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Abstract: With the development of computer technology, landslide recognition based on machine
learning methods has been widely applied in geological disaster management and research. However,
in landslide identification, the problems of an insufficient number of samples and an imbalance of
samples are often ignored; that is, landslide samples are much smaller than non-landslide samples.
In order to solve this problem, taking the main urban area of Lanzhou City as an example, this paper
proposes to construct a semi-supervised generated countermeasure network (SSGAN) model, which
aims to achieve high performance with a limited number of labeled samples for precise landslide
identification, and to help prevent and reduce the harm caused by disasters. In order to express the
environmental characteristics of landslide development and the optical texture features of landslide
occurrence, the study constructs three sets of samples to represent landslide features, including
a landslide influencing factor sample set, a Sentinel-2A optical remote sensing sample set, a joint
influencing factor and Sentinel-2A sample set. The three kinds of sample sets are transferred to
SSGAN for training to form a comparative study. The results show that the joint sample set has
excellent feature results in discriminator and generator. Through the experimental comparison,
the model proposed in this paper is compared with the model without semi-supervised generated
confrontation training. The experimental results show that the proposed method is better than the
unsupervised adversarial learning model in terms of accuracy, F1 score, Kappa coefficient, and MIoU.
A total of 160 landslides have been identified in the study area, with a total area of 10.328 km2,
with an accuracy rate of 83%. Therefore, the generated results are accurate and reliable, and show
that SSGAN can better distinguish landslides from non-landslides in an image, under the condition
of obtaining a large number of unmarked environmental features; enhance the effect of landslide
classification in complex geographical environment; and then put forward effective suggestions for
the prevention and control of landslides and geological disasters in the main urban area of Lanzhou.

Keywords: semi-supervised learning; generative adversarial networks; landslide recognition;
machine learning; insufficient samples

1. Introduction

China, with its vast territory and diverse geological environment, faces a wide dis-
tribution of disasters, including the frequent occurrence of landslides [1]. Therefore, the
prevention and control of landslide disasters should focus on early identification and
detection warning research rather than post-disaster management.

In recent years, various techniques have been developed for landslide identifica-
tion and evaluation. Common methods include probability analysis based on landslide
inventories [2], reasoning based on empirical knowledge [3], mathematical models based on
physical mechanics [4], and statistical methods based on data [5]. On the basis of traditional
linear statistical analysis, with the development of computer technology, machine learning
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methods have emerged as prominent techniques due to their autonomous analysis capa-
bilities for large amounts of data [6]. Methods such as random forests [7], support vector
machines [8], logistic regression [9], and others have been applied to landslide identification.
However, in complex scenarios or with higher accuracy requirements, traditional machine
learning algorithms have difficulty meeting actual needs, and problems such as model
overfitting and easy trapping in local optima still exist [10]. Deep learning technology,
as a further development of artificial neural networks in machine learning, has also been
explored by some scholars using such methods. For instance, Ju Yuanzhen [11] employed
the Mask Region Convolutional Neural Network (Mask R-CNN) for the automatic identifi-
cation of loess landslides using Google Earth images. Similarly, Ghorbanzadeh et al. [12]
used CNNs to landslide recognition in the southern region of Rasuwa District, Nepal,
and compared their results with traditional machine learning methods, highlighting the
advantages of deep learning in landslide recognition.

The training process in deep learning can be categorized into two main types: super-
vised learning and unsupervised learning. Currently, traditional deep learning methods
for landslide identification mostly adopt supervised learning [13,14], with problems such
as insufficient landslide samples, imbalanced samples, and limited accuracy results. While
research on landslide identification using unsupervised learning often involves processes
that are difficult to understand and explain, it is difficult to estimate learning effects and
performance, making it difficult to further optimize [15,16]. As a result, both supervised
and unsupervised learning approaches have inherent limitations in landslide recognition
tasks. Semi-supervised learning offers a promising alternative, albeit with relatively limited
research to date. Therefore, this paper adopts a semi-supervised generative adversarial
network to tackle the recognition task. This approach effectively addresses the issues of
insufficient landslide samples and sample imbalances, ultimately enhancing the accuracy
of landslide recognition and improving generalization.

