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Abstract: This study examines the issues of privacy protection, data security, and query efficiency in
blockchain-based electronic medical record (EMR) sharing. It proposes a secure storage and sharing
scheme for EMR based on Hyperledger Fabric and the InterPlanetary File System (IPFS). To mitigate
the privacy risks of data mining that could reveal patient identities, we establish an attribution
channel in Hyperledger Fabric to store EMR ownership information and a data channel to store the
storage location, digest, and usage records of medical data. Encrypted medical data are stored in the
IPFS. To improve query efficiency in the blockchain, we integrate queryable medical data attributes
into a composite key for conditional queries, avoiding complex data filtering processes. Additionally,
we use a zero-knowledge proof combined with smart contracts for decentralized identity verification,
eliminating reliance on third-party centralized verification services and enhancing system security.
We also integrate AES and proxy re-encryption techniques to ensure data security during sharing.
This scheme provides a more secure, efficient, and privacy-preserving approach for EMR systems,
with significant practical implications and broad application potential.

Keywords: blockchain; electronic medical record sharing; privacy protection; zero-knowledge proof;
proxy re-encryption

1. Introduction

In recent years, with continuous innovation and development, the application research
of blockchain technology has gradually expanded to various aspects of socio-economic
activities. Blockchain technology plays a crucial role in fields such as supply chain manage-
ment [1], the Internet of Things [2], identity authentication [3], and healthcare services [4],
showing a trend of diversified and cross-industry applications. Despite its vast potential,
integrating blockchain into electronic medical record (EMR) data sharing faces significant
challenges. Ensuring data privacy, security, and query efficiency is particularly difficult.
Protecting sensitive medical information while maintaining efficient data access remains a
critical issue.

Data storage is crucial for patient privacy and data usage efficiency. Although research
on blockchain-based data storage has made some progress [5,6], there is still room for
improvement. On one hand, mainstream storage methods currently fail to effectively
isolate the relationship between EMR and patients, making them vulnerable to privacy
attacks exploiting this relationship, such as data mining. On the other hand, due to existing
performance bottlenecks in blockchain technology, it exhibits inefficiency when facing
large-scale data sharing scenarios.

Additionally, current blockchain-based data sharing schemes often use centralized
identity authentication to prevent malicious access. However, centralized systems heavily
rely on trust in the central authority. If this authority acts dishonestly, maliciously, or suffers
a data breach, users’ digital identity information is at serious risk. Moreover, data querying
is a crucial part of the data usage process. Improving the query speed can significantly
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enhance data sharing efficiency. However, there is limited research on improving the
efficiency of specific data queries on blockchain.

To address these challenges, this study proposes an efficient and secure EMR storage
and sharing scheme based on Hyperledger Fabric and the InterPlanetary File System (IPFS),
which works as follows:

1. We propose a storage method that combines dual channels with the IPFS. In Hyper-
ledger Fabric, we create an attribution channel to store EMR’s attribution information
and a data channel to store the storage location, summary, and usage records of
medical data. The encrypted medical data are then stored in the IPFS. This ensures
that patient privacy is not threatened by attacks such as data mining.

2. We integrate medical data attributes that can be used for a conditional query into a
composite key. This composite key, along with the medical record number, is then
stored as a key–value pair in the blockchain. This approach aims to enhance the
efficiency of data querying in the blockchain.

3. We introduce a zero-knowledge proof and combine it with smart contracts to achieve
decentralized identity verification for system users. This eliminates the reliance on
central third-party verification services, thereby enhancing system security.

4. We combine AES encryption with proxy re-encryption to ensure data security during
the sharing process. We provide the principles behind implementing this technique.

2. Related Work

There are already numerous solutions based on blockchain technology that address
the issues of secure storage or the sharing of medical data. Cao et al. [7] proposed an EMR
management scheme that combines cloud and blockchain technologies, which ensures
the secure storage of EMR. However, it does not address the implementation of secure
data sharing. Carter et al. [8] proposed an EMR sharing scheme that integrates Ethereum
blockchain and cloud computing networks, but it does not fully address privacy con-
cerns. Huang et al. [9] proposed recording the operations of various stages of EMR on the
blockchain to ensure traceability and tamper resistance. Xia et al. [10] proposed ensuring the
security of data stored in the cloud through access permissions and effectively tracking and
monitoring all operations on the data using smart contracts. Ref. [9,10] suggested that mon-
itoring and recording the process of medical record operations can prevent tampering with
the records, but they cannot prevent the leakage of patient privacy. Fu et al. [11] encrypted
medical data using interleaved coding techniques, effectively protecting personal privacy.
Wang et al. [12] proposed a blockchain-based medical data sharing scheme, integrating
searchable encryption and proxy re-encryption to achieve secure sharing. Dagher et al. [13]
introduced the Ancile framework, which transfers the ownership and control of EMR to
data owners via the Ethereum platform and effectively ensures the information security of
EMR through proxy re-encryption technology. Akkaoui et al. [14] proposed a secure and
efficient data management framework based on Ethereum, utilizing edge computing and
blockchain to ensure data security and privacy. Ref. [15] combined searchable encryption
algorithms to construct index expressions for EMR data and stored them on the blockchain,
allowing data owners to control access permissions for their data. Azaria et al. [16] intro-
duced MedRec, an EMR sharing scheme, employing three Ethereum smart contracts to
implement fine-grained access control for patients’ medical records, enabling third-party
users to access data upon successful authentication. These approaches [12–16] safeguard
data security and protect patient privacy through access control. However, the systems
proposed are implemented on Ethereum, where normal transactions require a certain
amount of tokens and additional gas expenses, thus increasing system complexity and
management costs, which may not be entirely suitable for hospital information systems.

With the evolution of blockchain technology, there have been research efforts adopting
the more lightweight Hyperledger Fabric [17] architecture to implement the blockchain net-
work component of the designed systems. Hyperledger Fabric is one of the widely adopted
solutions in the current realm of consortium blockchains [18]. It integrates a member man-
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agement service mechanism, allowing multiple organizational entities to participate in and
manage it jointly. Moreover, this solution supports smart contract development in various
common programming languages, exhibiting greater flexibility in practical deployment
and application. Tanwar et al. [19] proposed an access control policy algorithm aimed at
enhancing data accessibility among healthcare providers, enabling the implementation
of an EMR sharing system based on Hyperledger Fabric. However, they did not discuss
the data integrity aspect of the solution. Ref. [20] used Hyperledger Fabric to enhance
interoperability among healthcare institutions and to solve the fragmentation problem.

