Effects of Short-Rest Interval Time on Resisted Sprint Performance and Sprint Mechanical Variables in Elite Youth Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Procedures
2.3. Statistical Analysis
3. Results
3.1. Resisted Sprint Performance and Mechanical Variables
3.2. FI (%) and Sdec (%)
3.3. CMJ Characteristics
4. Discussion
4.1. Resisted Sprint Performance and Mechanical Variables
4.2. FI (%) and Sdec (%)
4.3. CMJ Characteristics
4.4. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ingebrigtsen, J.; Dalen, T.; Hjelde, G.H.; Drust, B.; Wisløff, U. Acceleration and Sprint Profiles of a Professional Elite Football Team in Match Play. Eur. J. Sport Sci. 2015, 15, 101–110. [Google Scholar] [CrossRef]
- De Hoyo, M.; Sañudo, B.; Suárez-Arrones, L.; Carrasco, L.; Joel, T.; Domínguez-Cobo, S.; Núñez, F.J. Analysis of the Acceleration Profile according to Initial Speed and Positional Role in Elite Professional Male Soccer Players. J. Sports Med. Phys. Fit. 2018, 58, 1774–1780. [Google Scholar] [CrossRef]
- Di Salvo, V.; Gregson, W.; Atkinson, G.; Tordoff, P.; Drust, B. Analysis of High Intensity Activity in Premier League Soccer. Int. J. Sports Med. 2009, 30, 205–212. [Google Scholar] [CrossRef]
- Di Salvo, V.; Baron, R.; González-Haro, C.; Gormasz, C.; Pigozzi, F.; Bachl, N. Sprinting Analysis of Elite Soccer Players during European Champions League and UEFA Cup Matches. J. Sports Sci. 2010, 28, 1489–1494. [Google Scholar] [CrossRef]
- Harper, D.J.; Carling, C.; Kiely, J. High-Intensity Acceleration and Deceleration Demands in Elite Team Sports Competitive Match Play: A Systematic Review and Meta-Analysis of Observational Studies. Sports Med. 2019, 49, 1923–1947. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Fortes, V.; Krustrup, P.; Muyor, J.M. Acceleration and Sprint Profiles of Professional Male Football Players in Relation to Playing Position. PLoS ONE 2020, 15, e0236959. [Google Scholar] [CrossRef]
- Cardoso, P.; Tavares, F.; Loureiro, N.; Ferreira, R.; Araújo, J.P.; Reis, J.; Vaz, J.R. In-Situ Acceleration-Speed Profile of an Elite Soccer Academy: A Cross-Sectional Study. J. Sports Sci. 2023, 41, 1868–1874. [Google Scholar] [CrossRef]
- López-Sagarra, A.; Baena-Raya, A.; Casimiro-Artés, M.; Granero-Gil, P.; Rodríguez-Pérez, M.A. Seasonal Changes in the Acceleration–Speed Profile of Elite Soccer Players: A Longitudinal Study. Appl. Sci. 2022, 12, 12987. [Google Scholar] [CrossRef]
- Varley, M.C.; Aughey, R.J. Acceleration Profiles in Elite Australian Soccer. Int. J. Sports Med. 2013, 34, 34–39. [Google Scholar] [CrossRef]
- Edwards, T.; Piggott, B.; Banyard, H.G.; Haff, G.G.; Joyce, C. Sprint Acceleration Characteristics across the Australian Football Participation Pathway. Sports Biomech. 2023, 22, 1168–1180. [Google Scholar] [CrossRef]
- Evans, D.A.; Jackson, D.T.; Kelly, A.L.; Williams, C.A.; McAuley, A.B.T.; Knapman, H.; Morgan, P.T. Monitoring Postmatch Fatigue during a Competitive Season in Elite Youth Soccer Players. J. Athl. Train. 2022, 57, 184–190. [Google Scholar] [CrossRef]
- Emmonds, S.; Sawczuk, T.; Scantlebury, S.; Till, K.; Jones, B. Seasonal Changes in the Physical Performance of Elite Youth Female Soccer Players. J. Strength Cond. Res. 2020, 34, 2636–2643. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-Sprint Ability—Part I: Factors Contributing to Fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Brocherie, F.; Millet, G.P.; Girard, O. Neuro-Mechanical and Metabolic Adjustments to the Repeated Anaerobic Sprint Test in Professional Football Players. Eur. J. Appl. Physiol. 2015, 115, 891–903. [Google Scholar] [CrossRef]