This paper selects the main urban area of Lanzhou City, covering about 1631 km2,
as the study area. The area is located in the transition zone from the Qinghai–Tibet
Plateau to the Loess Plateau, with complex terrain and geological environment, which is
a typical disaster-prone area [17]. At the same time, Lanzhou has a dense transportation
network and large population flows. Frequent human activities such as engineering
construction and mineral resource exploitation have also become important causes of
landslide disasters [18,19].

In the study of landslide disasters, the selection of influencing factors has a significant
impact on the accuracy of landslide identification results. There are hundreds of factors that
can affect landslides, categorized into the geomorphological and geological, human activity,
and environmental conditions. Based on previous studies and the actual situation in the
study area, this paper selects 10 landslide image factors as the sample set for the landslide
identification task, and proposes to construct a semi-supervised generative adversarial
network (SSGAN) to identify potential landslide hazards in the main urban area of Lanzhou
City, develop a landslide identification program, and provide reference for landslide hazard
identification in similar geological areas such as the main urban area of Lanzhou City.

2. Study the Regional Profile and Data Sources
2.1. Study Area Description

Lanzhou is located at 35◦34′20′′ N–37◦07′07′′ N and 102◦35′58′′ E–104◦34′29′′ E, which
lies at the transition area between the Qinghai–Tibet Plateau and the Loess Plateau, with
undulating terrain and a complex geologic environment. Lanzhou was built according
to the east–west flow of the Yellow River. It is surrounded by two mountains in the
south and north. It has the characteristics of a Belt Basin city. And the climate there is
temperate continental with hot, rainy summers and cold, dry winters [20]. In the urban
area, Quaternary aeolian loess, with vertical joints and loose structure, is the main one.
And, especially in the rainy season, the urban area is liable to collapse, which makes
it a typical disaster-prone area [21]. When a landslide does occur, it will pose a great
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threat to the residents and facilities of the city. Therefore, it is necessary to carry out
early investigation and management of hidden danger areas for disaster-prone cities such
as the key urban areas of Lanzhou. This study takes the main urban area of Lanzhou
City, including Chengguan District, Anning District, Xigu District, and Qilihe District as
the research object to study the identification of landslides. Figure 1 shows the location
of historical landslide points detected through aerial image recognition technology and
ground survey and field survey techniques. These landslide sites cover various types
of landslides, including loess landslides and rainfall-induced landslides. After careful
identification and analysis, we have determined a total of 152 landslides, which are clearly
marked on the map.

Figure 1. Overview of the study area.

2.2. Data Sources
2.2.1. Sentinel-2A Data

The Sentinel-2A remote sensing data used in this study were obtained from the United
States Geological Survey (USGS). Sentinel-2A is a high-resolution multispectral imaging
satellite, equipped with a multispectral instrument (MSI) [22]. It operates at an altitude
of 786 km and has a swath width of 290 km, allowing it to capture data across 13 spectral
bands, providing rich spectral information. The Sentinel-2A sensor covers the visible,
near-infrared, and shortwave-infrared spectral regions [23]. The data have three spatial
resolutions: 10 m, 20 m, and 60 m. The detailed sensor parameters are shown in Table 1.

Table 1. Sentinel-2A sensor parameters.

Sensor Wave Band Central Wavelength (µm) Resolution Ratio (m)

MSI Band 1—super blue
(coastal and aerosol) 0.443 60

MSI Band 2—blue 0.490 10

MSI Band 3—green 0.560 10

MSI Band 4—red 0.665 10
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Table 1. Cont.