Table 1 summarizes the limitations of related work and explains how this study
addresses these shortcomings. In addition to the issues mentioned in the table, most related
work does not separate ownership information from the specific medical data of patients.
This makes it difficult to prevent privacy threats from data mining that could reveal patient
identities. Our study mitigates this threat by creating an attribution channel and a data
channel to store the relevant information separately.

Table 1. Limitations of related work and solutions in this study.

Literature Limitation Solution in This Study

[7] Lack of shared program Combining blockchain, the
IPFS, and proxy re-encryption

[8–10] Lack of privacy protection Using pseudo-identities in
the system

[11] No efficient search mechanism Creating composite keys for
conditional queries

[12–16] Requires tokens or gas
expenses

Based on the Hyperledger
Fabric architecture without
the incentive mechanism

[19] Lack of data integrity
discussion

Combining blockchain and
the IPFS

[20] The source medical data are
not decentralized storage

Storing medical data
ciphertexts using the IPFS

3. Framework Components

This section introduces the main components used in this study and explains the
reasons for selecting them. This helps in understanding the proposed scheme.

3.1. Hyperledger Fabric

Hyperledger Fabric is an open-source, enterprise-grade, permissioned distributed
ledger technology platform developed under the leadership of the Linux Foundation [17]. It
features a highly modular architecture that brings innovation, versatility, and optimization
to the healthcare industry. As a consortium blockchain application development platform,
Hyperledger Fabric allows only authorized organizations and nodes to join designated
blockchains for conducting transactions and recording data. Additionally, Hyperledger
Fabric does not rely on cryptocurrencies to incentivize mining or drive smart contract
execution, thus avoiding the risks or vulnerabilities associated with cryptocurrency use.

In the Hyperledger Fabric network, smart contracts are referred to as chaincodes.
Hyperledger Fabric allows for the creation of different channels as needed, with different
chaincodes deployed within each channel. A chaincode is embedded and executed within
the nodes, requiring all nodes in the channel to install the chaincode.

There is isolation between channels in Hyperledger Fabric, meaning that data are
not exchanged between different channels, and one channel does not depend on others.
Each channel can be understood as an independent instance of Hyperledger Fabric, and
all channels are completely separate. This feature helps us separate patient ownership
information from medical data.
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3.2. InterPlanetary File System

The InterPlanetary File System(IPFS) is an open-source distributed file storage and
content distribution protocol [21]. Designed to create a more robust, secure, and efficient
environment for data sharing and transmission, the IPFS is particularly well suited for
applications requiring long-term preservation, high redundancy, and resistance to cen-
sorship. When accessing medical data, the IPFS does not rely on server addresses but
locates data based on its content hash, ensuring the uniqueness of the data and allowing
for the replication and storage of identical content across multiple nodes in the network.
When users access content stored on the IPFS, they are actually downloading data from
the nearest or available nodes, rather than fetching it from a single server. This approach
enhances the reliability and efficiency of the system.

3.3. zk-SNARKs

A zero-knowledge proof (ZKP) requires the participation of both a prover and verifier.
In employing the ZKP techniques, the prover can convince the verifier of the truthfulness
of a statement without revealing any useful information related to the statement beyond its
truth. ZKP has been widely utilized in identity authentication [22].

ZKPs can be categorized into interactive and non-interactive types. A non-interactive
proof requires at most one authentication interaction during the verification process, thereby
reducing the communication overhead caused by multiple interactions in the proof process,
especially in blockchain systems. The Zero-Knowledge Succinct Non-Interactive Argument
of Knowledge (zk-SNARKs) [23], Zero-Knowledge Scalable Transparent Argument of
Knowledge (zk-STARKs) [24], and Bulletproofs [25] are three typical non-interactive ZKP
schemes. Table 2 presents a comparison of three typical non-interactive ZKP technologies.
zk-SNARKs have the smallest proof size. Verifiers of zk-SNARKs only need to check a
fixed-size structure, such as the verification key and proof. This eliminates the need to
reproduce or understand the original computation. Consequently, verifiers can complete
the verification in a very short time, which is crucial for enhancing the scalability and
efficiency of blockchain systems.

Table 2. Comparison of zk-SNARKs, zk-STARKs, and Bulletproofs.

zk-SNARKs zk-STARKs Bulletproofs

Algorithmic
complexity of the

prover
O(N·log(N)) O(N·polylog(N)) O(N·log(N))

Algorithmic
complexity of the

verifier
O(1) O(polylog(N)) O(N)

Communication
complexity O(1) O(polylog(N)) O(log(N))

1TX proof size 200 B 45 KB 1.5 KB

Zokrates [26] is a ZKP toolkit that includes a Domain-Specific Language (DSL) proces-
sor, compiler, and zk-SNARKs generator. The zk-SNARKs process is facilitated in Zokrates
by initializing a zokratesProvider object, with the option to choose Groth16 [27] as the
verification scheme during initialization. This process encompasses the generation of proof
key PK and verification key VK, the generation of proof p f , and the verification of p f .

Figure 1 illustrates the process of generating proof and verifying it using zk-SNARKs
through Zokrates. The steps are as follows:

1. Setup( f ) → (PK, VK): Use DSL to describe the constraint verification program
intended for ZKP implementation, denoted as sourceCode. Next, compile it to generate
the internal arithmetic circuit representation, denoted as f = compile(sourceCode).
Finally, generate the key pair (PK, VK) by constructing Setup.
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2. GenProo f ( f , witness, PK)→ proo f : Given the public input inputpub and the private
input inputpri, compute witness = compute( f , [inputpub, inputpri]). Finally, generate
the proof using Equation (1):

p f = GenProo f ( f , witness, PK). (1)

3. Veri f y(VK, proo f )→ result: When there is a verification requirement, the correctness
of p f can be verified by constructing Veri f y and providing p f and its corresponding
VK as inputs.

witness

pubinputpubinput priinput priinputpubinput priinputpubinput priinput

VKPK

( )Setup f

( )compile sourceCode

sourceCodesourceCode

( )compile sourceCode

sourceCode

( )compile sourceCode

sourceCode

( )Setup f

( )compile sourceCode

sourceCode

VKPK

( )Setup f

( )compile sourceCode

sourceCode

 : farithmetic circuits

,( [ , ]) pub prif inpuc t inputompute

f PK

proofproof

( , , )GenProof f witness PK

proofproof VKVK

result

( , )Verify VK proof

Figure 1. The process of generating zero-knowledge proof and verifying proof.

