

  applsci-14-05065




applsci-14-05065







Appl. Sci. 2024, 14(12), 5065; doi:10.3390/app14125065




Article



AI for Biophysical Phenomena: A Comparative Study of ChatGPT and Gemini in Explaining Liquid–Liquid Phase Separation



Neha Rana 1,* and Nitish Katoch 2





1



Department of Chemical Engineering, Ulsan National Institute for Science and Technology, Ulsan 44919, Republic of Korea






2



Department of Biomedical Engineering, Kyung Hee University, Seoul 02457, Republic of Korea









*



Correspondence: nhrana50@unist.ac.kr







Citation: Rana, N.; Katoch, N. AI for Biophysical Phenomena: A Comparative Study of ChatGPT and Gemini in Explaining Liquid–Liquid Phase Separation. Appl. Sci. 2024, 14, 5065. https://doi.org/10.3390/app14125065



Academic Editor: Roger Narayan



Received: 1 May 2024 / Revised: 5 June 2024 / Accepted: 7 June 2024 / Published: 11 June 2024



Abstract

:

Featured Application


Study explores the application of LLMs, specifically ChatGPT4 and Gemini for biophysical research, with a focus on liquid–liquid phase separation (LLPS). Our findings suggest that while both models show promise in facilitating detailed scientific discussions, further refinements are necessary to improve their accuracy and reliability.




Abstract


Recent advancements in artificial intelligence (AI), notably through generative pretrained transformers, such as ChatGPT and Google’s Gemini, have broadened the scope of research across various domains. Particularly, the role of AI in understanding complex biophysical phenomena like liquid–liquid phase separation (LLPS) is promising yet underexplored. In this study, we focus on assessing the application of these AI chatbots in understating LLPS by conducting various interactive sessions. We evaluated their performance based on the accuracy, response time, response length, and cosine similarity index (CSI) of their responses. Our findings show that Gemini consistently delivered more accurate responses to LLPS-related questions than ChatGPT. However, neither model delivered correct answers to all questions posed. Detailed analysis showed that Gemini required longer response times, averaging 272 words per response compared to ChatGPT’s 351. Additionally, the average CSI between the models was 0.62, highlighting moderate similarity. Despite both models showing potential to enhance scientific education in complex domains, our findings highlight a critical need for further refinement of these AI tools to improve their accuracy and reliability in specialized academic settings.
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1. Introduction


Significant advancements in artificial intelligence (AI) and human–computer interaction have been achieved, particularly with the development of large language models (LLMs). AI, essentially the replication of human intelligence by computer systems, has led to the development of various chatbots. Mainly used in this study are ChatGPT (https://openai.com/blog/chatgpt) (accessed 2 April 2024) and Gemini (https://gemini.google.com/app) (accessed 3 April 2024), which exhibit remarkable capabilities in processing and generating human-like text across diverse domains [1,2]. ChatGPT is based on the Generative Pre-Trained (GPT) architecture, including GPT-3 and GPT-4. In contrast, Gemini is built on Google’s Pathways Language Model (PaLM2), a sophisticated model that supports both language and multimodal (image and text) tasks. Both chatbots showcase remarkable proficiency in natural language processing (NLP), encompassing tasks such as text generation, translation, and various other language-related tasks, utilizing complex machine learning models, specifically the transformer architecture, and trained on a diverse range of internet texts, including books, scholarly articles, and websites. OpenAI’s ChatGPT applications span across domains including language translation, text summarization, and creative writing assistance, making it an adaptable and scalable tool for researchers exploring complex topics and generating insights from textual data. Meanwhile, Google’s Gemini, a newer entrant, offers broader capabilities as a multimodal AI, integrating language and image processing [3]. Continuously evolving algorithms ensure that both models improve based on user interactions, providing up-to-date and accurate information. Their interfaces are designed for efficiency and precision, catering to users in need of swift and reliable information. Recently, these chatbots have significant implications across various research domains [4].



