical data. Additionally, usage records are uploaded to the blockchain for storage, ensuring that encrypted data are not altered and that usage is traceable.




6.1.2. User Anonymity


All users operate with pseudo-identities and use ZKP technology for identity verification, which can ensure the correctness and validity of user identities without exposing any real private information.The security of the ZKP depends on the specific algorithm implementation. In our scheme, the generation and verification of proof are based on the Groth16 algorithm-implemented zk-SNARKs, which satisfies the completeness and soundness properties of a ZKP [27]. Therefore, user anonymity can be guaranteed during the interaction process.




6.1.3. Patient Privacy and Security


Our proposed scheme stores   C  N  E M R     and   u i d   as key–value pairs in the attribution channel, while in the data channel, it saves key–value pairs formed by   N   E M R   h a s h     and   T r e a t m e n t D a t a  . The confidentiality of the relationship between   C  N  E M R     and   N   E M R   h a s h     is crucial for patient privacy security. Once the relationship is exposed, attackers can obtain the   u i d   of patients associated with   T r e a t m e n t D a t a  , thus compromising patient privacy. Based on this dual-channel mechanism, the threat of data leakage in the system mainly includes two scenarios: one of the channels was attacked or both of the channels were attacked.



(A) One of the Channels Was Attacked



Assume that one of the channels is compromised by a malicious node that obtains all the ledger data in that channel. The design of dual channels provides a high degree of isolation, ensuring that attackers still cannot obtain the association between medical data and the corresponding patients. This feature provides additional assurance for patient privacy and security.



(B) Both of the Channels Were Attacked



Assume that both of the channels have malicious nodes and have access to all the ledger data in the system. We proceed to analyze the probability of exposure of the relationship between   C  N  E M R     and   N   E M R   h a s h    .



Hash functions are one-way, meaning that for any given original medical record number   N  E M R   , one can compute the corresponding    N  E M  R  h a s h     = h a s h  (  N  E M R   )   . However, if an attacker only obtains   N  E M  R  h a s h     , it is computationally infeasible to calculate the original medical record number   N  E M R    using   h a s  h  − 1    (  N  E M  R  h a s h     )   , as the inverse function   h a s  h  − 1     either does not exist or is extremely difficult to compute. With the assurance of patient key security, attackers cannot directly obtain the mapping between   C  N  E M R     and   N  E M  R  h a s h     .



If    {   C  N  E M R     , u i d }     i , 1 ≤ i ≤ n    in the attribution channel and    {  N  E M  R  h a s h     , T r e a t m e n t D a t a }   j , 1 ≤ j ≤ n    in the data channel are obtained, then the probability of obtaining     N  E M  R  h a s h      i   corresponding to     C  N  E M R     i   is


   P i   ( n )  = 1 / n  



(11)




where n in Equation (11) is the number of EMRs stored in the system, and as the number of stored EMRs increases, the probability of obtaining     N  E M  R  h a s h      i   corresponding to     C  N  E M R     i   decreases gradually.



If    {  C  N  E M R    , u i d }   i , 1 ≤ i ≤ n    in the attribution channel and    {  N  E M  R  h a s h     , T r e a t m e n t D a t a }   j , 1 ≤ j ≤ n    in the data channel are obtained, then patient U is assumed to have z EMRs, and the probability of obtaining the attribution relationship of z EMR of U is


  P  ( z , n )  =  ∏  i = 1  z    P i   ( n + 1 − i )    



(12)







The analysis of the monotonicity of Equation (12) reveals that as the n or the z gradually increases,   P ( z , n )   will decrease significantly. Considering real-world scenarios, as the system continues to be used, both the total number of stored EMRs in the system and the number of EMRs owned by patients will gradually increase. Therefore, the above probability will decrease gradually, indicating that the privacy of patients will be increasingly secure.



Even in the scenario where collusion exists among nodes in both channels, and attackers can access all ledger data in the two channels, they still cannot obtain the plaintext   N  E M R   , as long as patient keys remain secure. When confronted with extremely large EMRs, it is extremely difficult for an attacker to obtain a correspondence between   C  N  E M R     and   N  E M  R  h a s h     . Since    N  E M  R  h a s h      ⇌   C  N  E M R     , it follows that   T r e a t m e n t D a t a  ⇌  u i d  , meaning that medical data cannot be associated with patient information.



In summary, with patient key security assured, it can be considered that patients are anonymous in the blockchain network of this scheme, and their personal privacy will not be compromised due to data mining or other attack methods. However, this study assumes that patient keys remain undisclosed in discussing security issues. The improper storage of patient keys could pose significant privacy risks. Therefore, in future work, further research should focus on enhancing key management and addressing data update issues resulting from key changes.