4. Scheme Model

As shown in Figure 2, the model of the scheme includes six entities: a healthcare
management center, healthcare organizations, a data owner, a data user, a blockchain
network, and a star file system.

Data Users
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Research 
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Research 
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Figure 2. Scheme model.
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Healthcare Management Center (HMC): The HMC comprises healthcare regulatory
bodies responsible for qualifying, registering, and regulating participants, such as health-
care organizations, within the system. Any organization seeking to join the system must
undergo registration with the HMC to ensure compliance with regulatory standards
and guidelines.

Healthcare Organizations (HOs): The HO include hospitals, medical examination
centers, research institutes, and other healthcare-related institutions licensed by the HMC.

Data Owner (DO): The DO is generally the patient. With the consent of the DO, the
medical data portion of the EMR can be encrypted and uploaded to a shared network.

Data User (DU): DUs primarily consist of patients, healthcare professionals requir-
ing access to patients’ historical medical records, and authorized members of the other
organizations necessitating the sharing and utilization of medical data.

Blockchain (BC): The blockchain employed in this study was deployed utilizing the
Hyperledger Fabric framework.

IPFS: The IPFS is used for the distributed storage of medical data ciphertext, wherein it
generates a CID representing the hash address of the stored data. This CID is then provided
back to the client. The client can query the corresponding data on the IPFS using the CID.

5. Scheme Implementation

Our proposed scheme comprises five crucial phases: the system initialization phase,
user registration and identity verification phase, data storage phase, data query phase and
data sharing phase.

5.1. System Initialization Phase

The initialization phase aims to establish the blockchain network. It involves setting
up the Hyperledger Fabric blockchain network and then integrating HOs authorized by
the HMC into this network. Hyperledger Fabric’s Certificate Authority then allocates keys
and certificates to them. Following that, the corresponding chaincode is deployed for each
channel in the network.

5.2. Registration and Verification Phase

To ensure secure data communication and prevent unauthorized access to the system,
all users Ui who need to join the system must register. Prior to registration, a key pair is
generated, where pk represents the public key, and sk represents the private key. Addi-
tionally, users prepare their real identity IDR for registration. The HMC generates a uid
and proof.

5.2.1. Generating uid

The uid serves as a unique identity identifier for recording Ui as a valid user on the
blockchain and is used as the unique ID for updating ledger data on the blockchain. During
the user registration phase, patients are required to provide basic information and na IDR
for registration with healthcare institutions. Subsequently, healthcare institutions confirm
the patient’s uid with the HMC: if the patient’s uid does not exist, a new uid is generated
by the management center upon request, using a hash function calculation, as shown in
Equation (2):

uid = Hash(EncPK(IDR)); (2)

5.2.2. Generating p f

ZKP is utilized for the decentralized identity verification of all system users. The
HMC generates proofs for all registered users. The specific process involves signing with
the user’s real identity IDR, timestamp T, and a random number r, using this signed
information as privacy input, computing the proof p fi utilizing zk-SNARKs technology,
and sending the verification key VKi and p fi to the user for private storage. When identity
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verification is required, users need to provide VKi and p fi to the system, which then
executes the chaincode for decentralized identity verification on the blockchain.

5.2.3. Verification

When a DU wishes to access medical data stored in the system, identity verification
and access control are required based on different roles and scenarios. When initiating a
data access request, the DU needs to provide p fDU , VKDU , and uidDU .

If Exist(uidDU) = true, the chaincode proceeds to authenticate the identity of the
DU and verify the correctness of p fDU . If Veri f y(VKDU , proo fDU) = true, the verification
result is returned to the data client. Then, the system determines the legitimacy of the
user’s request. Otherwise, the verification fails, and the data usage request is rejected.

5.3. Data Storage Phase

To provide a clearer explanation of the sharing scheme proposed in this study, Figure 3
illustrates the entire process from the data storage stage to the data sharing stage.

HospitalHospital Data UserData User BlockchainBlockchain ChaincodeChaincode IPFSIPFS

Query EMR data based on CID

Upload encrypted medical data CEMRUpload encrypted medical data CEMRUpload encrypted medical data CEMR

Store to BC

Execute chaincode to store TreatmentDataExecute chaincode to store TreatmentDataExecute chaincode to store TreatmentDataExecute chaincode to store TreatmentData

Generate TreatmentDataGenerate TreatmentDataGenerate TreatmentData

Generate EMR

proof and uidproof and uid

Verify(VK, proof )Verify(VK, proof )Verify(VK, proof )

Query 

TreatmentData

Query 

TreatmentData

Return CEMR

Execute chaincode to store medical record's AttributionInfoExecute chaincode to store medical record's AttributionInfo

Execute chaincode 

to store 

DataUsageRecord

Execute chaincode 

to store 

DataUsageRecord

 Data 

Storage 

Phase

 Data 

Storage 

Phase

Data 

Sharing 

Phase

Data 

Sharing 

Phase

Return CIDReturn CID

Store to BC

Conditional QueryConditional Query

Return CIDReturn CID

Store to BC

Execute chaincode to create composite keysExecute chaincode to create composite keysExecute chaincode to create composite keysExecute chaincode to create composite keys

Figure 3. Timing diagram for data storage phase and data sharing phase.

The scheme creates an attribution channel and a data channel. The attribution channel
is specifically designed to record the attribution information of patient records. The data
channel records details such as the digests of medical data, storage locations, and usage
records of EMR. Simultaneously, the encrypted original medical data are stored in the IPFS.
This design effectively segregates medical data from patient identity information, offering
a dependable technical solution for safeguarding patient privacy.
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5.3.1. Encrypting Medical Records

Patient Ui undergoes diagnosis and treatment at hospital H, generating medical data
plaintext MEMR and its corresponding EMR’s number NEMR. After patient confirmation,
H encrypts the medical data excluding the patient’s personal information to obtain the
ciphertext of medical data, CEMR = Enpk(MEMR), and calculates the message digest of the
medical data ciphertext: MDEMR = Hash(CEMR).

