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Abstract: This study explored the impact of short rest intervals on resisted sprint training in elite youth
soccer players, specifically targeting enhanced initial-phase explosive acceleration without altering
sprint mechanics. Fifteen U19 soccer players participated in a randomized crossover design trial,
executing two sprint conditions: RST2M (6 sprints of 20 m resisted sprints with 2 min rest intervals)
and RST40S (6 sprints of 20 m resisted sprints with 40 s rest intervals), both under a load equivalent
to 30% of sprint velocity decrement using a resistance device. To gauge neuromuscular fatigue,
countermovement jumps were performed before and after each session, and the fatigue index along
with sprint decrement percentage were calculated. Interestingly, the results indicated no significant
differences in sprint performance or mechanical variables between RST2M and RST40S, suggesting
that the duration of rest intervals did not affect the outcomes. Horizontal resistance appeared to
mitigate compensatory patterns typically induced by fatigue in short rest periods, maintaining
effective joint movement and hip extensor recruitment necessary for producing horizontal ground
forces. These findings propose a novel training strategy that could simultaneously enhance sprint
mechanics during initial accelerations and repeated sprint abilities for elite youth soccer players—a
methodology not previously employed

Keywords: resisted sprint; sprint mechanics; repeated sprint; rest interval time; soccer

1. Introduction

Soccer is a sport that demands frequent high-intensity actions, particularly explosive
acceleration sprints, which are crucial for success during matches. During competitive play,
soccer players typically perform 91–119 high-intensity accelerations (≥2.5–3 m/s2) and
16–27 sprints (≥24–25.2 km/h) with incomplete rest periods of between approximately 30 s
or less and 60 s [1–5]. Short sprints (≤10 m) and straight-line sprints are the most frequent
movements preceding goal situations in soccer matches, with elite players exhibiting greater
sprint distances and higher acceleration frequencies than non-elite players [6]. Recent
research has shown that in both adult and youth players, explosive initial acceleration
(≤20 m) during matches and sprint performance decline as the season progresses [7–12].
Therefore, repeatedly performing and improving explosive acceleration sprints throughout
matches and seasons is a key factor for better performance.

Soccer players often perform sprint training with short rest intervals (≤60 s) to improve
their ability to perform repeated sprints [13–18]. Adaptation to these short rest intervals between
sprints can enhance recovery mechanisms and the activity of enzymes involved in both aerobic
and anaerobic energy production [19]. Therefore, coaches may attempt to reduce rest intervals or
increase training volume to achieve high intensities, but this approach could lead to exhaustion,
and adversely affect sprint mechanics [14,17,20–24]. Moreover, while players and coaches
often expect this training to enhance explosive acceleration from the start (0–20 m), research
has revealed that it works best at 20–30 m [15,18,25,26]. In this study, the term sprint
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mechanics is employed due to its direct relevance to the measured variables, which are
inherently linked to the mechanics of sprinting. Numerous previous studies have used the
term sprint mechanics.

Explosive acceleration sprints require producing horizontal forces in the anterior-
posterior (AP) direction onto the ground with effective mechanics to reduce braking forces
and enhance propulsion [10,27–32]. However, continued training with altered sprint
mechanics due to short rest intervals could affect athletes’ movement patterns as they adapt
to compensated sprint patterns [13,14,17,21–24,33]. This adaptation can cause changes in
the maximum velocity sprint mechanics and performance [28,30,34,35]. To address these
issues, several researchers have studied methods to maintain high sprint performance
during repeated sprint training by manipulating the distance, rest periods, and volume
distribution [22,36–39]. However, these attempts have been limited to improving the sprint
mechanics and ground force output directly and, also, the opportunity for enhancement and
adaptation of the energy metabolism system required by soccer players may be reduced.

Resisted sprint training is a primary method of improving short sprint performance
in soccer players [26,40–44]. It can enhance the horizontal force output in the AP direc-
tion and mechanical efficiency by adjusting the trunk angle to effectively accelerate the
body forward [40,44–48]. Recent studies have shown that loads of 30–50% sprint veloc-
ity decrement (Vdec; a load of percentage decrement to the maximum sprint velocity)
are effective for initial acceleration mechanics (0–20 m) and have been used in practice
and research [28,40,41,47,49–51]. However, traditional resisted sprint training has been
biased toward improving mechanics and single sprint performance without considering
the metabolic stresses required by soccer players. Coaches should consider not only sprint
mechanics to improve the amount and direction of horizontal force applied to the ground
but also physiological loading to enhance the capacity for repeated explosive accelera-
tion. However, current training methods have either focused solely on increasing the
physiological load or on separating training to improve sprint mechanics.