6.2. Performance Analysis


This section evaluates the proposed scheme in terms of feature comparison, time overhead, storage overhead, and throughput. The experiments were conducted based on the Hyperledger Fabric v2.4 framework. The experimental platform hardware consisted of an Intel® Core™ i5-10400 CPU @ 2.9GHz and 16 GB of RAM, running on a 64-bit operating system. The Hyperledger Fabric network was deployed using Docker on a virtual machine running Ubuntu 20.04.



6.2.1. Feature Comparison


To analyze the functional advantages of the proposed sharing scheme, this section compares it with existing medical data sharing schemes. As shown in Table 3, we compare our proposed scheme with the schemes in [29,30,31,32] in terms of original data storage location, anonymity, resistance to data mining threats, decentralized identity authentication, and conditional query functionality. Resistance to data mining threats indicates the ability to withstand threats to patient privacy exposure due to data mining.



Refs. [29,30,32] and our proposed scheme all use pseudo-identity information for patients to protect patients’ privacy. In contrast, ref. [31] chose to enter patients’ real identifying information into the system and relied on access control policies to determine whether different users are authorized to access patients’ personal information. This scheme provides security but shows limitations in maintaining user anonymity.



Compared to the other literature, ref. [29] and the approach proposed in this paper are more closely aligned in terms of methodology, as both adopt a dual-channel mechanism for managing medical data, thus enhancing data security. However, refs. [29,30,32] still directly associates the pseudo-identity information used on the blockchain with the medical record number, and the medical record number has not undergone appropriate privacy protection. These schemes fail to fully defend against the risk of data mining attacks. The scheme proposed in this paper has better protection measures for privacy.



In terms of identity verification, both [31] and the scheme proposed in this paper conduct decentralized user authentication on the blockchain, providing stronger privacy protection. Simultaneously, our scheme optimizes the efficiency of blockchain conditional queries, significantly reducing the time cost required for such queries. These improvements ensure that the sharing of EMR is both secure and efficient, offering a novel solution for the field of medical data sharing.




6.2.2. Time Overhead


The symbols and explanations for the time overhead of the main operations in this scheme are as shown in Table 4, where   t  c t d   ,   t  q t d   ,   t  c u d   ,   t  q u d   ,   t  c a i   ,   t  q a i   , and   t  v p    represent the time overhead when executing certain chaincode operations.



Time overhead is a key indicator reflecting system performance, with a larger time overhead leading to a noticeable decrease in system efficiency. To evaluate the impact of each stage in the proposed scheme on system time overhead, as well as the influence of different data sizes on the time overhead of each stage, we conducted relevant tests. Selecting data of different sizes (64 KB/256 KB/1 MB) for time overhead tests during the data generation, uploading, and sharing phases yielded the results shown in Table 5. From the analysis, it can be concluded that the size of the data has a noticeable impact on the time overhead for each phase, with larger data resulting in greater time overhead.



To further explore the impact of data size on the performance of the blockchain network in our proposed scheme, we tested the time overheads of the main functions of the chaincode, and the results are shown in Table 6. The results indicate that regardless of variations in the size of the medical record data, the impact on the time overhead required for executing the chaincode in this scheme is minimal, suggesting a relatively small effect on the computational performance of the blockchain. Additionally, the average time required for verifying a zero-knowledge proof on the blockchain is 37 ms, indicating a similarly limited impact on the overall system operation.



In combining the results from Table 5 and Table 6, it can be concluded that the impact of data size on time overhead is primarily evident in the encryption and decryption processes, with some impact also seen during the IPFS upload and download processes. When the data size exceeds 1 MB, the time overhead for zero-knowledge verification is extremely low, significantly less than 1%. These results demonstrate that the blockchain-based scheme proposed in this paper maintains high computational efficiency and low resource utilization even when handling large-scale data.



Conditional querying is an important part in implementing EMR sharing, and the efficiency of conditional querying affects the efficiency of the whole sharing process. We propose a method for creating composite keys to improve the efficiency of system conditional querying. To demonstrate the feasibility of the method and evaluate the advantages of the optimization scheme, we conducted a separate time overhead test specifically for this functional module.



We used the scenario of conditional querying described in Section 5.4 as an example for the subsequent tests. In this scenario, we only need two attributes, hospital name and diagnosis result, to construct composite keys. Then, we use the hash value of the EMR’s number as the value corresponding to this composite key. For this purpose, we simulated 1479 records and divided the records into five groups based on the ratio P as shown in Equation (13):


  P =  m n  .  