The doctor uses their private key skdoc to sign MDEMR and uiddoc, resulting in a digital
signature DocSignEMR as shown in Equation (3):

DocSignEMR = Signskdoc
(MDEMR, uiddoc). (3)

5.3.2. Processing Medical Record Numbers

The medical record number NEMR generated in the above process undergoes en-
cryption and hashing. On one hand, the hash value of NEMR is computed as shown in
Equation (4):

NEMRhash = Hash(NEMR), (4)

where NEMRhash serves as the unique identifier stored on the data channel for medical data
indexes TreatmentData and data usage records DataUsageRecord. On the other hand, the
ciphertext of the EMR’s number CNEMR is generated as shown in Equation (5):

CNEMR = Enpki
(NEMR), (5)

which is used as the unique identifier for the attribution information AttributionIn f o stored
on the attribution channel.

5.3.3. Attribution Channel

The attribution channel stores the attribution information of EMR generated after a
patient’s diagnosis, specifically recording the association between the EMR and the patient.
Patients can view their own medical record numbers through the ownership relationship
established in the attribution channel, thereby accessing their EMR. Since each EMR’s
number corresponds uniquely to specific medical data, only the relationship between
the patient’s uid and the ciphertext CNEMR is recorded in the attribution channel, where
CNEMR serves as the unique identifier for the record attribution information AttributionIn f o.
Patients compute the signature PatSign for CNEMR as shown in Equation (6);

PatSign = Signski
(CNEMR , uidi). (6)

Subsequently, the system invokes the chaincode of the attribution channel to upload
AttributionIn f o = {CNEMR , uidi, PatSign} for persistent storage in the attribution channel.
If the patient’s keys are not compromised, it is highly difficult for attackers to obtain the
plaintext of the EMR number NEMR.

5.3.4. Data Channel

The data channel is primarily used to record the medical data index and the usage
records of EMR that are produced following patient diagnosis and treatment.

The medical data index includes the digest of the medical data, MDEMR, the hash address
CID generated from storing the original medical data in the IPFS, the doctor’s signature on
the medical data, DocSignEMR, and hospital information H. Together, these data form the
medical data index TreatmentData = {NEMRhash , CID, MDEMR, DocSignEMR, H, t}.

To ensure that the DU cannot obtain the NEMR through reverse engineering, this
scheme adopts the hash value generated from the EMR’s number, NEMRhash , as the key
for the medical data index TreatmentData. Differing from the encrypted EMR’s number
employed in the attribution channel, using NEMRhash in the data channel. Because the
inverse hash function hash−1 either does not exist or is extremely difficult to solve, the DUs
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are unable to obtain the plaintext of the EMR’s number. This effectively protects the privacy
of medical data attribution relationships.

When patients or other authorized DUs access medical data, the system generates
corresponding data usage records, DataUsageRecord, and uploads these records to the
blockchain for persistent storage. This mechanism enables patients and the HMC to
effectively track and trace the usage of EMR data.

5.3.5. IPFS Stores Medical Data

The encrypted medical data of patients’ EMR are stored in the IPFS, while only the
medical data index is saved on the blockchain. This design not only alleviates the burden
on the blockchain network but also reduces the risks associated with single points of failure
and privacy vulnerabilities caused by centralized storage methods.

After diagnosis and treatment at hospital H, the medical data plaintext MEMR, which
does not contain patient privacy, is encrypted by H to generate the corresponding medical
data ciphertext CEMR. This ciphertext is then uploaded to an IPFS node for storage. The
IPFS calculates a unique data CID identifier from this medical data ciphertext. This CID
is subsequently returned to hospital H, which utilizes this identifier to construct the
TreatmentData object and uploads it to the data channel for persistent storage. When
DUs wish to access the stored data in the IPFS, they must provide the corresponding CID.
The IPFS locates and accesses the corresponding medical data based on the CID. If the
data are tampered with, the original CID will not match, thereby preventing access to the
altered data.

5.4. Data Query Phase

In the scenario of medical data sharing, DUs often need to perform multi-condition
queries to obtain corresponding EMR’s numbers, and then execute the chaincode in the
data channel to obtain the storage information of EMR. Consider a case of a conditional
query Q: querying all medical data records generated in hospital H that include a specific
diagnostic result DR. After executing the query Q, the query result R should satisfy the
following conditions simultaneously:

• The medical data records were generated in hospital H.
• The diagnostic result of the medical data records include DR.

If the conditional query process is not optimized, in a Hyperledger Fabric blockchain-
based system, it would require individual queries for each condition, followed by filtering
out results that do not satisfy the other conditions one by one. Consequently, the final
result set that satisfies all query conditions would exclude the vast majority of data. With
an increasing number of query conditions, the system would need to access and parse a
corresponding increasing number of blocks, leading to a significant increase in the total
amount of data to be processed and resulting in more redundant data. This inevitably
increases the time required for conditional queries, thereby reducing query efficiency and
making the entire query process appear both time-consuming and inefficient.

To address the above issue, this scheme proposes a method of creating composite key,
which can significantly improve the efficiency of conditional queries.

5.4.1. Creating Composite Key

As shown in Algorithm 1, Hyperledger Fabric provides a specific API for constructing
composite keys from different attributes: createCompositeKey(objectType, attributes). This
method aims to combine the given attributes with the object type to form a composite key,
which can then be used to access historical and latest state information.
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Algorithm 1 Create composite key

Input: a set of attributes A = {a1, . . . , as}(1 ≤ s)
Output: k

1: k← createCompositeKey(String, A)
2: return k

During the process of uploading medical data records for storage, for each record
ri(1 ≤ i ≤ t) in the given collection of medical data records R = {r1, r2, . . . , rt}(t ≥ 1),
check if there are multiple values corresponding to one attribute. For example, in the
“diagnosis" attribute of an EMR, there may be multiple symptoms, such as “hypertension”
and “hyperglycemia". If this situation exists, and the attribute corresponds to n values,
then split it into n separate records. Then, individually create a composite key for each
record, with its corresponding NEMRhashi

as the value for that key. This results in the EMR
having n keys associated with it. As shown in Algorithm 2, we generate a key–value pair
for each record and then submit all key–value pairs corresponding to these records to the
blockchain for storage.

Algorithm 2 Generate key–value pairs

Input: a set of records R = {r1, r2, . . . , rt}(t ≥ 1)
Output: a set of key–value pairs KVP

1: Declare an empty set KVP
2: // ri = {NEMRhashi

, Ai}, where Ai is a set of attributes with elements that can be used
as a query condition

3: for all ri ∈ R do
4: Compute ki based on Algorithm 1
5: kvpi = (ki, NEMRhashi

)

6: Add kvpi into KVP
7: end for
8: return KVP

5.4.2. Executing Conditional Query

When executing query Q, construct all query conditions into a composite key k. This
k contains constraint information for all conditions in query Q. Subsequently, use the
key k as a parameter and execute the getState(k) function. getState is an API provided by
Hyperledger Fabric for querying the latest state. After the getState function’s execution,
the resulting data will contain all the latest records that meet all conditions specified in
query Q.