We reviewed a pioneering study that introduced elastic band resistance for sprint
mechanical efficiency in repeated sprint training protocols for elite youth soccer players,
aged 17 ± 0.3 years [25]. This study revealed that sprint performance improved during the
late acceleration phase (20–30 m) but not during early acceleration. These results are similar
to those of other forms of repeated sprint training. Therefore, they are unlikely to solve the
current problems. In addition, it is known that post-peak height velocity (PHV) in youth
athletes (age: 15.2 ± 1.6 years) that participated in the previous study requires neurological
and morphological adaptation to improve sprinting [42,52,53]. Post-PHV athletes also need
to develop initial acceleration, for which the level of lower limb strength to overcome inertia
is critical; therefore, a higher resistance than the elastic band should be considered from the
initiation of acceleration [54,55]. Furthermore, the study did not investigate how resistance
with a short rest interval affects sprint performance and mechanical characteristics during
training. This makes it challenging for practitioners to design and apply training methods
based solely on the findings of this study. Therefore, new training approaches are necessary
to improve short sprint performance in soccer players and help them repeatedly execute
efficient accelerations, even when fatigued.

The present study aimed to examine the effects of a short rest interval on resisted sprint
performance and sprint mechanical variables in elite youth soccer players to determine
whether brief recovery periods could be used for resisted sprint training for soccer short
sprint performance. Two types of training were compared: (a) RST2M, which involved six
repetitions of 20 m resisted sprints with a 2 min rest interval (traditional), and (b) RST40S,
which involved six repetitions of 20 m resisted sprints with a 40 s rest interval (repeated
sprint protocol). Under both conditions, a load of 30% Vdec was applied. Furthermore,
to evaluate and compare neuromuscular fatigue levels after each procedure, players per-
formed a countermovement jump (CMJ) before and after each condition. We hypothesized
that RST40S would exhibit lower performance and alterations in mechanical variables
compared with RST2M in overall 0–20 m distance. Previous studies have focused on main-



Appl. Sci. 2024, 14, 5082 3 of 14

taining sprint quality through manipulation of rest periods, sprint distance, and volume.
However, our study was designed to develop a novel training methodology that enhances
the ability to perform repeated explosive accelerations with effective sprint mechanics
while maintaining high exercise intensity.

2. Materials and Methods
2.1. Participants

In G*Power (version 3.1), an a priori analysis was conducted using a two-tailed test
with an effect size of 0.95. The significance level was set at α = 0.05 and the power at
0.80. This analysis estimated that the minimum sample size required per group in a two-
sample t-test scenario would be 19 participants [22,37,39,56]. However, due to constraints
in available resources and the high specificity of the elite athlete population targeted in
our study, a smaller sample size was deemed necessary and acceptable. This decision
was supported by the high effect size, which suggests that even with fewer participants,
significant effects could still be detected reliably. Consequently, 15 young male soccer
players representing U19 teams from a professional soccer academy participated in this
study (mean ± standard deviation [SD]: age, 17.53 ± 0.51 years; height, 177.53 ± 4.35 cm;
weight, 73.99 ± 4.94 kg). The inclusion criteria were as follows: (a) no previous injuries
within 3 months, (b) previous experience with both resistance sprint and repeated sprint,
and (c) participation in regular resistance sprint and repeated sprint in the off-season and
preseason training. Goalkeepers were not included in the participants.

All the experiments were conducted during the preseason period. All players per-
formed approximately 15 h of combined soccer-based training and competitive matches
per week (5–6 soccer training sessions, 1–3 gym sessions, and 1 domestic game per week).
All participants read and signed an informed consent form and were informed of the study
objectives and procedures before participating in the study. All Players were younger than
19 years at the start of the experiment; therefore, players and parents were informed about
the aims, benefits, and risks and signed a written informed consent form before participat-
ing in the study. This study was approved by the Institutional Ethics Committee of CHA
University (1044308-202310-HR-128-03). The protocols were performed in accordance with
the Declaration of Helsinki.

2.2. Study Design and Procedures

The study was performed in a randomized crossover design, and all participants
performed three sessions across a 2-week period that included one load–velocity profile
test for each individual load and two repeated sprint test sessions using the 1080 Sprint
(1080 Motions, Stockholm, Sweden) for each individual load and variables (sprint time,
peak force, power, velocity, step length, and stride frequency at 5 m split distance (0–20,
0–5, 5–10, 10–15, and 15–20 m). This is a resistance training device with intelligent drag
technology and was developed for resisted and assisted sprint training that uses a servo
motor (2000 RPM OMRON G5 Series Motor; OMRON Corporation, Kyoto, Japan). It can
collect precise and frequent data on the velocity and pulling force exerted by the cable
coiled around a spool. Recent studies suggest that the 1080 Sprint is valid and reliable for
sprint performance and spatiotemporal variables [57–60], and has been used in resisted
sprint training for field and research [28,61–64]. Data (time, force, and velocity) were
recorded at 333 Hz.