- Michailidis, Y. The Effectiveness of Different Training Methods in Soccer for Repeated Sprint Ability: A Brief Review. Appl. Sci. 2022, 12, 11803. [Google Scholar] [CrossRef]
- Rey, E.; Padrón-Cabo, A.; Costa, P.B.; Lago-Fuentes, C. Effects of Different Repeated Sprint-Training Frequencies in Youth Soccer Players. Biol. Sport 2019, 36, 257–264. [Google Scholar] [CrossRef]
- de Andrade, V.L.; Palucci Vieira, L.H.; Kalva-Filho, C.A.; Santiago, P.R.P. Critical Points of Performance in Repeated Sprint: A Kinematic Approach. Sci. Sports 2021, 36, e141–e150. [Google Scholar] [CrossRef]
- Thurlow, F.; Weakley, J.; Townshend, A.D.; Timmins, R.G.; Morrison, M.; McLaren, S.J. The Acute Demands of Repeated-Sprint Training on Physiological, Neuromuscular, Perceptual and Performance Outcomes in Team Sport Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2023, 53, 1609–1640. [Google Scholar] [CrossRef]
- Ross, A.; Leveritt, M. Long-Term Metabolic and Skeletal Muscle Adaptations to Short-Sprint Training: Implications for Sprint Training and Tapering. Sports Med. 2001, 31, 1063–1082. [Google Scholar] [CrossRef]
- Romero-Franco, N.; Jiménez-Reyes, P.; Castaño-Zambudio, A.; Capelo-Ramírez, F.; Rodríguez-Juan, J.J.; González-Hernández, J.; Toscano-Bendala, F.J.; Cuadrado-Peñafiel, V.; Balsalobre-Fernández, C. Sprint Performance and Mechanical Outputs Computed with an IPhone App: Comparison with Existing Reference Methods. Eur. J. Sport Sci. 2017, 17, 386–392. [Google Scholar] [CrossRef]
- Van Den Tillaar, R. Comparison of Step-by-Step Kinematics in Repeated 30-m Sprints in Female Soccer Players. J. Strength Cond. Res. 2018, 32, 1923–1928. [Google Scholar] [CrossRef]
- Weakley, J.; Castilla, A.P.; Ramos, A.G.; Banyard, H.; Thurlow, F.; Edwards, T.; Morrison, M.; McMahon, E.; Owen, C. Effect of Traditional, Rest Redistribution, and Velocity-Based Prescription on Repeated Sprint Training Performance and Responses in Semiprofessional Athletes. J. Strength Cond. Res. 2023, 37, 1566–1572. [Google Scholar] [CrossRef]
- Gonçalves, B.A.M.; Meinders, E.; Saxby, D.J.; Barrett, R.S.; Bourne, M.N.; Diamond, L.E. Repeated Sprints Alter Mechanical Work Done by Hip and Knee, but Not Ankle, Sagittal Moments. J. Sci. Med. Sport 2021, 24, 939–944. [Google Scholar] [CrossRef]
- Hermosilla-Palma, F.; Loro-Ferrer, J.F.; Merino-Muñoz, P.; Gómez-Álvarez, N.; Bustamante-Garrido, A.; Cerda-Kohler, H.; Portes-Junior, M.; Aedo-Muñoz, E. Changes in the Mechanical Properties of the Horizontal Force-Velocity Profile during a Repeated Sprint Test in Professional Soccer Players. Int. J. Environ. Res. Public Health 2022, 20, 704. [Google Scholar] [CrossRef]
- Le Scouarnec, J.; Samozino, P.; Andrieu, B.; Thubin, T.; Morin, J.B.; Favier, F.B. Effects of Repeated Sprint Training with Progressive Elastic Resistance on Sprint Performance and Anterior-Posterior Force Production in Elite Young Soccer Players. J. Strength Cond. Res. 2022, 36, 1675–1681. [Google Scholar] [CrossRef]
- Nicholson, B.; Dinsdale, A.; Jones, B.; Till, K. The Training of Short Distance Sprint Performance in Football Code Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 1179–1207. [Google Scholar] [CrossRef]
- Kawamori, N.; Nosaka, K.; Newton, R.U. Relationships between Ground Reaction Impulse and Sprint Acceleration Performance in Team Sport Athletes. J. Strength Cond. Res. 2013, 27, 568–573. [Google Scholar] [CrossRef]