MSI Band 5—visible and
near-infrared light 0.705 20

MSI Band 6—visible and
near-infrared light 0.740 20

MSI Band 7—visible and
near-infrared light 0.783 20

MSI Band 8—near-infrared light 0.842 10

MSI Band 8A—visible and
near-infrared light 0.865 20

MSI Band 9—shortwave
infrared-vapor 0.945 60

MSI Band 10—shortwave
infrared–cirrus cloud 1.375 60

MSI Band 11—shortwave infrared 1.610 20

MSI Band 12—shortwave infrared 2.190 20

2.2.2. Landslide Influencing Factors Data

Landslide influencing factors reflect the complex environmental characteristics that
contribute to landslide development from different perspectives. There are hundreds of
factors that can affect landslides, which can be divided into categories such as geomor-
phological, geological, human activity, and environmental conditions. Slope and elevation
can provide potential energy for the occurrence of landslides [24,25]. Considering the
historical cases, areas with high elevations and steep slopes in the study area are more
prone to landslides. Aspect affects the degree of precipitation and solar radiation received
by the region [26], which in turn influences water movement and soil properties, thereby
affecting landslide occurrence. Lithology and rock types have a significant impact on the
type of slope soil, slope structure, and soil shear strength [27]. Distance-based influencing
factors are calculated using Euclidean distance. The distance to faults affects the mechanical
structure of the landslide body, as the discontinuity of the rock and soil mass cut by various
structural surfaces can create conditions for downsliding. The distance to rivers reflects
the effects of surface runoff erosion and soil erosion on landslide evolution [28]. Land
use and road distance reflect human utilization and modification of natural conditions,
and human activities, such as road and railway construction, irrigation, and residential
development, can increase the frequency and possibility of landslide disasters [29]. The
Normalized Difference Vegetation Index (NDVI) is used to evaluate the growth status of
surface vegetation. When the NDVI value is relatively small, it indicates poor vegetation
growth and poor soil stability, which may have a higher landslide risk [30]. Rainfall is an
important triggering factor for landslides, as abundant precipitation can increase the water
content of the surface and subsurface, change the physical properties of the soil, reduce the
soil’s shear strength, and increase soil permeability, thereby exacerbating the occurrence
of landslides [31].

The above landslide influencing factors all contribute to landslides in Lanzhou to
varying degrees. This paper refers to common landslide influencing factors and analyzes
the relationship between the geological environment, development, and distribution char-
acteristics of landslide disasters in the study area of Lanzhou City. A total of 10 influencing
factors were selected, including distance to roads, elevation, distance to faults, distance to
rivers, average annual rainfall, slope, NDVI, aspect, lithology, and land use.

The construction of landslide influencing factors is shown in Figure 2. The detailed
data sources and resolutions of the landslide influencing factors are shown in Table 2.
Considering the size of local landslides and the available data, the spatial resolutions
of 10 m, 30 m, and 50 m were selected. If the selected resolution is too high, it will
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introduce noise and increase data redundancy. Conversely, a low resolution will simplify
the data, leading to a decrease in landslide recognition accuracy. This study uses collinearity
analysis and the random forest algorithm to determine the final landslide influencing factors
for training [32].

Figure 2. Influencing factors for landslides. (a) Influencing factors of elevation. (b) Influencing factors
of slope. (c) Influencing factors of aspect. (d) Influencing factors of lithology. (e) Influencing factors
of distance to faults. (f) Influencing factors of distance to rivers. (g) Influencing factors of land use.
(h) Influencing factors of distance to roads. (i) Influencing factors of NDVI. (j) Influencing factors of
average annual rainfall.
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Table 2. Data Sources of Landslide Influencing Factors.

Data Name Data Source URL Influencing Factor Resolution

SRTM DEM
United States

Geological Survey
http://earthexplorer.usgs.gov

(26 June 2023)

Elevation
30 mSlope

Aspect

Land Use Tsinghua University http://data.ess.tsinghua.edu.cn/
(11 September 2023) Land use 30 m

Rainfall Geospatial Remote Sensing
Ecology Network

http://www.gisrs.cn/
(6 March 2024) Average annual rainfall 50 m

Normalized Difference
Vegetation Index

National Ecological Data
Center Resource
Sharing Platform

http://www.nesdc.org.cn
(18 January 2024) NDVI 10 m

Lithology and Faults United States
Geological Survey

https://www.cgs.gov.cn/
(20 December 2023)

Lithology 1:4,000,000
Distance to faults 30 m

Rivers and Roads Lanzhou Natural
Resources Bureau

http://zrzyj.lanzhou.gov.cn/
(24 October 2023)