The load–velocity profile was based on that in previous studies. To determine the
load–velocity (L–v) relationship, all participants performed 1, 5, 8, 12, and 15 kg of resisted
sprint at 35, 30, 25, 20, and 15 m, respectively [28,40]. The “normal mass resistance mode”
was used, simulating the inertial properties of a normal mass (a cable-driven weight stack)
in gravity “http://1080motion.com/ (accessed on 6 June 2024)”. Previous research suggests
that loads of 30% Vdec to loads of 50% Vdec are effective for initial acceleration [28,40,47].
The range of the loads considered very heavy resistance (>30% velocity decrement) in the
classification of resisted sprint loads [65]. We chose to use 30% Vdec loads in this study,

http://1080motion.com/
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given that the athletes may have relatively low levels of muscular strength and would need
to perform sprints repeatedly after a short 40 s rest period [13,18,39]. The loads of 30% Vdec
for the participants was an average value of 10.9 ± 0.79 kg. We employed rounding-up
calculations to determine the load in the device.

One week later, two sessions of resistance sprints were performed. Each session
was separated by 48–72 h, and the other conditions were kept constant except for the
rest interval. The temperature within the facility was controlled by an air conditioning
system, and no wind was applied to the indoor wooden basketball court to prevent air
resistance. The temperature and humidity during the experiment were 18–20 ◦C and
30–45%, respectively.

All players were randomly assigned to either RST2M (Resisted Sprint Training with
a 2 min rest interval) or RST40S (Resisted Sprint Training with a 40 s rest interval). To
investigate the differences between RST2M and RST40S, they performed 6 repetitions of
20 m resisted sprints with 2 min and 40 s rest intervals, respectively, with Vdec (30%)
load using 1080 Sprint (1080 Motion, Stockholm, Sweden). Prior to the test session, all
participants performed a warm-up protocol, including 10 min of jogging, ~10 min of
dynamic warm-up, ~10 min of sprint drill exercises, 2–4 submaximal to maximal sprints,
and 2–3 resisted sprints under the 30% Vdec load as the test trials from a standing split-
stance position (2-point stance).

The resistance load was regulated using the Quantum computer application (1080 Mo-
tion), which also recorded all sprinting data for subsequent analysis. The 1080 Sprint
was placed approximately 3 m behind the starting line, with the motor cord secured to
the belt around the pelvis of the athlete. And the front foot placed on the start line. The
athletes started from the 2-point stance and were instructed to start with the cues 3 s before
(“3. . .2. . .1. . .GO!”). Quantum software can identify the athlete’s position and initiate data
collection at the start of their movement over a predetermined distance (20 m). It also fea-
tures a stopwatch that works simultaneously at the end of each sprint to inform researchers
about the amount of rest time given to participants.

To minimize fatigue and obtain more accurate sprint data, the researcher removed the
harness from the waist of the athlete at the end of each trial and moved it back to its starting
position. The athletes recovered by walking from the finish to the starting line. This is
because the equipment provides a constant pulling resistance, otherwise the athlete would
have a high eccentric load when returning to the starting point. The distance from the
finish line to the start line was covered in approximately 20 s by walking. Upon the athletes’
arrival at the start line, one of the research staff provided assistance by wearing the belt.
Subsequently, another assistant informed the participants 5 s before the following sprint.
We chose active recovery based on previous studies to promote greater physiological stress
than passive recovery and the specific characteristics of a soccer match [18].

To investigate and compare the neuromuscular fatigue level that occurs after each
repeated sprint condition, countermovement jumps (CMJs) were conducted pre- and post-
intervention with a 5 min rest [66–69]. Participants performed the three CMJs pre- and
post- each intervention, and the average value of the three jumps was used for the analysis.
ForceDecks Lite 400 (Vald Performance, Brisbane, Australia) was used to collect jump
height, take-off velocity, and CMJ depth. The data were calculated automatically and in
real time using the ForceDecks Lite 400 from VALD HUB. The participants were instructed
to jump as high as possible on the force plate with their hands placed on their waists until
completion. They were then asked to bend their knees to a self-selected position, jump as
high as possible, and land gently to return to their starting position.