5.4.3. Updating Key–Value Pairs

Using the method of creating composite keys, we can effectively avoid the complex
data filtering processes typically involved in conditional queries. When the getState method
is executed, it retrieves a result set that meets all the criteria, significantly enhancing the
efficiency of data queries. However, there may be challenges associated with updating key
values when storing data records using composite keys. Specifically, when new records
are added to the ledger, the k j created for the new record might coincide with one of the
existing keys in the ledger, where none of the values corresponding to k j match any existing
records. In such cases, it becomes necessary to update the existing key–value pairs.

In the method proposed in this scheme, the process for updating key–value pairs in-
volves the following steps. First, query the existing value Nj = {NEMRhash1

j, NEMRhash2

j, . . . ,

NEMRhasht

j}(t ≥ 1) associated with the k j. Next, combine the new NEMRhasht+1

j with Nj to
form a new set Nnew, which will serve as the updated value linked with the k j. There-
fore, Algorithm 2 can be enhanced by introducing a key-value pair updating process, as
shown in Algorithm 3. Finally, invoke the putState(k j, Nnew) function to submit the new
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key–value pair to the blockchain for persistent storage. putState is an API provided by
Hyperledger Fabric for submitting the latest state. In using the putState function, the
new record value will overwrite the old value in the state database, thereby achieving the
objective of updating the data.

Algorithm 3 Update key–value pairs

Input: a set of records R = {r1, r2, . . . , rt}(t ≥ 1)
Output: a set of key–value pairs KVP

1: Declare an empty set KVP
2: // ri = {NEMRhashi

, Ai}, where Ai is a set of attributes with elements that can be used
as a query condition

3: for all ri ∈ R do
4: Compute ki based on Algorithm 1
5: // Define ls as the latest state of ki in the blockchain
6: ls← getState(ki)
7: if ls is not null then
8: // Define N as the old set of NEMRhash
9: Add NEMRhashi

into N
10: kvpi = (ki, N)
11: else
12: kvpi = (ki, NEMRhashi

)

13: end if
14: Add kvpi into KVP
15: end for
16: return KVP

5.5. Data Sharing Phase

During data sharing, the DU must undergo identity verification and validate the
legitimacy of the request. The data sharing phase can be roughly divided into two scenarios:

• Patients query their own EMR and then authorize healthcare service providers to
view them.

• Other DUs, such as medical staff from healthcare units or researchers from research
institutions, query the system for medical data available for sharing based on their
specific needs.

In the first scenario, patients can query their encrypted medical record number CNEMR
in the attribution channel by decrypting NEMR = Deski

(CNEMR) and then calculating the
hash value NEMRhash = Hash(NEMR).

Subsequently, they call the chaincode in the data channel to retrieve TreatmentData.
This enables patients to access all of their medical record information, which they can then
authorize others to view. To protect patient privacy from being compromised, this method
of query can only be initiated by the patients themselves. Under this storage method, it
is impossible for anyone to retrieve CNEMR by querying NEMRhash in the data channel, thus
ensuring the protection of patient privacy.

In the second scenario, DUs can execute a conditional query to obtain the NEMRhash
associated with the medical data that they wish to access. The system can then invoke the
chaincode on the data channel to retrieve TreatmentData. Next, they can initiate sharing
requests with the medical institutions that hold the data.

5.5.1. Principle of AES-PRE Implementation

To address the potential theft or tampering of shared data during the data sharing
process, the system incorporates proxy re-encryption technology [28] to ensure the security
of shared data. The nodes in the IPFS only provide proxy services for key transformation
and cannot access plaintext data. The proxy re-encryption algorithm, based on asymmetric



Appl. Sci. 2024, 14, 5005 12 of 21

encryption, is often inefficient for large volumes of data sharing. Therefore, in the pro-
posed method, we introduce the AES encryption algorithm and combine it with proxy
re-encryption to improve the efficiency of the encryption process. We assume that Alice
and Bob are the data exchangers. The specific process is described as follows:

1. Alice has skA and pkA, and Bob has skB and pkB.
2. Alice generates a symmetric key, kAES, encrypts the plaintext M with kAES to generate

ciphertext C, encrypts kAES with pkA to generate C(AES), and sends C and C(AES) to
the proxy.

3. Bob requests data from Alice and sends his public key pkB to Alice.
4. Alice generates the proxy re-encryption key ReKeyA→B based on skA and pkB and

sends ReKeyA→B to the proxy.
5. The proxy transforms C(AES) into C(AES)new based on ReKeyA→B.
6. Bob retrieves C and C(AES)new and then decrypts C(AES)new using skB to obtain kAES.

With kAES, he decrypts C to retrieve the plaintext data.

With AES-PRE, we can achieve higher efficiency while ensuring data security. We next
present one way to implement AES-PRE.

In this method, the AES-256 algorithm is used to encrypt the shared data. A finite field
Fr is defined, where the elements are 256 bits. Let A be the data sender and B be the data
receiver. The principle of the AES-PRE process is described as follows.

First, define the generators of two groups. Suppose g and h are generators of groups
G1 and G2, respectively; then, Z = e(g, h), e : G1 × G2 → GT .

Next, generate asymmetric keys for A and B as shown in Equation (7):

skA ∈ Fr, pkA = gskA ∈ G1

skB ∈ Fr, pkB = hskB ∈ G2
(7)

A encrypts the AES key KAES to obtain the ciphertext C(AES) =
(
(pkA)

k, KAESZk
)

.

Let α = (pkA)
k and β = KAESZk = KAESe(g, h)k. Decrypting the ciphertext C(AES)

using A’s private key skA can be described as shown in Equation (8):

DecskA

(
C(AES)

)
= KAES (8)

A generates the proxy re-encryption key ReKeyA→B using skA and pkB, as shown in
Equation (9):

ReKeyA→B = (pkB)
1

skA ∈ G2 (9)

According to C(AES) = (α, β), then, the Proxy can utilize the re-encryption key
ReKeyA→B to compute α′ = e(α, ReKeyA→B) to obtain the re-encryption ciphertext C(AES)new =
(α′, β).