- Sugisaki, N.; Kobayashi, K.; Yoshimoto, T.; Mitsukawa, N.; Tsuchie, H.; Takai, Y.; Kanehisa, H. Influence of Horizontal Resistance Loads on Spatiotemporal and Ground Reaction Force Variables during Maximal Sprint Acceleration. PLoS ONE 2023, 18, e0295758. [Google Scholar] [CrossRef]
- Fornasier-Santos, C.; Arnould, A.; Jusseaume, J.; Millot, B.; Guilhem, G.; Couturier, A.; Samozino, P.; Slawinski, J.; Morin, J.B. Sprint Acceleration Mechanical Outputs Derived from Position– or Velocity–Time Data: A Multi-System Comparison Study. Sensors 2022, 22, 8610. [Google Scholar] [CrossRef]
- Edouard, P.; Lahti, J.; Nagahara, R.; Samozino, P.; Navarro, L.; Guex, K.; Rossi, J.; Brughelli, M.; Mendiguchia, J.; Morin, J.B. Low Horizontal Force Production Capacity during Sprinting as a Potential Risk Factor of Hamstring Injury in Football. Int. J. Environ. Res. Public Health 2021, 18, 7827. [Google Scholar] [CrossRef]
- Nagahara, R.; Morin, J.B.; Koido, M. Impairment of Sprint Mechanical Properties in an Actual Soccer Match: A Pilot Study. Int. J. Sports Physiol. Perform. 2016, 11, 893–898. [Google Scholar] [CrossRef]
- Nagahara, R.; Matsubayashi, T.; Matsuo, A.; Zushi, K. Kinematics of Transition during Human Accelerated Sprinting. Biol. Open 2014, 3, 689–699. [Google Scholar] [CrossRef]
- Romero, V.; Lahti, J.; Castaño Zambudio, A.; Mendiguchia, J.; Jiménez Reyes, P.; Morin, J.B. Effects of Fatigue Induced by Repeated Sprints on Sprint Biomechanics in Football Players: Should We Look at the Group or the Individual? Int. J. Environ. Res. Public Health 2022, 19, 14643. [Google Scholar] [CrossRef]
- von Lieres und Wilkau, H.C.; Irwin, G.; Bezodis, N.E.; Simpson, S.; Bezodis, I.N. Phase Analysis in Maximal Sprinting: An Investigation of Step-to-Step Technical Changes between the Initial Acceleration, Transition and Maximal Velocity Phases. Sports Biomech. 2020, 19, 141–156. [Google Scholar] [CrossRef]
- Pinheiro, G.d.S.; Drummond, M.; Almeida, A.; Szmuchrowski, L.; Couto, B. The Effect of a Repeated Sprint Training Session on Neuromuscular Acute Fatigue. Lect. Educ. Física Deportes 2022, 27, 42–55. [Google Scholar] [CrossRef]
- Engel, F.A.; Altmann, S.; Chtourou, H.; Woll, A.; Neumann, R.; Yona, T.; Sperlich, B. Repeated Sprint Protocols with Standardized Versus Self-Selected Recovery Periods in Elite Youth Soccer Players: Can They Pace Themselves? A Replication Study. Pediatr. Exerc. Sci. 2022, 34, 193–201. [Google Scholar] [CrossRef]
- Ulupınar, S.; Hazır, T.; Kin İşler, A. The Contribution of Energy Systems in Repeated-Sprint Protocols: The Effect of Distance, Rest, and Repetition. Res. Q. Exerc. Sport 2023, 94, 173–179. [Google Scholar] [CrossRef]
- Ulupınar, S.; Özbay, S.; Gençoğlu, C.; Franchini, E.; Kishalı, N.F.; İnce, İ. Effects of Sprint Distance and Repetition Number on Energy System Contributions in Soccer Players. J. Exerc. Sci. Fit. 2021, 19, 182–188. [Google Scholar] [CrossRef]
- Rogers, T.; Gill, N.; Beaven, C.M. A Comparison of Three Different Work to Rest Periods during Intermittent Sprint Training on Maintaining Sprint Effort Performance. J. Exerc. Sci. Fit. 2024, 22, 97–102. [Google Scholar] [CrossRef]
- Cross, M.R.; Brughelli, M.; Samozino, P.; Brown, S.R.; Morin, J.B. Optimal Loading for Maximizing Power During Sled-Resisted Sprinting. Int. J. Sports Physiol. Perform. 2017, 12, 1069–1077. [Google Scholar] [CrossRef]
- Cahill, M.J.; Oliver, J.L.; Cronin, J.B.; Clark, K.; Cross, M.R.; Lloyd, R.S.; Lee, J.E. Influence of Resisted Sled-Pull Training on the Sprint Force-Velocity Profile of Male High-School Athletes. J. Strength Cond. Res. 2020, 34, 2751–2759. [Google Scholar] [CrossRef]