2.3. Statistical Analysis

All data from RSPTM and RST40S were confirmed to be distributed by the Shapiro–
Wilk test; therefore, no further transformation was required. Data are presented as mean
values (mean) and SD. A 2-Way (group × trial) analysis of variance (ANOVA) was per-
formed for resisted sprint performance (time) and mechanical variables (peak speed, peak
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power, peak velocity, step length, and step frequency), all of which were calculated for each
sprint distance (0–20, 0–5, 5–10, 10–15, and 15–20 m). An independent t-test was conducted
to compare the differences of pre- and post-intervention in CMJ variables between RST2M
and RST40S. To assess fatigue level, the fatigue index (FI) and Sdec (%) were used, and
a paired t-test was conducted to analyze the differences between the groups. The FI (%)
was derived using the best value as a reference and the last attempt, because the first
attempt may not always be the best. The equation is as follows: (maximum−minimum
value)/maximum value × 100. The Sdec (%) was calculated by dividing the total sprint
time (TT) by the product of the peak sprint time (PT) and the number of sprints, subtracting
one from the quotient, and multiplying the result by 100. The effect size (ES) was calculated
using Hedges’ g and partial eta squared (η2) for the two-way ANOVA data to provide
a comprehensive assessment of the magnitude of observed effects, considering both the
study design and the analysis methods. Hedges’ g was used for its suitability in adjusting
for small sample biases in standardized mean differences, while partial eta squared (η2)
offers insight into the proportion of variance explained by our model in the context of
ANOVA. Additionally, Cohen’s d was employed for the CMJ variables, FI (%) and Sdec (%),
facilitating comparisons between conditions within our study and enabling integration into
broader meta-analyses. This varied approach allows for a more sophisticated interpretation
of effect sizes that align with both intra-individual and between-subjects designs, enhanc-
ing the practical significance and cumulative scientific value of our findings. Statistical
significance was set at p < 0.05. Statistical analyses were performed using the IBM SPSS
Statistics 25 (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Resisted Sprint Performance and Mechanical Variables

To investigate the impact of resisted sprint training with short rest periods on resisted
sprint performance and mechanical variables, we compared the RST40S and RST2M. A
2-way ANOVA (group × trial) was performed to examine the effect of rest duration on the
interaction effect between group and trial for the RST40S compared with the RST2M.

As shown in Table 1, there were no significant differences between RST2M and RST40S
at 0–20 m (p > 0.05).

Table 1. Group × Trial differences in resisted sprint performance and mechanical variables at 0–20 m.

Sprint
Variables

Group M SE
95% CI ANOVA

LL UL Group Trial Group × Trial

Sprint time [s]
RST2M 4.05 ± 0.14 0.015 4.034 4.095 p

F
η2

0.178
1.835
0.012

1.00
0.013
0.001

0.928
0.271
0.009RST40S 4.03 ± 0.16 0.017 3.996 4.067

Peak speed [m/s]
RST2M 6.64 ± 0.28 0.030 6.561 6.680 p

F
η2

0.494
0.469
0.003

0.997
0.066
0.002

0.356
1.112
0.034RST40S 6.66 ± 0.25 0.027 6.594 6.703

Peak force [N]
RST2M 192.00 ± 21.51 2.281 186.741 196.102 p

F
η2

0.590
0.292
0.002

0.194
1.497
0.046

0.678
0.628
0.020RST40S 190.56 ± 21.72 2.303 184.839 194.378

Peak power [W]
RST2M 1059.95 ± 78.53 8.325 1036.495 1068.911 p

F
η2

0.621
0.246
0.002

0.992
0.099
0.003

0.152
1.641
0.050RST40S 1063.26 ± 68.39 7.249 1043.732 1072.527

AvgStep length
[m]

RST2M 1.17 ± 0.04 0.005 1.155 1.176 p
F
η2

0.230
1.449
0.010

0.750
0.535
0.017

0.912
0.301
0.010RST40S 1.17 ± 0.05 0.006 1.164 1.186

AvgStep
frequency [Hz]

RST2M 4.23 ± 0.19 0.020 4.200 4.283 p
F
η2

0.906
0.014
0.000

0.837
0.417
0.013

0.996
0.078
0.003RST40S 4.23 ± 0.18 0.020 4.203 4.286

M = mean; SE = standard error; CI = confidence interval; LL = 95% confidence interval lower limit; UL = 95%
confidence interval upper limit; η2 = partial eta squared.
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The results in Table 2 reveal no significant differences between RST2M and RST40S at
0–5 m.

Table 2. Group × Trial differences in resisted sprint performance and mechanical variables at 0–5 m.