Finally, data recipient B can decrypt C(AES)new using their own private key to ob-

tain KAES = ReDecskB

(
C(AES)new

)
. Using KAES decrypts the ciphertext of medical data

to obtain its plaintext. For the correctness of the decryption process, a proof of the re-
encryption–decryption process can be constructed as follows:

β

(α′)
1

skB

=
KAESe(g, h)k

e(α, ReKeyA→B)
1

skB

=
KAESe(g, h)k

e((pkA)
k, (pkB)

1
skA )

1
skB

=
KAESe(g, h)k

e((gskA )
k, (hskB )

1
skA )

1
skB

= KAES (10)

As shown in Equation (10), AES-PRE satisfies correctness.

5.5.2. Sharing Process

The sharing process described in this subsection focuses on the second scenario
described above.
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Assume that a user Urec in a healthcare organization HOj as a DU needs to use
the medical data in the system. After the authentication and role verification of Urec is
passed, the data index TreatmentData on the blockchain is accessed based on the request
to obtain the corresponding {NEMRhash , CID, Hi, MDEMR}. Send the shared request with
{NEMRhash , CID, MDEMR} to hospital Hi. When Hi receives the sharing request, Hi queries
the IPFS to obtain the medical data ciphertext CEMR based on the CID. Calculate the digest of
CEMR: MD′EMR and compare it with MDEMR to verify whether the data have been tampered
with and to ensure the data integrity.

After verifying integrity, Hi decrypts CEMR to obtain plaintext MEMR. Hi randomly

generates a shared symmetric key KeyGen(Hi, Urec)
AES→ kAES based on the AES algo-

rithm. In using this key, Hi encrypts the medical data plaintext MEMR and the main
information in the TreatmentData record to obtain the shared ciphertext Cshare(EMR) =
EnckAES(MEMR, Hi, NEMRhash). Data sharing security is protected through AES-PRE.

After receiving the data forwarded by the IPFS, Urec decrypts it using private key skrec
to obtain the AES key kAES. With kAES, Urec decrypts Cshare(EMR) to obtain the plaintext
medical data MEMR, along with other information such as NEMRhash and Hi. Upon obtaining
the plaintext medical data, Urec can encrypt them using the public key of Hi, calculate
the message digest MD′EMR, and sign it as sign = Sign(MD′EMR, Urec). In querying the
blockchain using NEMRhash to retrieve the corresponding TreatmentData, Urec verifies the
integrity of the medical data by comparing the stored MDEMR in the index. This allows Urec
to determine whether the data have been tampered with by the sender. Upon successful
verification, Urec sends NEMRhash , MD′EMR, and sign to the IPFS.

The IPFS uploads the constructed data structure for Urec’s medical data usage record to
the blockchain network for persistent storage as follows: DataUsageRecord = {NEMRhash ,
UIDrec, MDEMR

′, sign, HOj, Hi, t}.

6. Scheme Analysis
6.1. Security Analysis
6.1.1. Medical Data Security

All users requiring access to the data must be authenticated. Data access control is
enforced based on the identity of the DU, preventing unauthorized access. The encrypted
medical data generated by the system are stored in the IPFS distributed storage servers.
Data sharing is protected through proxy re-encryption, ensuring that IPFS nodes only
provide computational power for ciphertext transformation and cannot access the plaintext
medical data.

For data integrity, on one hand, the IPFS utilizes content addressing, ensuring the
integrity of the data. On the other hand, the cryptographic hash of the medical data
ciphertext is persistently stored on the blockchain ledger. When users access the data, they
are required to sign and verify the integrity of the medical data. Additionally, usage records
are uploaded to the blockchain for storage, ensuring that encrypted data are not altered
and that usage is traceable.

6.1.2. User Anonymity

All users operate with pseudo-identities and use ZKP technology for identity verifi-
cation, which can ensure the correctness and validity of user identities without exposing
any real private information.The security of the ZKP depends on the specific algorithm
implementation. In our scheme, the generation and verification of proof are based on
the Groth16 algorithm-implemented zk-SNARKs, which satisfies the completeness and
soundness properties of a ZKP [27]. Therefore, user anonymity can be guaranteed during
the interaction process.

6.1.3. Patient Privacy and Security

Our proposed scheme stores CNEMR and uid as key–value pairs in the attribution
channel, while in the data channel, it saves key–value pairs formed by NEMRhash and
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TreatmentData. The confidentiality of the relationship between CNEMR and NEMRhash is
crucial for patient privacy security. Once the relationship is exposed, attackers can obtain
the uid of patients associated with TreatmentData, thus compromising patient privacy.
Based on this dual-channel mechanism, the threat of data leakage in the system mainly
includes two scenarios: one of the channels was attacked or both of the channels were
attacked.

(A) One of the Channels Was Attacked
Assume that one of the channels is compromised by a malicious node that obtains

all the ledger data in that channel. The design of dual channels provides a high degree
of isolation, ensuring that attackers still cannot obtain the association between medical
data and the corresponding patients. This feature provides additional assurance for patient
privacy and security.

(B) Both of the Channels Were Attacked
Assume that both of the channels have malicious nodes and have access to all the

ledger data in the system. We proceed to analyze the probability of exposure of the
relationship between CNEMR and NEMRhash .

Hash functions are one-way, meaning that for any given original medical record
number NEMR, one can compute the corresponding NEMRhash = hash(NEMR). However, if
an attacker only obtains NEMRhash , it is computationally infeasible to calculate the original
medical record number NEMR using hash−1(NEMRhash), as the inverse function hash−1

either does not exist or is extremely difficult to compute. With the assurance of patient key
security, attackers cannot directly obtain the mapping between CNEMR and NEMRhash .

If {CNEMR , uid}i,1≤i≤n in the attribution channel and {NEMRhash , TreatmentData}j,1≤j≤n
in the data channel are obtained, then the probability of obtaining NEMRhash i corresponding
to CNEMR i is

Pi(n) = 1/n (11)

where n in Equation (11) is the number of EMRs stored in the system, and as the number
of stored EMRs increases, the probability of obtaining NEMRhash i corresponding to CNEMR i
decreases gradually.

If {CNEMR , uid}i,1≤i≤n in the attribution channel and {NEMRhash , TreatmentData}j,1≤j≤n
in the data channel are obtained, then patient U is assumed to have z EMRs, and the
probability of obtaining the attribution relationship of z EMR of U is

P(z, n) =
z

∏
i=1

Pi(n + 1− i) (12)

The analysis of the monotonicity of Equation (12) reveals that as the n or the z grad-
ually increases, P(z, n) will decrease significantly. Considering real-world scenarios, as
the system continues to be used, both the total number of stored EMRs in the system and
the number of EMRs owned by patients will gradually increase. Therefore, the above
probability will decrease gradually, indicating that the privacy of patients will be increas-
ingly secure.