Distance to rivers 30 m
Distance to roads 30 m

3. Methods for Landslide Identification
3.1. Semi-Supervised Learning

Semi-supervised learning lies between supervised and unsupervised learning, with
the goal of achieving excellent performance using only a small number of labeled samples.
The basic idea of semi-supervised learning is to use the distribution information of a large
amount of easily accessible unlabeled data for model learning, and use a small amount
of labeled data for auxiliary training, so as to achieve a model with strong generalization
ability and prediction performance [33]. Common semi-supervised learning methods
include self-training algorithms, co-training algorithms, and generative models. A self-
training algorithm is a simple semi-supervised learning method. It trains the initial model
with labeled samples, then predicts unlabeled samples with the model, adds the samples
with high prediction confidence to the labeled samples, and iterates training repeatedly
until the model converges [34,35]. This algorithm is easy to understand but is sensitive
to label noise and errors, and is easily affected by noise and outliers in unlabeled data. A
co-training algorithm uses multiple models to cross-train each other. It divides the feature
space into two non-overlapping subspaces and uses one model to correct the predictions of
the other model. However, it relies on the selection of classifiers and requires consistency
in the distribution of labeled data; otherwise, the learning results may be unstable [36].
Generative models are a class of models that can learn data distributions and generate new
data through distribution features. Due to their data generation capability, they are widely
used in tasks such as sample interpolation, image generation, and text generation [37].
Generative adversarial networks (GANs) have become the most typical generative models
in recent years and have become a focus of many studies [38]. Compared with traditional
generative models, such as probabilistic graph models and variational autoencoders, GANs
do not require an explicit definition of the likelihood function or assumptions about the
distribution. They complete learning solely from the data perspective, demonstrating more
sufficient applicability for semi-supervised learning [39]. Therefore, this study uses a GAN
to implement semi-supervised learning for landslide identification tasks.

3.2. Generative Adversarial Network

The GAN was first proposed by scholar Goodfellow et al. in 2014 [40], drawing
inspiration from game theory’s two-player zero-sum game, where one player’s gain is
equal to the other player’s loss, resulting in an overall zero-sum outcome. Since its inception,
the GAN has been widely applied in fields such as image synthesis, image restoration,
super-resolution, speech conversion, and has gradually become a hot topic in the field of
artificial intelligence [41].

A GAN model generally contains two sub-neural networks, namely the generator (G)
and discriminator (D). The two networks have opposing training targets, thus producing an

http://earthexplorer.usgs.gov
http://data.ess.tsinghua.edu.cn/
http://www.gisrs.cn/
http://www.nesdc.org.cn
https://www.cgs.gov.cn/
http://zrzyj.lanzhou.gov.cn/
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adversarial learning process. The generator can generate new samples from random noise
vectors, while the discriminator is used to determine whether a sample comes from real
samples or fake samples generated by the generator. The two networks continuously opti-
mize their parameters through a feedback mechanism—the generator makes the samples it
generates gradually approach the distribution of real data, while the discriminator aims to
accurately distinguish real data from generated data as much as possible [42]. The model
training ends when the generator can “deceive” the discriminator and the discriminator’s
classification of all data tends to be stable. More specifically, the overall training idea of
a GAN can be expressed in its objective function. Typically, a random noise variable z,
following the standard normal distribution z~N(0,1), is used as the input for G to obtain
pseudo-samples G(z). The inputs for D are the generated samples and the real samples,
and its scalar output is the estimated probability that the input comes from real samples.
The optimization goal of D is to make the output probability as close to 1 as possible for the
inputs of real samples, and as close to 0 as possible for the inputs of generated samples.
The optimization goal of G is to make the true/false judgment probability D(G(z)) of the
generated sample G(z) by D consistent with the true/false judgment probability D(x) of
the real sample x by D. Therefore, the optimization process is an adversarial process of
minimizing G and maximizing D, constructed in the form of:

minGmaxDV(D, G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pnoise(z)[log(1 − D(G(z)))] (1)

where E(*) represents the expected value of the distribution function, Pdata(x) repre-
sents the distribution of real samples, and Pnoise(x) is defined by the low-dimensional
noise distribution.

3.3. Semi-Supervised Generative Adversarial Network Model Construction

Drawing from the concepts of semi-supervised learning and GAN theory discussed
earlier, this paper introduces the development of a semi-supervised generative adver-
sarial network (SSGAN) for the task of landslide recognition in the primary urban area
of Lanzhou City. SSGAN is a semi-supervised extension of the traditional GAN frame-
work, designed to enhance the model’s classification accuracy when there is an insufficient
number of labeled samples. SSGANs have demonstrated remarkable performance on
various datasets in multiple studies since their inception. For instance, Zhou et al. [43]
employed a SSGAN to classify imbalanced samples, achieving an impressive accuracy rate
of up to 97.52%. Miao et al. [44] effectively utilized a SSGAN to compensate for missing
values in multivariate time series data. On the CIFAR-10 dataset, a SSGAN improved
classification accuracy by 1–2% when compared to other semi-supervised learning methods
and traditional GAN approaches. Thus, SSGANs have proven their adaptability across
various semi-supervised classification tasks and exhibits substantial potential for further
development. Notably, there has been no prior research applying a SSGAN to landslide
recognition tasks that also face sample limitations.