The application of “ChatGPT” is more prominent in computer science, medicine, and the social sciences, constituting a substantial share [5]. An analysis of the trend in total publications shows an impressive growth rate and highlights the importance of these models in the research field. Similarly, an examination of research articles emphasizing the applications of “Gemini” was also conducted using the Scopus database, revealing only 18 articles published, as it was recently released. And major research is conducted in medicine, the social sciences, and neuroscience [5]. Saikat et al. conducted a comparative analysis between Google Bard and ChatGPT, focusing on their respective capabilities, strengths, and limitations [6]. They emphasize how these chatbots differ from traditional search engines like Microsoft Bing in terms of response times, accuracy, and relevance [6]. Furthermore, Gonzalez et al. examined the potential of large language models as educational tools in advancing knowledge. Their study highlighted the strengths and weaknesses of different AI models in handling IDP-related content [7]. It is also important to conduct further research on different topics to further analyze the performance of chatbots.



Numerous studies have been conducted to analyze the application of chatbots across various fields. However, a comprehensive examination detailing the performances of AI chatbots and their understanding of biophysical phenomena remains notably absent in the existing literature. Understanding the underlying principles governing liquid–liquid phase separation (LLPS) is essential for understanding the complex mechanisms guiding cellular behavior. LLPS plays a fundamental role in cellular organization and function and involves the spontaneous formation of distinct liquid phases within the cell, important for processes such as gene expression regulation, signal transduction, and stress response [8,9]. Studying biophysical phenomena like LLPS in the literature is challenging due to the complexity of the molecular interactions, the interdisciplinary nature of the field, and the rapid evolution of research findings. The integration of AI and big data analysis into LLPS research can enhance information and facilitate informed decision making. AI chatbots can aid by summarizing vast amounts of literature, offering explanations of complex concepts, and providing references to recent studies, thereby making the research process more efficient and accessible. The unique features of these models position them as compelling subjects for comparative analysis within the rapidly evolving AI landscape.



In this study, we conducted a comprehensive comparison of two widely used chatbots, ChatGPT and Gemini, exploring their applications, performance, and capabilities. Our analysis specifically targets chat-based answer bots, with a particular emphasis on their ability to handle inquiries related to biological phenomena such as LLPS. A crucial aspect of our study is the in-depth analysis of performance metrics conducted on these chatbots. Our objective was to assess and compare the accuracy and consistency of the responses generated by both the premium versions of ChatGPT4 and Gemini in response to queries concerning LLPS, including its formation, molecular mechanisms, implications, therapeutic interventions, and its role in drug discovery. We subjected a series of queries among five categories and evaluated the responses generated by ChatGPT and Gemini premium paid versions, emphasizing how these chatbots differ from one another in generating responses. While ChatGPT generally proves reliable, it may occasionally yield inaccurate or irrelevant responses, particularly on highly specialized or niche topics, owing to its response being confined to the scope of its training data. In contrast, Gemini tends to provide more data-driven and less conversational responses. As both models continue to evolve, they promise even more sophisticated applications in the future [10,11]. By subjecting these LLMs to a diverse array of queries ranging from basic principles to complex mechanisms of LLPS, we aim to evaluate their capability to deliver precise explanations, highlighting their strengths, limitations, and potential insights into these biological phenomena.




2. Materials and Methods


A query set comprising 30 queries was employed to evaluate the performance of ChatGPT4 and Gemini in responding to LLPS-related inquiries. The selection and evaluation of these questions were aimed at assessing how each chatbot handles specific aspects of LLPS. Table 1 shows the 30 queries submitted to both chatbots. Details on the 30 queries used in this study, along with their responses, are provided in the Supplementary Materials. Our comprehensive set of questions were designed to cover diverse aspects of LLPS, encompassing its functions, common misconceptions, challenges, and roles within biological systems. These queries were divided into the following five categories: fundamentals and principles of LLPS, biological and functional implications of LLPS, mechanisms and modulation of LLPS, research techniques and challenges in LLPS, and computational modeling of LLPS and drug discovery. To ensure the chatbots had not been previously exposed to our queries or received any pretraining from the account, we established a new account to avoid potential biases from prior interactions. Each interaction followed a standardized format, and responses were solely based on the initial output generated by the newly created account. Our queries spectrum ranged from basic to intermediate to advanced complexity levels. Additionally, to maintain consistency and rigor, we utilized a systematic approach throughout our engagement with the language models (LLMs). All answers were provided in real time, and we analyzed whether they were correct.