- Cahill, M.J.; Cahill, M.J.; Cronin, J.B.; Oliver, J.L.; Clark, K.P.; Lloyd, R.S.; Cross, M.R. Resisted Sled Training for Young Athletes: When to Push and Pull. Strength Cond. J. 2020, 42, 91–99. [Google Scholar] [CrossRef]
- Alcaraz, P.E.; Carlos-Vivas, J.; Oponjuru, B.O.; Martínez-Rodríguez, A. The Effectiveness of Resisted Sled Training (RST) for Sprint Performance: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 2143–2165. [Google Scholar] [CrossRef]
- Lahti, J.; Huuhka, T.; Romero, V.; Bezodis, I.; Morin, J.-B.; Häkkinen, K. Changes in Sprint Performance and Sagittal Plane Kinematics after Heavy Resisted Sprint Training in Professional Soccer Players. PeerJ 2020, 8, e10507. [Google Scholar] [CrossRef]
- Osterwald, K.M.; Kelly, D.T.; Comyns, T.M.; Catháin, C. Resisted Sled Sprint Kinematics: The Acute Effect of Load and Sporting Population. Sports 2021, 9, 137. [Google Scholar] [CrossRef]
- McMorrow, B.J.; Ditroilo, M.; Egan, B. Effect of Heavy Resisted Sled Sprint Training During the Competitive Season on Sprint and Change-of-Direction Performance in Professional Soccer Players. Int. J. Sports Physiol. Perform. 2019, 14, 1066–1073. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Sáez De Villarreal, E.; Mora-Custodio, R.; Asián-Clemente, J.A.; Bachero-Mena, B.; Loturco, I.; Pareja-Blanco, F. Effects of Different Loading Conditions During Resisted Sprint Training on Sprint Performance. J. Strength Cond. Res. 2022, 36, 2725–2732. [Google Scholar] [CrossRef]
- Morin, J.B.; Edouard, P.; Samozino, P. Technical Ability of Force Application as a Determinant Factor of Sprint Performance. Med. Sci. Sports Exerc. 2011, 43, 1680–1688. [Google Scholar] [CrossRef]
- Kawamori, N.; Newton, R.U.; Hori, N.; Nosaka, K. Effects of Weighted Sled Towing with Heavy versus Light Load on Sprint Acceleration Ability. J. Strength Cond. Res. 2014, 28, 2738–2745. [Google Scholar] [CrossRef]
- Kotuła, K.; Matusiński, A.; Zając, A.; Krzysztofik, M. Sprint Resisted and Assisted Priming for Peak Performance. J. Strength Cond. Res. 2023, 37, 2354–2361. [Google Scholar] [CrossRef]
- Matusiński, A.; Gołas, A.; Zajac, A.; Maszczyk, A. Acute Effects of Resisted and Assisted Locomotor Activation on Sprint Performance. Biol. Sport 2022, 39, 1049–1054. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Cronin, J.B.; Lloyd, R.S. Maximal Sprint Speed in Boys of Increasing Maturity. Pediatr. Exerc. Sci. 2015, 27, 85–94. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. Influence of Age, Maturity, and Body Size on the Spatiotemporal Determinants of Maximal Sprint Speed in Boys. J. Strength Cond. Res. 2017, 31, 1009–1016. [Google Scholar] [CrossRef]
- Fernández-Galván, L.M.; Casado, A.; García-Ramos, A.; Haff, G.G. Effects of Vest and Sled Resisted Sprint Training on Sprint Performance in Young Soccer Players: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2022, 36, 2023–2034. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Cronin, J.B.; Mohamad, I.N.; Mohamad, S.; Oliver, J.L.; Hughes, M.G. The Effect of Resisted Sprint Training on Maximum Sprint Kinetics and Kinematics in Youth. Eur. J. Sport Sci. 2015, 15, 374–381. [Google Scholar] [CrossRef]
- Park, S.B.; Park, D.S.; Kim, M.; Lee, E.; Lee, D.; Jung, J.; Son, S.J.; Hong, J.; Yang, W.H. High-Intensity Warm-up Increases Anaerobic Energy Contribution during 100-m Sprint. Biology 2021, 10, 198. [Google Scholar] [CrossRef]