(13)




where n in Equation (13) represents the total number of EMRs for a certain diagnosis result   D  R i   , and m represents the number of EMRs containing   D  R i    in hospital H. The grouping results are shown in Table 7.



We compared the query time overhead of our proposed method with the general method that does not use composite key. We repeated the query multiple times for each group of data in Table 7 using both methods and took the average of the query time for each group as the experimental result.



As shown in Table 8, with decreasing P, the query time overhead of the general method gradually increases. This is because as the P decreases, the total number of EMRs corresponding to the given diagnosis result in the conditional query increases, leading to an increase in the number of records that need to be filtered, thus resulting in a decreased query performance. In contrast, the query time spent by the proposed method based on the composite key is significantly less than that of the general method. This is because using the method of creating composite keys can accurately locate the data that satisfy all query conditions, requiring only the retrieval of the data that meet the conditions, thereby highlighting the superiority of the composite key-based method in terms of the query time performance.



Data transmission is a crucial process in electronic medical record sharing, with AES-PRE being the key technology ensuring secure data transmission. While ensuring data security, AES-PRE can improve transmission efficiency. In order to test the performance impact and benefits of using the AES-PRE method in the data sharing phase, we compared it with the method of directly re-encrypting the ciphertext of medical data (DReC) in terms of the time overhead. Figure 4 illustrates the processing time results of our scheme and DReC for different sizes of medical data. As the size of the shared data gradually increases, DReC’s time overhead also increases. In contrast, the time overhead of the AES-PRE process varies very little with the size of the data. For the same data size, the incurred time overhead was also smaller than that of DReC, demonstrating that our scheme is more efficient in data sharing.




6.2.3. Storage Overhead


To test the impact of the different sizes of data on the blockchain’s storage overhead in our scheme, we conducted tests on the storage overhead in both the blockchain and IPFS. By uploading data of various sizes and performing multiple tests to obtain averages, we compared the storage overhead generated by the blockchain and IPFS. In this context, the returned CID from the IPFS is a constant 46 bytes (SHA-256, Base64 encoding). As shown in Figure 5, it can be observed that the data size has almost no effect on the storage overhead on the blockchain network.




6.2.4. Throughput


The efficiency of the blockchain network is crucial for the overall system performance. Throughput is an important indicator of the performance of a blockchain network. Therefore, this study conducted throughput tests on the blockchain network to evaluate the system’s performance. The Caliper tool was utilized to conduct throughput tests for adding and querying relevant records in the blockchain. Figure 6 illustrates the impact of transaction request volume on the throughput of the blockchain network when adding   T r e a t m e n t D a t a   and   D a t a U s a g e R e c o r d   to the blockchain. It also depicts the effect of different data sizes on the throughput of the blockchain network when medical data are directly stored (DS) on the blockchain. The throughput represents the number of successfully submitted transactions per second (TPS). As the transaction request volume gradually increases, the throughput of our scheme also increases. When the transaction request volume reaches around 550, the throughput of our scheme tends to stabilize at around 50 TPS.



In contrast, the throughput of the DS is significantly lower than our scheme. Additionally, as the size of the stored data increases, the throughput of the DS obviously decreases. As shown in Figure 5, the size of the data stored by our scheme on the blockchain remains relatively constant at about 6 KB. Therefore, our scheme has a clear advantage in this aspect.






7. Conclusions


This study proposed an EMR storage and sharing solution based on Hyperledger Fabric and IPFS. Storing patient information and medical data in separate channels mitigates the privacy threat posed by data mining that could leak patient identities. Introducing an IPFS alleviates the deficiency in the blockchain storage performance. zk-SNARKs are used as an implementation of decentralized authentication, avoiding third-party trustworthiness issues. The efficient and secure transmission of medical data is ensured through AES-PRE. In addition, creating composite key improves the efficiency of queries in the Hyperledger Fabric network. Security analyses and experimental results show that these efforts provide significant advances in EMR sharing, offering solutions to the privacy, security, and efficiency challenges.



Our scheme can be further improved in several aspects. Firstly, we will explore how to strengthen patient key management to further enhance privacy protection in our future work. Secondly, creating composite keys results in a large amount of redundant storage, and the introduction of indexes can be considered in the future to reduce redundancy. These efforts can further improve system security and efficiency.
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Figure 1. The process of generating zero-knowledge proof and verifying proof. 
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Figure 2. Scheme model. 
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Figure 3. Timing diagram for data storage phase and data sharing phase. 
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Figure 4. Time overhead comparison between AES-PRE and DReC. 
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Figure 5. Storage overhead comparison between blockchain and IPFS. 






Figure 5. Storage overhead comparison between blockchain and IPFS.