For each outcome, there was a consensus. We assigned scores ranging from 1 to 5 to reflect the accuracy of each answer generated. To ensure objectivity, we conducted a blind review process, whereby the reviewers were not informed of the details of the chatbot. The specific scoring methodology is detailed as follows:




	
Score 5: Extremely accurate—the AI’s response is spot on and by all current biophysical knowledge and best practices;



	
Score 4: Reliable—the AI’s response is largely accurate, with only minor inconsistencies;



	
Score 3: Roughly correct;



	
Score 2: Absence of data analysis;



	
Score 1: Wrong—the AI’s response needs to be corrected.








We also conducted a comparative analysis of the referencing and citation capabilities of both AI chatbots in response to specific inquiries (Table S2 in the Supplementary Materials). Our evaluation involved generating references using both chatbots and verifying their accuracy. We documented the details of the sources and any recommendations provided by the chatbots to ensure the reliability of the references.



Comparative Assessment of Chatbot Responses: Analyzing Word Frequency, Response Time, Length, and Similarity


We examined the word frequency of the responses generated by each chatbot to check interpretative consistency. The number of words generated by each chatbot and the total time taken to generate each response were determined. A follow-up question was given to the chatbots to provide the response length information. A manual count was also performed to remove any erroneous counts. The response time was measured using a stopwatch. Based on these measurements, we plotted the comparison plot for ChatGPT and Gemini. To quantify the similarities between responses of both chatbots, we employed the term frequency–inverse document frequency (TF-IDF) method for vectorization followed by a cosine similarity measurement for quantifying the degree of similarity. The procedure was implemented using Python’s scikit-learn library. The text data were first transformed into a numerical format using the TF-IDF vectorization method. After vectorization, the similarity between the text vectors was computed using the cosine similarity metric. Mathematically, it measures the cosine of the angle between two vectors projected in a multidimensional space [12]. The cosine similarity is particularly used in positive space, where the outcome is neatly bounded in (0, 1). The cosine similarity index is defined as follows:


  Cosine   similarity   index =   A · B     A     B     =     ∑  i = 1   n      A   i   ×     B   i       ∑  i = 1   n      A   i   2   ×    ∑  i = 1   n      B   i   2           



(1)




where   A   and   B   are the TF-IDF vectors for which the similarity is being measured.





3. Results and Discussion


This comparative analysis marks the first systematic assessment of ChatGPT4 and Gemini in understanding the biophysical phenomenon of liquid–liquid phase separation (LLPS). We initiated our study by deploying a set of structured introductory queries (Table 1), designed to evaluate how effectively each AI model handles queries related to LLPS. Details of the 30 queries characterized under five different categories used in this study, along with their responses, are provided in the Supplementary Materials. To qualitatively evaluate the performance of ChatGPT4 and Gemini, we generated several key metrics. We first evaluated the accuracy of each response given the accuracy score explained in Section 2. Figure 1 shows a heat map of the accuracy score across 30 queries submitted to both AI chatbots. Figure 2 presents a histogram detailing the frequency distribution of the words in the responses generated by ChatGPT and Gemini. For the quantitative assessment, we measured the response times and lengths. Figure 3a shows the time taken by each AI model to deliver its response, whereas Figure 3b displays the word counts of the responses from both models. Figure 4 illustrates a cosine similarity index (CSI) that compares the concordance between the responses provided by the two models, highlighting their interpretative consistency. The following section provides a detailed explanation of our assessment methods and a comprehensive comparative analysis of the results.