The core concept of a SSGAN involves an expansion of the discriminator within a con-
ventional GAN network, transforming an N-class classification problem into
an N + 1 classification problem, with the additional class corresponding to generated
pseudo-images. SSGAN seamlessly integrates both labeled and unlabeled samples as input.
For labeled samples, the discriminator meticulously assesses the probability of belonging
to one of the N predefined categories. In the case of unlabeled samples, the discriminator
evaluates the likelihood of being an actual image from the overall N class. Regarding
samples generated by the generator, the discriminator determines the probability of being
a false image belonging to the N + 1 class. This configuration introduces a secondary
competition between unlabeled samples and generated samples, enhancing the model’s
comprehension of the real sample distribution and resulting in more precise classification
outcomes. Building upon these principles, this paper has constructed an SSGAN model
tailored to the task of landslide recognition within the study area. The specific model
structure is illustrated in Figure 3.
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Figure 3. Semi-Supervised Generative Adversarial Network Structure. The red arrow represents
the input and discriminant result of the real sample, and the green arrow represents the input and
discriminant result of the generated sample. The yellow represents the factor, the red and orange are
the labels. Grey represents random noise data vector and input data vector respectively.

Within the model’s discriminator component, the input data consists of generator-
generated samples, samples that have been labeled as landslides and non-landslides, as
well as unlabeled samples. The structure of the discriminator network adheres to the
foundational feed-forward deep convolutional neural network (CNN) architecture, which
is adept at extracting image features and reducing spatial dimensions. A CNN possesses
robust feature learning capabilities and is widely employed in various domains, including
pattern recognition and image classification [45]. A CNN comprises several key functional
layers, including the convolutional layer, pooling layer, and fully connected layer. Of these,
the convolutional layer is the cornerstone of a CNN network. It aggregates information
through convolutional kernel operations across both spatial and feature dimensions, al-
lowing it to capture feature details in a localized perceptual manner. In the output of the
convolution operation, each point corresponds to a specific portion of the original image,
referred to as the receptive field. During the forward propagation process of a CNN, as
each convolutional layer reduces the size of its feature map, the amount of information
contained in the feature representation gradually increases, accompanied by an expansion
of the receptive field. The values of the convolutional kernel are updated during backprop-
agation, and multiple convolutional kernels are employed in each convolutional layer to
capture diverse texture and edge features. Take the images of n × n × nc as the input, with
n as the side length of the image and nc the number of channels. Fill the image boundary
with 0 elements with the number of p0, and slide in the input image using the convolution
kernel with a size of fk × fk × nc, and the number of n′

c at a step distance of hc. During the
sliding process, the convolution kernel and the corresponding image pixel are multiplied
and then added, and the calculation result is the updated corresponding pixel value. The
operation results of the input image and a convolutional layer are shown in the following
formula, where the upper [l] represents the first neural layer; ⌊.⌋ represents rounding down.

n[l+1] =

⌊
n[l] + 2p0 − fk

hc
+ 1

⌋
×

⌊
n[l] + 2p0 − fk

hc
+ 1

⌋
× n′

c (2)

The pooling layer serves a fundamental purpose in CNN by reducing the size of
the feature map while preserving essential characteristic information, thus diminishing
data redundancy. Following convolution and pooling operations, the CNN extracts these
characteristics to construct a feature map. The incorporation of LeakyReLU activation func-
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tions enhances the model’s nonlinearity, preventing gradient vanishing, and consequently,
improving the model’s generalization capabilities. The batch normalization (BN) layer
plays a crucial role in accelerating network training while enhancing the model’s accuracy
and robustness. The fully connected layer is typically located at the final segment of the
CNN’s hidden layers. It effectively discards the spatial topological relationships within the
feature map, converting it into a series of vector-based features. These features are then
propagated to the output layer through an activation function. In this particular study,
the discriminator ultimately generates three output neurons via the fully connected layer,
corresponding to the three categories: non-landslide (0), landslide (1), and fake.