- Røkke, O. Validation of Force-, Velocity-, and Acceleration-Time Curves and Temporal Characteristics as Output Data from the 1080 Sprint. Master’s Theses, Norwegian School of Sport Sciences, Oslo, Norway, 2018. [Google Scholar]
- Gepfert, M.; Golas, A.; Zajac, T.; Krzysztofik, M. The Use of Different Modes of Post-Activation Potentiation (PAP) for Enhancing Speed of the Slide-Step in Basketball Players. Int. J. Environ. Res. Public Health 2020, 17, 5057. [Google Scholar] [CrossRef]
- Sugisaki, N.; Tsuchie, H.; Takai, Y.; Kobayashi, K.; Yoshimoto, T.; Kanehisa, H. Validity of Spatiotemporal and Ground Reaction Force Estimates during Resisted Sprinting with a Motorized Loading Device. Scand. J. Med. Sci. Sports 2024, 34, e14597. [Google Scholar] [CrossRef]
- Rakovic, E.; Paulsen, G.; Helland, C.; Haugen, T.; Eriksrud, O. Validity and Reliability of a Motorized Sprint Resistance Device. J. Strength Cond. Res. 2022, 36, 2335–2338. [Google Scholar] [CrossRef]
- Mangine, G.T.; Huet, K.; Williamson, C.; Bechke, E.; Serafini, P.; Bender, D.; Hudy, J.; Townsend, J. A Resisted Sprint Improves Rate of Force Development during a 20-m Sprint in Athletes. J. Strength Cond. Res. 2018, 32, 1531–1537. [Google Scholar] [CrossRef]
- Rakovic, E.; Paulsen, G.; Helland, C.; Eriksrud, O.; Haugen, T. The Effect of Individualised Sprint Training in Elite Female Team Sport Athletes: A Pilot Study. J. Sports Sci. 2018, 36, 2802–2808. [Google Scholar] [CrossRef]
- Helland, C.; Haugen, T.; Rakovic, E.; Eriksrud, O.; Seynnes, O.; Mero, A.A.; Paulsen, G. Force–Velocity Profiling of Sprinting Athletes: Single-Run vs. Multiple-Run Methods. Eur. J. Appl. Physiol. 2019, 119, 465–473. [Google Scholar] [CrossRef]
- Cross, M.R.; Lahti, J.; Brown, S.R.; Chedati, M.; Jimenez-Reyes, P.; Samozino, P.; Eriksrud, O.; Morin, J.B. Training at Maximal Power in Resisted Sprinting: Optimal Load Determination Methodology and Pilot Results in Team Sport Athletes. PLoS ONE 2018, 13, e0195477. [Google Scholar] [CrossRef]
- Petrakos, G.; Morin, J.B.; Egan, B. Resisted Sled Sprint Training to Improve Sprint Performance: A Systematic Review. Sports Med. 2016, 46, 381–400. [Google Scholar] [CrossRef]
- Lindsay, O.; Fletcher, J.R. Does The Countermovement Jump Accurately Assess Lower-Limb Neuromuscular Fatigue? Med. Sci. Sports Exerc. 2022, 54, 18. [Google Scholar] [CrossRef]
- Wu, P.P.Y.; Sterkenburg, N.; Everett, K.; Chapman, D.W.; White, N.; Mengersen, K. Predicting Fatigue Using Countermovement Jump Force-Time Signatures: PCA Can Distinguish Neuromuscular versus Metabolic Fatigue. PLoS ONE 2019, 14, e0219295. [Google Scholar] [CrossRef]
- Murr, S.; Aldred, M.; Games, J. Monitoring Countermovement Jump Performance for Division I Basketball Players over the Competitive Season. Am. J. Sports Sci. 2023, 11, 33–40. [Google Scholar] [CrossRef]
- Armada-Cortés, E.; Benítez-Muñoz, J.A.; San Juan, A.F.; Sánchez-Sánchez, J. Evaluation of Neuromuscular Fatigue according to Injury History in a Repeat Sprint Ability Test, Countermovement Jump, and Hamstring Test in Elite Female Soccer Players. Appl. Sci. 2022, 12, 2970. [Google Scholar] [CrossRef]
- Bachero-Mena, B.; Sánchez-Moreno, M.; Pareja-Blanco, F.; Sañudo, B. Acute and Short-Term Response to Different Loading Conditions During Resisted Sprint Training. Int. J. Sports Physiol. Perform. 2020, 15, 997–1004. [Google Scholar] [CrossRef]
- Monahan, M.; Petrakos, G.; Egan, B. Physiological and Perceptual Responses to a Single Session of Resisted Sled Sprint Training at Light or Heavy Sled Loads. J. Strength Cond. Res. 2022, 36, 2733–2740. [Google Scholar] [CrossRef]