3.1. Performance Evaluation


In this section, an analysis of the performance of the two AI models, ChatGPT and Gemini, over 30 diverse queries from five categories reveals notable fluctuations in their accuracy, suggesting that the effectiveness of each model depends significantly on the specific query (Figure 1). Both models demonstrated high accuracy on specific queries, such as Queries 21 and 29, for which they scored a “5”, indicating their potential to achieve top performance. However, the results also show inconsistencies, for example, on Queries 1, 5, and 20, Gemini scored a “4” or above, while ChatGPT only managed below “3”, highlighting differences in how the models process and respond to certain queries. In the category of “biological and functional implication of LLPS”, ChatGPT performed better. In all other categories, Gemini performed superiorly. The average scores for both models were above “3”, suggesting generally satisfactory performances. This variability in scores indicates strengths and weaknesses in each model, which could be crucial for users to consider when selecting a model for specific tasks. The evaluation criteria here show that ChatGPT excels in a broader biological context and synthesis, while Gemini is optimized for technical accuracy and specialization in LLPS principles, mechanisms, and research techniques. The identification of queries for which one model outperforms the other could lead to targeted improvements and optimization, enhancing overall efficacy in practical applications.




3.2. Analysis of Word Frequency


In our analysis of the word frequency from the responses provided by ChatGPT and Gemini, we focused on identifying the terms most frequently utilized by each AI model in discussing LLPS (Figure 2a,b). The ten most frequently used words in the ChatGPT-generated responses were LLPS (243), proteins (129), condensates (100), phase separation (77), cellular (50), molecules (33), cells (26), dynamic (24), RNA (23), and diseases (20). Similarly, the Gemini-generated responses were LLPS (225), phase separation (220), cellular (100), condensates (93), proteins (87), interactions (65), dynamic (45), cells (27), disease (25), and organelles (24). The word “LLPS” appeared most frequently in responses from both ChatGPT and Gemini. Additionally, out of the top 10 most-used words, 5 were common to both models and appeared with similar frequencies, highlighting a significant overlap in the vocabulary used by the two chatbots. However, there was considerable variation in the number of appearances of the other words. An observation of the total word frequency reveals that the responses are scientifically relevant to the topic of the queries.



Word frequency analysis reveals that both ChatGPT and Gemini prioritize core LLPS-related concepts, including ‘LLPS’, ‘proteins’, ‘phase separation’, and ‘cellular’. Our findings expose distinct patterns in language utilization and provide a clear indication of strengths and weaknesses inherent to each model. For instance, where one model may excel at detailing complex interactions, another might better summarize overarching themes or principles, thereby suggesting a complementary utility in scientific inquiry. The measurement of word frequency offers a practical metric for refining AI models and highlights the potential areas of enhancements.




3.3. Comparison of Response Time and Length


Figure 3a,b show the response times and lengths in a comparison between the chatbots. In terms of the response time, ChatGPT exhibited the fastest average response time of 3.6 s, while Gemini lagged with an average response time of 10.2 s. This disparity can be attributed to ChatGPT’s optimized architecture and utilization of pretrained models, enabling it to quickly process and respond to user queries. Gemini, on the other hand, had longer response time due to their less effective architecture and the necessity to train models on new data. ChatGPT represented remarkable efficiency, responding to queries in half time compared to Gemini. When analyzing the response length, ChatGPT exhibited a higher word count generation of an average of 351 words compared to Gemini’s word count average of 272, which shows more concise and accurate response generation.




3.4. Similarity Analysis of Responses


Figure 4 shows the cosine similarity index (CSI) between responses from ChatGPT and Gemini across 30 distinct queries. The CSI values fluctuated significantly across the queries, ranging approximately from 0.5 to 0.8. This suggests a varying degree of similarity in the responses between ChatGPT and Gemini, indicating that while sometimes the models provide highly similar answers, at other times their responses are substantially different. Peaks around Queries 5, 14, 16, and 24 suggest instances where both models provide highly similar responses, possibly due to shared training data or algorithmic similarities. Conversely, lower points at Queries 7, 17, 21, and 30 indicate significant divergence in responses, likely stemming from differing interpretations of the queries or prioritization strategies.