[image: Applsci 14 05005 g005]







[image: Applsci 14 05005 g006] 





Figure 6. Throughput when adding   T r e a t m e n t D a t a   and   D a t a U s a g e R e c o r d   to the blockchain. 
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Table 1. Limitations of related work and solutions in this study.
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	Literature
	Limitation
	Solution in This Study





	[7]
	Lack of shared program
	Combining blockchain, the IPFS, and proxy re-encryption



	[8,9,10]
	Lack of privacy protection
	Using pseudo-identities in the system



	[11]
	No efficient search mechanism
	Creating composite keys for conditional queries



	[12,13,14,15,16]
	Requires tokens or gas expenses
	Based on the Hyperledger Fabric architecture without the incentive mechanism



	[19]
	Lack of data integrity discussion
	Combining blockchain and the IPFS



	[20]
	The source medical data are not decentralized storage
	Storing medical data ciphertexts using the IPFS










 





Table 2. Comparison of zk-SNARKs, zk-STARKs, and Bulletproofs.
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	zk-SNARKs
	zk-STARKs
	Bulletproofs





	Algorithmic complexity of the prover
	O(N·log(N))
	O(N·polylog(N))
	O(N·log(N))



	Algorithmic complexity of the verifier
	O(1)
	O(polylog(N))
	O(N)



	Communication complexity
	O(1)
	O(polylog(N))
	O(log(N))



	1TX proof size
	200 B
	45 KB
	1.5 KB










 





Table 3. Feature comparison.
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	Scheme
	Original Data Storage Location
	Anonymity
	Resisting Data Mining Threats
	Decentralized Identity Authentication
	Conditional Query





	 [29]
	Cloud Server
	✓
	×
	×
	×



	 [30]
	IPFS
	✓
	×
	×
	×



	 [31]
	Cloud Server
	×
	×
	✓
	×



	 [32]
	Centralized Database
	✓
	×
	×
	×



	Our scheme
	IPFS
	✓
	✓
	✓
	✓










 





Table 4. The symbols and explanations for the time overhead of the main operations in this scheme.
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	Symbol
	Explanation





	   t  p k   e n    
	Encrypting medical record data with public keys



	   t  s k   d e    
	Decrypting medical record data with private key



	   t  m  d  e m r      
	Calculating medical record data message digest



	   t  N  e m  r  h a s h       
	Calculating the hash value of the medical record number



	   t   N  e m r     e n    
	Encrypting medical record number



	   t   N  e m r     d e    
	Decrypting medical record number



	   t  s i g n    
	Doctor signs the medical record data



	   t  c t d    
	Creating   T r e a t e m e n t   to upload to data channel



	   t  q t d    
	Querying   T r e a t e m e n t   on the data channel



	   t  A E S   e n    
	Encrypting medical record data with AES



	   t  A E S   d e    
	Decrypting medical record data with AES



	   t  g r k    
	Generate re-encryption key



	   t  p r e    
	Proxy re-encryption



	   t  c u d    
	Creating   D a t a U s a g e R e c o r d   to upload to data channel



	   t  q u d    
	Querying   D a t a U s a g e R e c o r d   on the data channel



	   t  u I P F S    
	Uploading encrypted data to the IPFS to generate CID



	   t  d I P F S    
	Downloading encrypted data from the IPFS



	   t  c a i    
	Creating   A t t r i b u t i o n I n f o   to upload to attribution channel



	   t  q a i    
	Querying   A t t r i b u t i o n I n f o   on the attribution channel



	   t  v i    
	Verifying data integrity



	   t  v p    
	Verifying the validity of   p f  










 





Table 5. Time overhead for major phases in this scheme (ms).
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	Phase
	Time Overhead
	Result (64 KB/256 KB/1 MB)





	Data generation
	    t  p k   e n   +  t  m  d  e m r     +  t  s i g n     
	87/295/1061



	Data uploading
	    t  u I P F S   +  t  c t d   +  t  c a i     
	127/136/148



	Data sharing
	    t  v p   +  t  q t d   +  t  d I P F S   + 2  t  v i   +  t  s k   d e   +  t  a e s   e n   +  t  g r k   +  t  p r e   +  t  a e s   d e   +  t  c u d   +  t  m  d  e m r     +  t  s i g n     
	616/2094/7756










 





Table 6. Time overheads of the main functions of the chaincodes in this scheme (ms).
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	Data Size
	    t ctd    
	    t qtd    
	    t cud    
	    t qud    
	    t cai    
	    t qai    
	    t vp    





	64 KB
	44.47
	1.27
	43.56
	1.28
	43.46
	1.21
	36.04



	256 KB
	47.37
	1.23