- Wdowski, M.M.; Clarke, N.; Eyre, E.L.J.; Morris, R.; Noon, M.; Eustace, S.J.; Hankey, J.; Raymond, L.M.; Richardson, D.L. The Effect of Fatigue on First Stance Phase Kinetics during Acceleration Sprint Running in Professional Football Players. Sci. Med. Footb. 2021, 5, 90–96. [Google Scholar] [CrossRef]
- Runacres, A.; Mackintosh, K.A.; McNarry, M.A. Investigating the Kinetics of Repeated Sprint Ability in National Level Adolescent Hockey Players. J. Sports Sci. 2023, 41, 391–398. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Cross, M.; Ross, A.; Samozino, P.; Brughelli, M.; Gill, N.; Morin, J.B. Changes in Mechanical Properties of Sprinting during Repeated Sprint in Elite Rugby Sevens Athletes. Eur. J. Sport Sci. 2019, 19, 585–594. [Google Scholar] [CrossRef]
- Haugen, T.; Tonnessen, E.; Leirstein, S.; Hem, E.; Seiler, S. Not Quite so Fast: Effect of Training at 90% Sprint Speed on Maximal and Repeated-Sprint Ability in Soccer Players. J. Sports Sci. 2014, 32, 1979–1986. [Google Scholar] [CrossRef]
- Monte, A.; Nardello, F.; Zamparo, P. Sled Towing: The Optimal Overload for Peak Power Production. Int. J. Sports Physiol. Perform. 2017, 12, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Micallef, J.P.; Millet, G.P. Changes in Spring-Mass Model Characteristics during Repeated Running Sprints. Eur. J. Appl. Physiol. 2011, 111, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Brocherie, F.; Morin, J.B.; Degache, F.; Millet, G.P. Comparison of Four Sections for Analyzing Running Mechanics Alterations during Repeated Treadmill Sprints. J. Appl. Biomech. 2015, 31, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, J.; García-Unanue, J.; Hernando, E.; López-Fernández, J.; Colino, E.; León-Jiménez, M.; Gallardo, L. Repeated Sprint Ability and Muscular Responses according to the Age Category in Elite Youth Soccer Players. Front. Physiol. 2019, 10, 175. [Google Scholar] [CrossRef]
- Tsoukos, A.; Bogdanis, G.C. Physiological Responses and Fatigue during a Repeated Shuttle-Sprint Running Test in Adolescent Schoolchildren: A Comparison between Sexes and Fatigue Calculation Methods. Children 2023, 10, 1041. [Google Scholar] [CrossRef]
Sprint Variables | Group | M | SE | 95% CI | ANOVA | ||||
---|---|---|---|---|---|---|---|---|---|
LL | UL | Group | Trial | Group × Trial | |||||
Sprint time [s] | RST2M | 4.05 ± 0.14 | 0.015 | 4.034 | 4.095 | p F η2 | 0.178 1.835 0.012 | 1.00 0.013 0.001 | 0.928 0.271 0.009 |
RST40S | 4.03 ± 0.16 | 0.017 | 3.996 | 4.067 | |||||
Peak speed [m/s] | RST2M | 6.64 ± 0.28 | 0.030 | 6.561 | 6.680 | p F | 0.494 0.469 0.003 | 0.997 0.066 0.002 | 0.356 1.112 0.034 |
RST40S | 6.66 ± 0.25 | 0.027 | 6.594 | 6.703 | |||||
Peak force [N] | RST2M | 192.00 ± 21.51 | 2.281 | 186.741 | 196.102 | p F | 0.590 0.292 0.002 | 0.194 1.497 0.046 | 0.678 0.628 0.020 |
RST40S | 190.56 ± 21.72 | 2.303 | 184.839 | 194.378 | |||||
Peak power [W] | RST2M | 1059.95 ± 78.53 | 8.325 | 1036.495 | 1068.911 | F | 0.621 0.246 0.002 | 0.992 0.099 0.003 | 0.152 1.641 0.050 |
RST40S | 1063.26 ± 68.39 | 7.249 | 1043.732 | 1072.527 | |||||
AvgStep length [m] | RST2M | 1.17 ± 0.04 | 0.005 | 1.155 | 1.176 | F | 0.230 1.449 0.010 | 0.750 0.535 0.017 | 0.912 0.301 0.010 |
RST40S | 1.17 ± 0.05 | 0.006 | 1.164 | 1.186 | |||||
AvgStep frequency [Hz] | RST2M | 4.23 ± 0.19 | 0.020 | 4.200 | 4.283 | F | 0.906 0.014 0.000 | 0.837 0.417 0.013 | 0.996 0.078 0.003 |
RST40S | 4.23 ± 0.18 | 0.020 | 4.203 | 4.286 |
Sprint Variables | Group | M | SE | 95% CI | ANOVA | ||||