It is important to acknowledge that CSI using TF-IDF might not yield perfect results when comparing similarities between paragraphs. TF-IDF calculates the importance of a word within a document relative to its frequency across a corpus. However, it does not account for semantic meaning or synonyms of words, and it does not capture the semantic meaning or synonyms of words. Despite this limitation, TF-IDF remains an effective method for quantifying text overlaps [12].




3.5. Review of Information Sources and References in Chatbot Responses


We also examined the referencing and citation capabilities of chatbots, as outlined in Table S2. It was observed that ChatGPT often generates illustrative and fabricated references, citing a lack of real-time internet source access and suggesting the use of databases like PubMed or Scholarly to obtain accurate references, whereas Gemini provides correct references along with the detailed source information. Therefore, although chatbots are highly advantageous in providing authentic information, the user must be careful when using the associated citation and source information. Overall, the results of this study provide valuable insights into the performance of ChatGPT and Gemini in natural language processing, machine learning, and user experience.





4. Limitations of the Study


Several limitations were identified in the study. The first is the limited set of questions, the study relied on 30 questions from five categories which may not fully represent the diverse and complex problem in the real world. Expanding the number of questions and diversifying them could enhance the research results. Another limitation is that ChatGPT cannot answer inquiries unless they are phrased in a certain way, and Gemini uses Google to answer queries and often provides incorrect references. It is also important to note that there has been significant advancement in the understanding of LLPS recently; therefore, using the latest data for training could have influenced the results. The study also relied on user ratings to evaluate the user experience, which may not provide a comprehensive assessment. Future research should consider using other metrics to evaluate user experience more thoroughly. These findings have significant implications for chatbot development and implementation, suggesting that further research is needed to fully realize the potential of chatbot technology. We also would like to highlight that the results may differ when choosing different topics. Future studies should focus on more diverse scientific prompts to better understand the wider implications of AI chatbot performance.




5. Conclusions


Our study highlights the potential of AI-driven chatbots, specifically ChatGPT and Google Gemini, as valuable tools for studying liquid–liquid phase separation (LLPS). We framed 30 distinct queries among five categories and examined the responses generated by these chatbots. The performance evaluation showed that both ChatGPT and Google Gemini exhibited notable fluctuations in their responses. However, it is important to note that neither chatbot provided responses with complete accuracy and consistency across all questions. While the chatbots provided valuable insights, their responses lacked the depth and precision typically found in established scientific literature [13]. This emphasizes the importance of critically evaluating and corroborating chatbot-generated information with authoritative sources. Additionally, through word frequency analysis, we identified the most frequently used words by ChatGPT and Gemini, which showed that both prioritized LLPS-related concepts. This analysis reveals that both chatbots demonstrated a higher frequency use of important terms in the field. Furthermore, we compared the response times and lengths for all responses generated by ChatGPT and Gemini. Both responded promptly to our queries. The cosine similarity index also showed a substantial similarity between the responses from both chatbots for most queries. This comparative analysis provides insight into the accuracy of different LLM chatbots and highlights the promising potential of Gemini in providing accurate and comprehensive information regarding LLPS. Continuous exploration of strategies and evaluations to further refine and ascertain the efficacy of these tools will be crucial in future studies.








Supplementary Materials


The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/app14125065/s1, Table S1: 30 queries in the field of liquid–liquid phase separation (LLPS) and responses generated by ChatGPT4 (accessed 2 April 2024) and Gemini (accessed 3 April 2024); Table S2: Queries on references and source citation in ChatGPT and Gemini. (Note: ChatGPT 4 (Version), accessed on 2 April 2024. Gemini, accessed on 3 April 2024).