Even in the scenario where collusion exists among nodes in both channels, and at-
tackers can access all ledger data in the two channels, they still cannot obtain the plaintext
NEMR, as long as patient keys remain secure. When confronted with extremely large EMRs,
it is extremely difficult for an attacker to obtain a correspondence between CNEMR and
NEMRhash . Since NEMRhash ̸⇌ CNEMR , it follows that TreatmentData ̸⇌ uid, meaning that
medical data cannot be associated with patient information.

In summary, with patient key security assured, it can be considered that patients are
anonymous in the blockchain network of this scheme, and their personal privacy will not
be compromised due to data mining or other attack methods. However, this study assumes
that patient keys remain undisclosed in discussing security issues. The improper storage of
patient keys could pose significant privacy risks. Therefore, in future work, further research
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should focus on enhancing key management and addressing data update issues resulting
from key changes.

6.2. Performance Analysis

This section evaluates the proposed scheme in terms of feature comparison, time
overhead, storage overhead, and throughput. The experiments were conducted based on
the Hyperledger Fabric v2.4 framework. The experimental platform hardware consisted of
an Intel® Core™ i5-10400 CPU @ 2.9GHz and 16 GB of RAM, running on a 64-bit operating
system. The Hyperledger Fabric network was deployed using Docker on a virtual machine
running Ubuntu 20.04.

6.2.1. Feature Comparison

To analyze the functional advantages of the proposed sharing scheme, this section
compares it with existing medical data sharing schemes. As shown in Table 3, we compare
our proposed scheme with the schemes in [29–32] in terms of original data storage location,
anonymity, resistance to data mining threats, decentralized identity authentication, and
conditional query functionality. Resistance to data mining threats indicates the ability to
withstand threats to patient privacy exposure due to data mining.

Table 3. Feature comparison.

Scheme Original Data
Storage Location Anonymity Resisting Data

Mining Threats

Decentralized
Identity

Authentication

Conditional
Query

[29] Cloud Server ✓ × × ×
[30] IPFS ✓ × × ×
[31] Cloud Server × × ✓ ×

[32] Centralized
Database ✓ × × ×

Our scheme IPFS ✓ ✓ ✓ ✓

Refs. [29,30,32] and our proposed scheme all use pseudo-identity information for
patients to protect patients’ privacy. In contrast, ref. [31] chose to enter patients’ real
identifying information into the system and relied on access control policies to determine
whether different users are authorized to access patients’ personal information. This scheme
provides security but shows limitations in maintaining user anonymity.

Compared to the other literature, ref. [29] and the approach proposed in this paper are
more closely aligned in terms of methodology, as both adopt a dual-channel mechanism for
managing medical data, thus enhancing data security. However, refs. [29,30,32] still directly
associates the pseudo-identity information used on the blockchain with the medical record
number, and the medical record number has not undergone appropriate privacy protection.
These schemes fail to fully defend against the risk of data mining attacks. The scheme
proposed in this paper has better protection measures for privacy.

In terms of identity verification, both [31] and the scheme proposed in this paper
conduct decentralized user authentication on the blockchain, providing stronger privacy
protection. Simultaneously, our scheme optimizes the efficiency of blockchain conditional
queries, significantly reducing the time cost required for such queries. These improvements
ensure that the sharing of EMR is both secure and efficient, offering a novel solution for the
field of medical data sharing.

6.2.2. Time Overhead

The symbols and explanations for the time overhead of the main operations in this
scheme are as shown in Table 4, where tctd, tqtd, tcud, tqud, tcai, tqai, and tvp represent the
time overhead when executing certain chaincode operations.
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Time overhead is a key indicator reflecting system performance, with a larger time
overhead leading to a noticeable decrease in system efficiency. To evaluate the impact
of each stage in the proposed scheme on system time overhead, as well as the influence
of different data sizes on the time overhead of each stage, we conducted relevant tests.
Selecting data of different sizes (64 KB/256 KB/1 MB) for time overhead tests during the
data generation, uploading, and sharing phases yielded the results shown in Table 5. From
the analysis, it can be concluded that the size of the data has a noticeable impact on the
time overhead for each phase, with larger data resulting in greater time overhead.

Table 4. The symbols and explanations for the time overhead of the main operations in this scheme.

Symbol Explanation

ten
pk Encrypting medical record data with public keys

tde
sk Decrypting medical record data with private key

tmdemr Calculating medical record data message digest
tNemrhash

Calculating the hash value of the medical record number
ten
Nemr

Encrypting medical record number
tde
Nemr

Decrypting medical record number
tsign Doctor signs the medical record data
tctd Creating Treatement to upload to data channel
tqtd Querying Treatement on the data channel

ten
AES Encrypting medical record data with AES

tde
AES Decrypting medical record data with AES
tgrk Generate re-encryption key
tpre Proxy re-encryption
tcud Creating DataUsageRecord to upload to data channel
tqud Querying DataUsageRecord on the data channel

tuIPFS Uploading encrypted data to the IPFS to generate CID
tdIPFS Downloading encrypted data from the IPFS

tcai Creating AttributionIn f o to upload to attribution channel
tqai Querying AttributionIn f o on the attribution channel
tvi Verifying data integrity
tvp Verifying the validity of p f

Table 5. Time overhead for major phases in this scheme (ms).

Phase Time Overhead Result (64 KB/256 KB/1 MB)

Data generation ten
pk + tmdemr + tsign 87/295/1061

Data uploading tuIPFS + tctd + tcai 127/136/148

Data sharing
tvp + tqtd + tdIPFS + 2tvi + tde

sk + ten
aes +

tgrk + tpre + tde
aes + tcud + tmdemr + tsign

616/2094/7756

To further explore the impact of data size on the performance of the blockchain
network in our proposed scheme, we tested the time overheads of the main functions of
the chaincode, and the results are shown in Table 6. The results indicate that regardless of
variations in the size of the medical record data, the impact on the time overhead required
for executing the chaincode in this scheme is minimal, suggesting a relatively small effect on
the computational performance of the blockchain. Additionally, the average time required
for verifying a zero-knowledge proof on the blockchain is 37 ms, indicating a similarly
limited impact on the overall system operation.
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Table 6. Time overheads of the main functions of the chaincodes in this scheme (ms).