---|---|---|---|---|---|---|---|---|---|
LL | UL | Group | Trial | Group × Trial | |||||
Sprint time [s] | RST2M | 1.51 ± 0.06 | 0.007 | 1.501 | 1.530 | F | 0.097 2.790 0.018 | 0.989 0.114 0.004 | 0.866 0.344 0.011 |
RST40S | 1.49 ± 0.09 | 0.010 | 1.474 | 1.514 | |||||
Peak speed [m/s] | RST2M | 5.05 ± 0.20 | 0.021 | 4.992 | 5.073 | p F | 0.218 1.530 0.010 | 0.849 0.399 0.013 | 0.815 0.447 0.014 |
RST40S | 5.08 ± 0.20 | 0.022 | 5.027 | 5.113 | |||||
Peak force [N] | RST2M | 201.31 ± 10.66 | 1.131 | 198.470 | 203.129 | p F | 0.709 0.139 0.001 | 0.687 0.617 0.019 | 0.500 0.874 0.027 |
RST40S | 201.74 ± 11.39 | 1.208 | 198.923 | 203.976 | |||||
Peak power [W] | RST2M | 838.31 ± 66.35 | 7.034 | 818.232 | 844.401 | p F | 0.757 0.096 0.001 | 0.840 0.411 0.013 | 0.775 0.501 0.016 |
RST40S | 841.62 ± 73.40 | 7.781 | 819.610 | 849.287 | |||||
AvgStep length [m] | RST2M | 0.82 ± 0.06 | 0.006 | 0.811 | 0.837 | p F | 0.107 2.632 0.017 | 0.620 0.706 0.022 | 0.803 0.464 0.015 |
RST40S | 0.84 ± 0.07 | 0.007 | 0.825 | 0.856 | |||||
AvgStep frequency [Hz] | RST2M | 4.00 ± 0.21 | 0.023 | 3.968 | 4.062 | F | 0.571 0.322 0.002 | 0.756 0.526 0.017 | 0.868 0.371 0.012 |
RST40S | 4.02 ± 0.23 | 0.025 | 3.984 | 4.087 |
Sprint Variables | Group | M | SE | 95% CI | ANOVA | ||||
---|---|---|---|---|---|---|---|---|---|
LL | UL | Group | Trial | Group× Trial | |||||
Sprint time [s] | RST2M | 0.91 ± 0.02 | 0.003 | 0.911 | 0.923 | F | 0.151 2.079 0.16 | 0.976 0.161 0.008 | 0.796 0.473 0.016 |
RST40S | 0.91 ± 0.02 | 0.003 | 0.904 | 0.917 | |||||
Peak speed [m/s] | RST2M | 6.03 ± 0.24 | 0.026 | 5.970 | 6.075 | F | 0.445 0.586 0.004 | 0.995 0.080 0.003 | 0.813 0.449 0.014 |
RST40S | 6.06 ± 0.23 | 0.025 | 6.000 | 6.103 | |||||
Peak force [N] | RST2M | 163.61 ± 6.94 | 0.736 | 161.604 | 164.527 | F | 0.433 0.618 0.004 | 0.862 0.380 0.012 | 0.432 0.979 0.030 |
RST40S | 162.81 ± 7.57 | 0.803 | 160.609 | 163.796 | |||||
Peak power [W] | RST2M | 955.18 ± 69.46 | 7.363 | 935.797 | 965.624 | F | 0.942 0.005 0.000 | 0.871 0.366 0.012 | 0.438 0.970 0.030 |
RST40S | 954.80 ± 72.33 | 7.667 | 934.495 | 965.326 | |||||
AvgStep length [m] | RST2M | 1.21 ± 0.05 | 0.005 | 1.203 | 1.225 | F | 0.238 1.402 0.009 | 0.937 0.254 0.007 | 0.997 0.068 0.002 |
RST40S | 1.22 ± 0.05 | 0.006 | 1.213 | 1.235 | |||||
AvgStep frequency [Hz] | RST2M | 4.42 ± 0.20 | 0.021 | 4.393 | 4.480 | F | 0.852 0.035 0.000 | 0.973 0.171 0.005 | 0.997 0.066 0.000 |
RST40S | 4.42 ± 0.19 | 0.021 | 4.387 | 4.473 |
Sprint Variables | Group | M | SE | 95% CI | ANOVA | ||||
---|---|---|---|---|---|---|---|---|---|
LL | UL | Group | Trial | Group × Trial | |||||
Sprint time [s] | RST2M | 0.82 ± 0.03 | 0.003 | 0.823 | 0.836 | p F | 0.584 0.301 0.000 | 0.998 0.051 0.000 | 0.878 0.355 0.013 |
RST40S | 0.82 ± 0.03 | 0.003 | 0.821 | 0.834 | |||||
Peak speed [m/s] | RST2M | 6.49 ± 0.26 | 0.028 | 6.426 | 6.541 | p F | 0.697 0.152 0.001 | 0.990 0.109 0.003 | 0.559 0.789 0.025 |
RST40S | 6.50 ± 0.25 | 0.027 | 6.443 | 6.555 | |||||
Peak force [N] | RST2M | 160.23 ± 6.73 | 0.714 | 158.281 | 161.105 | p F | 0.880 0.023 0.000 | 0.904 0.314 0.010 | 0.486 0.850 0.028 |
RST40S | 160.00 ± 6.39 | 0.678 | 158.198 | 160.889 | |||||
Peak power [W] | RST2M | 1029.43 ± 78.26 | 8.296 | 1007.917 | 1041.745 | p F | 0.896 0.017 0.000 | 0.952 0.223 0.007 | 0.503 0.870 0.027 |
RST40S | 1031.25 ± 73.98 | 7.843 | 1010.556 | 1042.209 | |||||
AvgStep length [m] | RST2M | 1.37 ± 0.06 | 0.007 | 1.355 | 1.382 | p F | 0.693 0.156 0.002 | 0.856 0.389 0.012 | 1.000 0.009 0.000 |