Sprint
Variables

Group M SE
95% CI ANOVA

LL UL Group Trial Group × Trial

Sprint time [s]
RST2M 1.51 ± 0.06 0.007 1.501 1.530 p

F
η2

0.097
2.790
0.018

0.989
0.114
0.004

0.866
0.344
0.011RST40S 1.49 ± 0.09 0.010 1.474 1.514

Peak speed [m/s]
RST2M 5.05 ± 0.20 0.021 4.992 5.073 p

F
η2

0.218
1.530
0.010

0.849
0.399
0.013

0.815
0.447
0.014RST40S 5.08 ± 0.20 0.022 5.027 5.113

Peak force [N]
RST2M 201.31 ± 10.66 1.131 198.470 203.129 p

F
η2

0.709
0.139
0.001

0.687
0.617
0.019

0.500
0.874
0.027RST40S 201.74 ± 11.39 1.208 198.923 203.976

Peak power [W]
RST2M 838.31 ± 66.35 7.034 818.232 844.401 p

F
η2

0.757
0.096
0.001

0.840
0.411
0.013

0.775
0.501
0.016RST40S 841.62 ± 73.40 7.781 819.610 849.287

AvgStep
length [m]

RST2M 0.82 ± 0.06 0.006 0.811 0.837 p
F
η2

0.107
2.632
0.017

0.620
0.706
0.022

0.803
0.464
0.015RST40S 0.84 ± 0.07 0.007 0.825 0.856

AvgStep
frequency [Hz]

RST2M 4.00 ± 0.21 0.023 3.968 4.062 p
F
η2

0.571
0.322
0.002

0.756
0.526
0.017

0.868
0.371
0.012RST40S 4.02 ± 0.23 0.025 3.984 4.087

M = mean; SE = standard error; CI = confidence interval; LL = 95% confidence interval lower limit; UL= 95%
confidence interval upper limit; η2 = partial eta squared.

There were no significant differences between RST2M and RST40S at 5–10 m (Table 3;
p > 0.05).

Table 3. Group × Trial differences in resisted sprint performance and mechanical variables at 5–10 m.

Sprint
Variables

Group M SE
95% CI ANOVA

LL UL Group Trial Group× Trial

Sprint time [s]
RST2M 0.91 ± 0.02 0.003 0.911 0.923 p

F
η2

0.151
2.079
0.16

0.976
0.161
0.008

0.796
0.473
0.016RST40S 0.91 ± 0.02 0.003 0.904 0.917

Peak speed [m/s]
RST2M 6.03 ± 0.24 0.026 5.970 6.075 p

F
η2

0.445
0.586
0.004

0.995
0.080
0.003

0.813
0.449
0.014RST40S 6.06 ± 0.23 0.025 6.000 6.103

Peak force [N]
RST2M 163.61 ± 6.94 0.736 161.604 164.527 p

F
η2

0.433
0.618
0.004

0.862
0.380
0.012

0.432
0.979
0.030RST40S 162.81 ± 7.57 0.803 160.609 163.796

Peak power [W]
RST2M 955.18 ± 69.46 7.363 935.797 965.624 p

F
η2

0.942
0.005
0.000

0.871
0.366
0.012

0.438
0.970
0.030RST40S 954.80 ± 72.33 7.667 934.495 965.326

AvgStep
length [m]

RST2M 1.21 ± 0.05 0.005 1.203 1.225 p
F
η2

0.238
1.402
0.009

0.937
0.254
0.007

0.997
0.068
0.002RST40S 1.22 ± 0.05 0.006 1.213 1.235

AvgStep
frequency [Hz]

RST2M 4.42 ± 0.20 0.021 4.393 4.480 p
F
η2

0.852
0.035
0.000

0.973
0.171
0.005

0.997
0.066
0.000RST40S 4.42 ± 0.19 0.021 4.387 4.473

M = mean; SE = standard error; CI = confidence interval; LL = 95% confidence interval lower limit; UL = 95%
confidence interval upper limit; η2 = partial eta squared.

No significant differences between RST2M and RST40S at 10–15 m were observed
(Table 4; p > 0.05).
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Table 4. Group × Trial differences in resisted sprint performance and mechanical variables at 10–15 m.