The input to the generator is composed of random noise adhering to a normal distribu-
tion. This noise undergoes reshaping before being upsampled through transposed convolu-
tion. The feature map produced via transposed convolution is progressively remapped to
the spatial domain of the original input image. This meticulous process guarantees that the
generated image attains a semantic level of interpretation by the discriminator, matching
the pixel-level fidelity of an authentic image. The calculation for determining the output
feature map size resulting from the transposed convolution operation can be expressed
using Formula (3). In this formula, ‘k’ represents the size of the convolution kernel, ‘s’
indicates the stride, and ‘p’ denotes image boundary padding. During this operation, both
LeakyReLU activation and the batch normalization (BN) layer are applied to expedite the
training process and enhance the model’s stability

n[l+1] = ⌊s(i − 1) + 2p − k + 2⌋ × ⌊s(i − 1) + 2p − k − 2⌋ × n′
c (3)

From the perspective of loss function, the model built in this paper mainly uses
two types of losses: binary cross-entropy (BCE) and multi-class cross-entropy (MCE). BCE
is used to measure the gap between the predicted value of the model and the real label in
the binary classification problem, and the calculation is shown in Formula (4), where y is the
real label of the sample (the value is 0 or 1), and ŷ is the output category probability value of
the model. MCE is an extension of BCE, and its calculation is shown in Formula (5), where
N represents the number of classification categories. In the loss function of the model, MCE
is taken to judge the category loss for real samples, and BCE is used to judge the true and
false losses for generated samples and unlabeled samples. The discriminator loss generally
includes three types of losses: labeled sample class loss, unlabeled sample true and false
losses, and generated sample true and false losses. Generator losses include a category of
true and false losses.

LBCE(y, ŷ) = −(ylogŷ + (1 − y)log(1 − ŷ)) (4)

LMCE(y, ŷ)= −∑N
i=1 yilog ŷi (5)

3.4. Verification Method
3.4.1. Landslide Factor Analysis

When studying the regression relationship between landslides and their influencing
factors, it is first necessary to ensure the independence of the factors. When there is a strong
linear relationship between the factors, it becomes difficult to find the true relationship
between a single factor and the occurrence of landslides, leading to large biases or even
opposite results in the model’s prediction, a phenomenon known as multicollinearity
among the factors.

Multicollinearity is usually tested using the variance inflation factor (VIF) and tol-
erance (T) methods to check the collinearity of the influencing factors [46–48], with the
calculation formulas as follows:

VIF =
1

1 − A2 =
1
T

(6)

In the equation, A2 represents the complex correlation coefficient of a specific indepen-
dent variable when a regression analysis is conducted with the other independent variables.
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When this variable exhibits a high degree of correlation with the remaining variables, the
value of A2 approaches 1, resulting in a larger value for VIF (variance inflation factor). If
the VIF exceeds 10 and its reciprocal, tolerance (T), is less than 0.1, it indicates the presence
of multicollinearity.

3.4.2. Precision Analysis

The model must first have the premise of accurate recognition of the sample landslide
to ensure the reliability of the final recognition results. In order to quantitatively evaluate
the results of landslide recognition, this paper uses the commonly used indicators in the
semantic segmentation problem to interpret the results. The confusion matrix is a basic
and widely used approach [49] and it was built as shown in Table 3. When calculating the
confusion matrix, the research uses the test set data for verification. The test set data are
unknown to the trained model, which helps to objectively evaluate the model’s learning of
landslide characteristics. In the test set, landslide samples are treated as positive samples,
and non-landslide samples are treated as negative samples.

Table 3. Confusion Matrix.

Confusion Matrix
Predicted Value

Positive Example (+) Counter Example (−)

True value
Positive example (+) True Positive

TP
False Negative

FN

Counter example (−) False Positive
FP

True Negative
TN

TP, FN, FP, and TN represent the quantity of predicted results of the model divided by
threshold values in four different scenarios. Using these values, the following indicators
can be calculated:

Precision is used to measure the ratio of the correct target to the judged correct target,
that is, the proportion of correct (true label positive) samples in all samples judged positive
by the model. The calculation formula is as follows:

Precision =
TP

TP + FP
(7)

Recall is a metric that quantifies the percentage of correctly identified positive instances
out of all actual positive instances. It essentially measures the ability of a model to capture all
relevant instances in the dataset.