RST40S | 1.37 ± 0.06 | 0.007 | 1.358 | 1.386 | |||||
AvgStep frequency [Hz] | RST2M | 4.41 ± 0.21 | 0.022 | 4.369 | 4.463 | F | 0.944 0.005 0.000 | 0.852 0.012 0.395 | 0.944 0.241 0.008 |
RST40S | 4.40 ± 0.21 | 0.022 | 4.367 | 4.460 |
Sprint Variables | Group | M | SE | 95% CI | ANOVA | ||||
---|---|---|---|---|---|---|---|---|---|
LL | UL | Group | Trial | Group × Trial | |||||
Sprint time [s] | RST2M | 0.80 ± 0.03 | 0.004 | 0.793 | 0.809 | p F | 0.664 0.189 0.000 | 0.992 0.100 0.005 | 0.474 0.913 0.030 |
RST40S | 0.79 ± 0.03 | 0.004 | 0.791 | 0.806 | |||||
Peak speed [m/s] | RST2M | 6.63 ± 0.28 | 0.030 | 6.558 | 6.677 | p F | 0.474 0.515 0.003 | 0.997 0.067 0.002 | 0.366 1.094 0.034 |
RST40S | 6.66 ± 0.25 | 0.027 | 6.593 | 6.702 | |||||
Peak force [N] | RST2M | 159.50 ± 6.73 | 0.714 | 157.518 | 160.310 | F | 0.631 0.232 0.001 | 0.748 0.536 0.017 | 0.251 1.337 0.041 |
RST40S | 159.83 ± 6.15 | 0.652 | 158.084 | 160.668 | |||||
Peak power [W] | RST2M | 1055.14 ± 79.16 | 8.391 | 1031.358 | 1063.856 | p F | 0.492 0.473 0.003 | 0.954 0.220 0.007 | 0.174 1.562 0.048 |
RST40S | 1060.45 ± 68.78 | 7.291 | 1040.713 | 1069.591 | |||||
AvgStep length [m] | RST2M | 1.49 ± 0.08 | 0.009 | 1.473 | 1.510 | p F | 0.185 1.773 0.012 | 0.125 1.757 0.053 | 0.879 0.355 0.012 |
RST40S | 1.50 ± 0.08 | 0.009 | 1.491 | 1.527 | |||||
AvgStep frequency [Hz] | RST2M | 4.22 ± 0.26 | 0.028 | 4.164 | 4.282 | p F | 0.345 0.896 0.006 | 0.265 1.304 0.040 | 0.915 0.296 0.009 |
RST40S | 4.18 ± 0.25 | 0.027 | 4.127 | 4.241 |
Fatigue Variables | Group | M | SE | 95% CI | Paired T-Test | |||
---|---|---|---|---|---|---|---|---|
LL | UL | t | ES | |||||
FI (%) | RST2M | 4.61 ± 2.20 | 0.568 | 2.39 | 1.00 | −0.874 | 0.397 | 0.22 |
RST40S | 3.92 ± 2.54 | 0.656 | ||||||
Sdec (%) | RST2M | 2.17 ± 1.02 | 0.26 | −0.47 | 1.28 | 0.986 | 0.341 | 0.25 |
RST40S | 1.17 ± 1.05 | 0.27 |
CMJ Variables | Group | Pre | Post | Post–Pre | SE | Post–Pre 95% CI | Independent T-Test | ||
---|---|---|---|---|---|---|---|---|---|
LL | UL | ES | |||||||
Height (cm) | RST2M | 40.63 ± 4.21 | 38.68 ± 3.44 | −1.95 ± 2.09 | 0.541 | −3.407 | 0.127 | 0.068 | 0.71 |
RST40S | 39.86 ± 4.23 | 39.54 ± 3.89 | −0.31 ± 2.60 | 0.671 | |||||
Take-off Velocity (m/s) | RST2M | 2.82 ± 0.14 | 2.75 ± 0.12 | −0.06 ± 0.7 | 0.019 | −0.118 | 0.005 | 0.073 | 0.70 |
RST40S | 2.79 ± 0.14 | 2.78 ± 0.13 | −0.01 ± 0.09 | 0.023 | |||||
CMJ Depth (cm) | RST2M | −29.44 ± 6.62 | −30.43 ± 6.18 | −0.98 ± 5.41 | 1.397 | −3.325 | 2.792 | 0.860 | 0.06 |
RST40S | −30.26 ± 5.77 | −30.98 ± 5.86 | −0.72 ± 2.03 | 0.526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, D.; Hong, J. Effects of Short-Rest Interval Time on Resisted Sprint Performance and Sprint Mechanical Variables in Elite Youth Soccer Players. Appl. Sci. 2024, 14, 5082. https://doi.org/10.3390/app14125082
Jung D, Hong J. Effects of Short-Rest Interval Time on Resisted Sprint Performance and Sprint Mechanical Variables in Elite Youth Soccer Players. Applied Sciences. 2024; 14(12):5082. https://doi.org/10.3390/app14125082
Chicago/Turabian StyleJung, Daum, and Junggi Hong. 2024. "Effects of Short-Rest Interval Time on Resisted Sprint Performance and Sprint Mechanical Variables in Elite Youth Soccer Players" Applied Sciences 14, no. 12: 5082. https://doi.org/10.3390/app14125082
APA StyleJung, D., & Hong, J. (2024). Effects of Short-Rest Interval Time on Resisted Sprint Performance and Sprint Mechanical Variables in Elite Youth Soccer Players. Applied Sciences, 14(12), 5082. https://doi.org/10.3390/app14125082