Data
Size tctd tqtd tcud tqud tcai tqai tvp

64 KB 44.47 1.27 43.56 1.28 43.46 1.21 36.04
256 KB 47.37 1.23 46.81 1.23 42.71 1.28 37.21
1 MB 44.90 1.30 44.61 1.26 43.37 1.22 37.87

In combining the results from Tables 5 and 6, it can be concluded that the impact of
data size on time overhead is primarily evident in the encryption and decryption processes,
with some impact also seen during the IPFS upload and download processes. When the
data size exceeds 1 MB, the time overhead for zero-knowledge verification is extremely low,
significantly less than 1%. These results demonstrate that the blockchain-based scheme
proposed in this paper maintains high computational efficiency and low resource utilization
even when handling large-scale data.

Conditional querying is an important part in implementing EMR sharing, and the
efficiency of conditional querying affects the efficiency of the whole sharing process. We
propose a method for creating composite keys to improve the efficiency of system condi-
tional querying. To demonstrate the feasibility of the method and evaluate the advantages
of the optimization scheme, we conducted a separate time overhead test specifically for
this functional module.

We used the scenario of conditional querying described in Section 5.4 as an example
for the subsequent tests. In this scenario, we only need two attributes, hospital name and
diagnosis result, to construct composite keys. Then, we use the hash value of the EMR’s
number as the value corresponding to this composite key. For this purpose, we simulated
1479 records and divided the records into five groups based on the ratio P as shown in
Equation (13):

P =
m
n

. (13)

where n in Equation (13) represents the total number of EMRs for a certain diagnosis result
DRi, and m represents the number of EMRs containing DRi in hospital H. The grouping
results are shown in Table 7.

Table 7. Grouping results.

Group 1 2 3 4 5

Ratio P(%) 100–20 20–15 15–10 10–5 5–0
Number of

records 606 138 188 207 340

We compared the query time overhead of our proposed method with the general
method that does not use composite key. We repeated the query multiple times for each
group of data in Table 7 using both methods and took the average of the query time for
each group as the experimental result.

As shown in Table 8, with decreasing P, the query time overhead of the general
method gradually increases. This is because as the P decreases, the total number of EMRs
corresponding to the given diagnosis result in the conditional query increases, leading to
an increase in the number of records that need to be filtered, thus resulting in a decreased
query performance. In contrast, the query time spent by the proposed method based on
the composite key is significantly less than that of the general method. This is because
using the method of creating composite keys can accurately locate the data that satisfy all
query conditions, requiring only the retrieval of the data that meet the conditions, thereby
highlighting the superiority of the composite key-based method in terms of the query
time performance.
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Table 8. Query time overhead results (ms).

Group General Method Our Method

1 182 72
2 293 68
3 344 59
4 518 56
5 847 51

Data transmission is a crucial process in electronic medical record sharing, with AES-
PRE being the key technology ensuring secure data transmission. While ensuring data
security, AES-PRE can improve transmission efficiency. In order to test the performance
impact and benefits of using the AES-PRE method in the data sharing phase, we compared
it with the method of directly re-encrypting the ciphertext of medical data (DReC) in terms
of the time overhead. Figure 4 illustrates the processing time results of our scheme and
DReC for different sizes of medical data. As the size of the shared data gradually increases,
DReC’s time overhead also increases. In contrast, the time overhead of the AES-PRE
process varies very little with the size of the data. For the same data size, the incurred
time overhead was also smaller than that of DReC, demonstrating that our scheme is more
efficient in data sharing.
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Figure 4. Time overhead comparison between AES-PRE and DReC.

6.2.3. Storage Overhead

To test the impact of the different sizes of data on the blockchain’s storage overhead
in our scheme, we conducted tests on the storage overhead in both the blockchain and
IPFS. By uploading data of various sizes and performing multiple tests to obtain averages,
we compared the storage overhead generated by the blockchain and IPFS. In this context,
the returned CID from the IPFS is a constant 46 bytes (SHA-256, Base64 encoding). As
shown in Figure 5, it can be observed that the data size has almost no effect on the storage
overhead on the blockchain network.
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6.2.4. Throughput

The efficiency of the blockchain network is crucial for the overall system performance.
Throughput is an important indicator of the performance of a blockchain network. There-
fore, this study conducted throughput tests on the blockchain network to evaluate the
system’s performance. The Caliper tool was utilized to conduct throughput tests for
adding and querying relevant records in the blockchain. Figure 6 illustrates the impact
of transaction request volume on the throughput of the blockchain network when adding
TreatmentData and DataUsageRecord to the blockchain. It also depicts the effect of differ-
ent data sizes on the throughput of the blockchain network when medical data are directly
stored (DS) on the blockchain. The throughput represents the number of successfully
submitted transactions per second (TPS). As the transaction request volume gradually
increases, the throughput of our scheme also increases. When the transaction request
volume reaches around 550, the throughput of our scheme tends to stabilize at around
50 TPS.

In contrast, the throughput of the DS is significantly lower than our scheme. Addition-
ally, as the size of the stored data increases, the throughput of the DS obviously decreases.
As shown in Figure 5, the size of the data stored by our scheme on the blockchain remains
relatively constant at about 6 KB. Therefore, our scheme has a clear advantage in this aspect.
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Figure 6. Throughput when adding TreatmentData and DataUsageRecord to the blockchain.
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7. Conclusions

This study proposed an EMR storage and sharing solution based on Hyperledger Fab-
ric and IPFS. Storing patient information and medical data in separate channels mitigates
the privacy threat posed by data mining that could leak patient identities. Introducing an
IPFS alleviates the deficiency in the blockchain storage performance. zk-SNARKs are used
as an implementation of decentralized authentication, avoiding third-party trustworthiness
issues. The efficient and secure transmission of medical data is ensured through AES-PRE.
In addition, creating composite key improves the efficiency of queries in the Hyperledger
Fabric network. Security analyses and experimental results show that these efforts pro-
vide significant advances in EMR sharing, offering solutions to the privacy, security, and
efficiency challenges.

Our scheme can be further improved in several aspects. Firstly, we will explore how
to strengthen patient key management to further enhance privacy protection in our future
work. Secondly, creating composite keys results in a large amount of redundant storage,
and the introduction of indexes can be considered in the future to reduce redundancy.
These efforts can further improve system security and efficiency.
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