Sprint
Variables

Group M SE
95% CI ANOVA

LL UL Group Trial Group × Trial

Sprint time [s]
RST2M 0.82 ± 0.03 0.003 0.823 0.836 p

F
η2

0.584
0.301
0.000

0.998
0.051
0.000

0.878
0.355
0.013RST40S 0.82 ± 0.03 0.003 0.821 0.834

Peak speed [m/s]
RST2M 6.49 ± 0.26 0.028 6.426 6.541 p

F
η2

0.697
0.152
0.001

0.990
0.109
0.003

0.559
0.789
0.025RST40S 6.50 ± 0.25 0.027 6.443 6.555

Peak force [N]
RST2M 160.23 ± 6.73 0.714 158.281 161.105 p

F
η2

0.880
0.023
0.000

0.904
0.314
0.010

0.486
0.850
0.028RST40S 160.00 ± 6.39 0.678 158.198 160.889

Peak power [W]
RST2M 1029.43 ± 78.26 8.296 1007.917 1041.745 p

F
η2

0.896
0.017
0.000

0.952
0.223
0.007

0.503
0.870
0.027RST40S 1031.25 ± 73.98 7.843 1010.556 1042.209

AvgStep
length [m]

RST2M 1.37 ± 0.06 0.007 1.355 1.382 p
F
η2

0.693
0.156
0.002

0.856
0.389
0.012

1.000
0.009
0.000RST40S 1.37 ± 0.06 0.007 1.358 1.386

AvgStep
frequency [Hz]

RST2M 4.41 ± 0.21 0.022 4.369 4.463 p
F
η2

0.944
0.005
0.000

0.852
0.012
0.395

0.944
0.241
0.008RST40S 4.40 ± 0.21 0.022 4.367 4.460

M = mean; SE = standard error; CI = confidence interval; LL = 95% confidence interval lower limit; UL = 95%
confidence interval upper limit; η2 = partial eta squared.

Table 5 demonstrates no significant differences between RST2M and RST40S at
15–20 m.

Table 5. Group × Trial differences in resisted sprint performance and mechanical variables at 15–20 m.

Sprint
Variables

Group M SE
95% CI ANOVA

LL UL Group Trial Group × Trial

Sprint time [s]
RST2M 0.80 ± 0.03 0.004 0.793 0.809 p

F
η2

0.664
0.189
0.000

0.992
0.100
0.005

0.474
0.913
0.030RST40S 0.79 ± 0.03 0.004 0.791 0.806

Peak speed [m/s]
RST2M 6.63 ± 0.28 0.030 6.558 6.677 p

F
η2

0.474
0.515
0.003

0.997
0.067
0.002

0.366
1.094
0.034RST40S 6.66 ± 0.25 0.027 6.593 6.702

Peak force [N]
RST2M 159.50 ± 6.73 0.714 157.518 160.310 p

F
η2

0.631
0.232
0.001

0.748
0.536
0.017

0.251
1.337
0.041RST40S 159.83 ± 6.15 0.652 158.084 160.668

Peak power [W]
RST2M 1055.14 ± 79.16 8.391 1031.358 1063.856 p

F
η2

0.492
0.473
0.003

0.954
0.220
0.007

0.174
1.562
0.048RST40S 1060.45 ± 68.78 7.291 1040.713 1069.591

AvgStep
length [m]

RST2M 1.49 ± 0.08 0.009 1.473 1.510 p
F
η2

0.185
1.773
0.012

0.125
1.757
0.053

0.879
0.355
0.012RST40S 1.50 ± 0.08 0.009 1.491 1.527

AvgStep
frequency [Hz]

RST2M 4.22 ± 0.26 0.028 4.164 4.282 p
F
η2

0.345
0.896
0.006

0.265
1.304
0.040

0.915
0.296
0.009RST40S 4.18 ± 0.25 0.027 4.127 4.241

M = mean; SE = standard error; CI = confidence interval; LL = 95% confidence interval lower limit; UL = 95%
confidence interval upper limit; η2 = partial eta squared.

3.2. FI (%) and Sdec (%)

Table 6 demonstrates no significant differences between RST2M and RST40S for FI (%)
(4.61 ± 2.20 vs. 3.92 ± 2.54, p > 0.05) and Sdec (%) (2.17 ± 1.02 vs. 1.17 ± 1.05%, p > 0.05).
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Table 6. Group differences in FI (%) and Sdec (%).

Fatigue
Variables

Group M SE
95% CI Paired T-Test

LL UL t p ES

FI (%)
RST2M 4.61 ± 2.20 0.568

2.39 1.00 −0.874 0.397 0.22
RST40S 3.92 ± 2.54 0.656

Sdec (%)
RST2M 2.17 ± 1.02 0.26

−0.47 1.28 0.986 0.341 0.25
RST40S 1.17 ± 1.05 0.27

M = mean; SE = standard error; CI = confidence interval; LL = 95% confidence interval lower limit; UL = 95%
confidence interval upper limit; FI (%) = fatigue index; Sdec (%) = percentage of sprint time decline.