Author Contributions


Conceptualization, N.R.; methodology, N.R.; software, N.K.; validation, N.R. and N.K.; formal analysis, N.K.; investigation, N.R.; resources, N.R.; data curation, N.K.; writing—original draft preparation, N.R.; writing—review and editing, N.K.; visualization, N.K.; supervision, N.K. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


The scripts used for data visualization are available at https://github.com/katochnitish/LLPS_LIB (accessed on 20 April), and chatbot responses are available in the Supplementary Materials provided with this publication.




Acknowledgments


This paper fulfills a graduation requirement for the Department of Chemical Engineering at Ulsan National Institute of Technology (UNIST), and we acknowledge the guidance and resources provided by the faculty and staff.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Rane, N.; Choudhary, S.; Rane, J. Gemini versus ChatGPT: Applications, performance, architecture, capabilities, and implementation. J. Appl. Artif. Intell. 2024, 5, 69–93. [Google Scholar] [CrossRef]

	



Bhardwaz, S.; Kumar, J. An Extensive Comparative Analysis of Chatbot Technologies-ChatGPT, Google BARD and Microsoft Bing. In Proceedings of the 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 4–6 May 2023; pp. 673–679. [Google Scholar] [CrossRef]

	



Masalkhi, M.; Ong, J.; Waisberg, E.; Lee, A.G. Google DeepMind’s gemini AI versus ChatGPT: A comparative analysis in ophthalmology. Eye 2024, 38, 1412–1417. [Google Scholar] [CrossRef] [PubMed]

	



Ren, R.; Castro, J.W.; Acuña, S.T.; de Lara, J. Evaluation Techniques for Chatbot Usability: A Systematic Mapping Study. Int. J. Softw. Eng. Knowl. Eng. 2019, 29, 1673–1702. [Google Scholar] [CrossRef]

	



Ray, P.P. ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet Things Cyber-Phys. Syst. 2023, 3, 121–154. [Google Scholar] [CrossRef]

	



Ray, S.S.; Peddinti, P.R.; Verma, R.K.; Puppala, H.; Kim, B.; Singh, A.; Kwon, Y.-N. Leveraging ChatGPT and Bard: What does it convey for water treatment/desalination and harvesting sectors? Desalination 2024, 570, 117085. [Google Scholar] [CrossRef]

	



Gonzalez, D.T.; Djulbegovic, M.; Kim, C.; Antonietti, M.; Gameiro, G.R.; Uversky, V.N. A Comparative Study of Large Language Models in Explaining Intrinsically Disordered Proteins. Preprints 2023, 2023081014. [Google Scholar] [CrossRef]

	



Wang, B.; Zhang, L.; Dai, T.; Qin, Z.; Lu, H.; Zhang, L.; Zhou, F. Liquid–liquid phase separation in human health and diseases. Signal Transduct. Target. Ther. 2021, 6, 290. [Google Scholar] [CrossRef] [PubMed]

	



Peng, P.-H.; Hsu, K.-W.; Wu, K.-J. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. Am. J. Cancer Res. 2021, 11, 3766. [Google Scholar] [PubMed]

	



Shahriar, S.; Hayawi, K. Let’s have a chat! A Conversation with ChatGPT: Technology, Applications, and Limitations. arXiv 2023, arXiv:2302.13817. [Google Scholar] [CrossRef]

	



Kaftan, A.N.; Hussain, M.K.; Naser, F.H. Response accuracy of ChatGPT 3.5 Copilot and Gemini in interpreting biochemical laboratory data a pilot study. Sci. Rep. 2024, 14, 8233. [Google Scholar] [CrossRef] [PubMed]

	



Ramos, J. Using TF-IDF to determine word relevance in document queries. Proc. First Instr. Conf. Mach. Learn. 2003, 242, 29–48. [Google Scholar]

	



Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298. [Google Scholar] [CrossRef] [PubMed]








[image: Applsci 14 05065 g001] 