3.3. CMJ Characteristics

As demonstrated in Table 7, no significant differences were observed between RST2M
and RST40S in the post–pre differences of height (−1.95 ± 2.09 vs. −0.31 ± 2.60 s, p > 0.05),
take-off velocity (−0.06 ± 0.7 vs. −0.01 ± 0.09, p > 0.05), and CMJ depth (−0.98 ± 5.41 vs.
−0.72 ± 2.03, p > 0.05).

Table 7. Group differences in CMJ characteristics.

CMJ
Variables

Group Pre Post Post–Pre SE

Post–Pre
95% CI Independent T-Test

LL UL p ES

Height
(cm)

RST2M 40.63 ± 4.21 38.68 ± 3.44 −1.95 ± 2.09 0.541
−3.407 0.127 0.068 0.71

RST40S 39.86 ± 4.23 39.54 ± 3.89 −0.31 ± 2.60 0.671

Take-off
Velocity

(m/s)

RST2M 2.82 ± 0.14 2.75 ± 0.12 −0.06 ± 0.7 0.019
−0.118 0.005 0.073 0.70

RST40S 2.79 ± 0.14 2.78 ± 0.13 −0.01 ± 0.09 0.023

CMJ
Depth (cm)

RST2M −29.44 ± 6.62 −30.43 ± 6.18 −0.98 ± 5.41 1.397
−3.325 2.792 0.860 0.06

RST40S −30.26 ± 5.77 −30.98 ± 5.86 −0.72 ± 2.03 0.526

SE = standard error; CI = confidence interval; LL = 95% confidence interval lower limit; UL = 95% confidence
interval upper limit; CMJ, countermovement jump.

4. Discussion
4.1. Resisted Sprint Performance and Mechanical Variables

The results showed that sprint times and peak speed were not significantly different
between RST2M and RST40S when group and trial were included as two independent
variables in a two-way ANOVA. This study’s analysis went beyond simply examining
differences between groups. Despite conducting sophisticated analyses on a trial-by-trial
basis, no significant differences were observed. Furthermore, there are no studies that have
analyzed horizontal pull-resisted sprints within a repeated sprint protocol, and it is also
difficult to find prior research examining changes in resisted sprint performance based on
rest intervals. Consequently, this limits the direct comparison of the results of this study
with previous research.

A recent literature review [18] reveals that the typical repeated sprint training set
figuration consists of 6 repetitions of 30 m straight-line sprints with 20 s rests between
repetitions. Shorter rest intervals (≤20 s) and longer sprint distances (≥30 m) substantially
increase physiological demands and lead to greater fatigue between sets. In contrast,
longer rest intervals (≥30 s) and shorter sprint distances (≤20 m) enhance immediate sprint
performance and reduce physiological strain. Many recent studies on resisted sprints
utilize protocols involving 6–8 repetitions of 20 m resisted sprints with rest periods of
2 min or more, as sufficient recovery is essential for the muscular power output required
during resisted sprints. Prior research indicates that resisted sprint training with complete
rest typically results in higher blood lactate levels, indicative of anaerobic energy exercise
intensity, compared to non-resisted sprint training [47,70,71].
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Peak force and peak power showed no significant differences between RST2M and
RST40S across the entire 20 m distance. The results of this study contrast with previous
research on repeated sprint training performed with unresisted sprints. Prior studies have
shown that during repeated sprints, fatigue leads to greater decreases in force and power
output in the first and later phases of sprinting [24,33,72–74]. Sustaining sprints with
reduced force and power applied by the neuromuscular system makes it difficult to achieve
positive adaptations on maximal and repeated sprint ability for soccer players [75]. The
principle of resisted sprint training is to apply greater force to the ground compared to
unresisted sprints [55,64,65]. The neuromuscular system adapts by generating more force to
overcome the resistance, thereby improving acceleration sprint performance [55,61,65,76].

AvgStep length and frequency did not differ significantly between RST2M and RST40S
across the entire 20 m distance. The findings of this study differ from previous research
that observed changes in step length and step frequency during repeated sprints [21,77,78].
Earlier studies typically involved sprint distances exceeding 30 m with rest intervals of
less than 30 s, with participants performing between 6 and 12 sprints. Alterations in step
length and frequency during repeated sprints are thought to result from decreased vertical
leg stiffness [14,77]. Vertical leg stiffness, which describes how rigidly the body behaves
like a spring, absorbing and releasing energy efficiently, diminishes with repeated sprints
and is linked to alterations in neuromuscular activation and muscle oxygenation rates.
Moreover, fatigue from repeated sprints is generally known to cause changes in knee and
hip momentum at the beginning of acceleration sprints, as well as in the coordination of
posterior chain muscles such as the glutes and hamstrings [28,44,45].

This study presented results that contrasted with those of typical repeated sprint
training protocols. To understand these phenomena, further research is needed to elucidate
the underlying mechanisms. Additionally, it is necessary to verify whether protocols like
RST40S exert physiological stress equivalent to the estimated benchmarks for repeated
sprint training intensity in team sport athletes, which include HRavg at 90% HRmax,
VO2avg at approximately 70–80% VO2max, and blood lactate concentration (B[La]) of
10.8 mmol/L [18]. Intervention studies should also be conducted to determine whether
these findings can serve as a new method for improving repeated acceleration sprint per-
formance in elite youth soccer players. These attempts may contribute to a new perspective
in resisted sprint research, suggesting that rest periods would be tailored to sport-specific
demands, contrasting with the prevailing trends in load setting and the kinematic effects of
resisted sprinting.

4.2. FI (%) and Sdec (%)

FI (%) and Sdec (%) also showed no significant differences between RST2M and RST40S.
Both groups exhibited lower FI (%), ranging from 10% to 15%, and Sdec (%), ranging from
5% to 7% values compared to those reported in previous studies conducted with youth
soccer players [15,79,80]. FI (%) reflects overall performance impact and recovery capacity
between sprints. Sdec (%) indicates the rate of performance decline during repeated sprints
and the ability to sustain high performance under fatigue, with lower values demonstrating
better endurance. Direct comparison with typical repeated sprint protocols is limited due
to the specific characteristics of this study. However, the lack of significant differences
between the two groups suggests that elite youth soccer players can recover and maintain
performance without long rest periods, even when performing 20 m sprints with a 30% Vdec
load. This finding implies that shorter recovery times may be sufficient for maintaining
performance in this training context. Nevertheless, since the effects of protocols like RST40S
compared to traditional resistance protocols like RST2M after 24 and 48 h have not been
analyzed, it cannot be assumed that they impose the same physiological stress on the body.
Future research should explore these long-term effects to determine the most effective
training protocols.
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4.3. CMJ Characteristics

The pre- and post-comparison differences between the groups were not significant in
CMJ characteristics. The countermovement jump (CMJ) is frequently used as an indicator
to assess fatigue levels during sprint performance, which in turn allows for the adjustment
of training volume and intensity [66–69]. Both groups appeared to exhibit performance
declines following resisted sprints, consistent with previous research. Under fatigue,
jump height and take-off velocity tend to decrease, and a deeper countermovement depth
may occur to increase eccentric load for generating greater force. The lack of significant
differences between the groups suggests that the neuromuscular fatigue levels immediately
after performing the RST40S protocol were similar to those of RST2M. However, since the
exact exercise intensity of RST40S is currently difficult to determine and CMJ was measured
only once, five minutes after each condition, it is challenging to assert that it induces the
same level of neuromuscular fatigue as RST2M [69].

4.4. Limitations and Future Research Directions

This study has some limitations. Although we conducted an a priori power analysis
to determine the sample size based on previous studies’ sample sizes, the small sample
of 15 young elite male soccer players may limit the generalizability of the findings. For
future research, expanding the sample size and youth female athletes would enhance the
generalizability of the results. Additionally, this study had a randomized crossover design,
which is robust, but it only involved three sessions across a 2-week period. A longer
intervention period or additional sessions with more sprints or sets could provide a more
comprehensive understanding of the effects of short rest intervals on resisted sprint perfor-
mance. Lastly, we did not measure the changes of muscle activation patterns or aerobic and
anaerobic metabolism. Future research that includes these measurements could provide
deeper insight into why short rest intervals did not affect performance as hypothesized.

5. Conclusions

This study extends the understanding of sprint training in elite youth soccer players by
exploring the impact of short rest intervals on resisted sprint performance and mechanics.
Unlike earlier studies, no statistically significant differences were found in sprint time,
mechanical variables, FI (%), Sdec (%), or CMJ variables between the RST2M and RST40S
groups. The findings indicate that soccer players may be able to maintain their resisted
sprint performance with a 30% load during short rest periods. This observation suggests
the potential for short rest periods to be integrated into sprint training, although further
research is necessary to confirm these trends.

Further research is required to develop this training method into an evidence-based
practice, identify optimal resistance levels, and investigate metabolic characteristics. Verify-
ing if RST40S exerts equivalent physiological stress to established benchmarks is crucial
for refining training protocols to meet sport-specific demands. Long-term studies should
determine if these findings improve sprint performance, suggesting tailored rest periods
for athletes. Finally, the study’s limitations, such as the small sample size and short inter-
vention period, highlight the need for more comprehensive research to confirm and expand
these findings.
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