Figure 1. Heat map representing scores for 30 queries from five categories, based on the specified scoring methodology explained in Section 2. 
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Figure 2. Top ten most frequent words appearing in the ChatGPT- and Gemini-generated responses to 30 queries in LLPS (Table 1). The word that appeared the most in the responses was “LLPS” in both chatbots’ responses: (a) word frequency measured for ChatGPT; (b) word frequency measured for Gemini. 
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Figure 3. Comparison of the total response time and word count by ChatGPT4 and Gemini for user queries on liquid–liquid phase separation. (a) Line plot of response time (seconds). (b) Response length (number of words). 
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Figure 4. Cosine similarity index (CSI) between responses from ChatGPT and Gemini across 30 queries. 
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Table 1. 30 queries related to the biophysical process of liquid–liquid phase separation (LLPS), with responses from ChatGPT4 (assessed in April 2024) and Gemini (April 2024). Details are provided in the Supplementary Information (SI).
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	Queries (User)





	
	
What is liquid–liquid phase separation (LLPS) and provide some examples of this biophysical phenomenon?



	
How do molecular properties such as size, charge, and hydrophobicity influence biomolecules propensity to undergo LLPS?



	
What factors control the size and shape of liquid condensates formed through LLPS, and how can these parameters be manipulated?



	
What are the underlying molecular mechanisms driving LLPS in complex biological systems?



	
How does the concentration of biomolecules affect the kinetics of LLPS, and what are the critical concentration thresholds for phase separation?



	
What role does entropy play in driving the formation of distinct liquid phases during LLPS?



	
How does LLPS regulate enzymatic activity within biological systems?



	
How does LLPS influence the accessibility of the genome, and what are the implications for gene expression regulation, genome stability and epigenetic inheritance?



	
How do chaperone proteins and molecular disaggregation modulate the assembly and disassembly kinetics of LLPS condensates?



	
How are liquid–liquid phase separated condensates spatially and temporally regulated within cells, and what are the molecular mechanisms underlying their assembly, and remodeling?



	
What are the functional consequences of LLPS in cells, and how do these phenomena contribute to cellular processes?



	
What are the implications of LLPS in the context of neurodegenerative diseases, and how can we target these processes for therapeutic interventions?



	
How well do in vitro studies recapitulate the dynamic behavior of liquid–liquid phase separated condensates observed in cells, and what are the key factors that need to be considered for cross-validation between in vitro and in vivo models?



	
What are the limitations and challenges associated with experimental techniques used to study LLPS?



	
What new biophysical characterization techniques can be developed to probe the nanoscale structure, dynamics, and material properties of LLPS condensates with high spatiotemporal resolution?



	
How do cellular stress responses, such as heat shock or oxidative stress, impact the dynamics of phase separated condensates?



	
How do phase diagrams govern the formation of biomolecular condensates?



	
What are the key differences in the phase behavior between simple binary liquid mixtures and complex biological systems undergoing LLPS?



	
What are the roles of specific proteins, nucleic acids, and other biomolecules in regulating the formation and dissolution of membraneless organelles through LLPS?



	
Can we develop computational and experimental models that accurately predict the phase behavior of biomolecular proteins undergoing LLPS?



	
Is there a thermodynamic analysis done to predict the phase behavior of native proteins?



	
What are the evolutionary origins of LLPS machinery, and how do these mechanisms diversify across different organisms to adapt to diverse environmental conditions and cellular functions?



	
What are the most significant findings or breakthroughs in the study of LLPS?



	
How does LLPS play a vital role in human health and diseases?



	
What are the differences in the physical properties of LLPS condensates compared to conventional cellular compartments, such as membrane-bound organelles?



	
How liquid–liquid phase separation modifies the dynamic properties of intrinsically disordered proteins?



	
What are the different bioinformatic tools for predicting phase separation of proteins in vivo?



	
Is there any correlation between phase separation, temperature, and viscosity of condensates?



	
What effect do pathogenic mutations and post-translational modifications have on protein LLPS?



	
How does LLPS research contribute to drug discovery?
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