Recall =
TP

TP + FN
(8)

The F1-score represents the weighted harmonic mean of precision and recall, effectively
balancing the influence of both metrics. This measure provides a more holistic view of a
model’s performance by simultaneously considering both the precision (the accuracy of
positive predictions) and the recall (the model’s ability to identify all relevant instances).
A higher F1-score indicates superior performance of the model, showcasing its effectiveness
in accurately and comprehensively identifying positive instances.

F1 − sorce =
2 × R × P

R + P
=

2 × TP
2 × TP + FP + FN

(9)

The Kappa coefficient serves as a measure to validate the agreement between model
predictions and actual outcomes. In the context of classification problems, this agreement
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pertains to the consistency between the results derived from model assessments and the
true classification outcomes.

Kappa =

N
n
∑

i=1
Xii −

n
∑

i=1
(Xi+X+i)

N2 −
n
∑

i=1
(Xi+X+i)

(10)

where n is the sum of the number of rows in the confusion matrix (the total number of
categories); Xii is the number of samples in i row and i column in the confusion matrix,
that is, the number of samples correctly classified; Xi+ and X+i are the total number of
samples in row i and column i, respectively; N is the total number of samples used for
accuracy evaluation. Mean intersection over union (MIoU) is the standard evaluation index
of semantic segmentation networks and is the mean of the sum of the ratios of intersection
and union between the predicted results of each category of the model and the real labels.

MIoU =
TP

FP+TP+FN + TN
FP+TN+FN

2
(11)

4. Accurate Recognition of Landslides Based on Semi-Supervised Generative
Adversarial Network
4.1. Dataset Building

In order to express the environmental characteristics of landslide development and the
optical texture features of landslide occurrence, this paper proposes to construct three kinds
of sample sets representing landslide characteristics, which are the landslide influence factor
sample set, the Sentinel-2A optical remote sensing sample set, and the joint influencing
factor and Sentinel-2A sample set. These three kinds of sample set form a comparative
study for landslide identification and analysis.

For each type of feature sample set, the sample is obtained in the same way. In order
to achieve the purpose of pixel-level discrimination, this paper proposes a sliding cutting
strategy to construct a single sample, and the production process is shown in Figure 4.
The specific methods are as follows: first of all, 10 environmental image factor features,
12 band optical feature datasets, and historical landslide distribution maps are converted
to the same resolution. Sentinel-2A imagery is used as the reference for resampling all
image factors to a 10 m resolution. The selected feature data and the historical landslide
distribution map are combined to create the original dataset, comprising pixel images
with dimensions of 4314 rows and 7210 columns. A 13 × 13 pixel window is used to slide
across the image, covering every pixel in the image. This synchronized sliding window
cutting for image factors, optical images, and historical landslide images ensures that all
features correspond to the original landslide area, creating individual image samples. The
labeled data sample set assigns labels based on the pixel value at the original landslide
center point, with landslide points labeled as 1 and non-landslide points labeled as 0. The
unlabeled sample set is obtained from non-landslide locations to enable the model to learn
the characteristics of the actual environment. Among all the image samples generated
through cutting, 89,160 landslide samples, an equal number of non-landslide samples, and
an equal number of unlabeled data samples, are randomly selected. Finally, the landslide
samples, non-landslide samples, and unlabeled samples form the dataset, which is then
divided into a model training set and a test set in a 7:3 ratio. This ratio is widely adopted in
practice and has been proven to be effective. The training set is used for the model to learn
the characteristics of landslides and train the internal parameters of the model, while the test
set is used to assess the final generalization error of the model and evaluate its robustness.
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Figure 4. Production strategy of sliding cutting sample.

4.2. Understanding and Analysis of Semi-Supervised Generative Adversarial Processes

To compare and analyze the learning performance of different features in the model
and select appropriate learning samples, this paper separately feeds the landslide influenc-
ing factors sample set, Sentinel-2A optical remote sensing sample set, and the joint sample
set combining influencing factors and Sentinel-2A data into the semi-supervised genera-
tive adversarial network (SSGAN). It evaluates the model’s ability to complete landslide
recognition tasks through training with different data inputs. In this comparative study,
all model hyperparameters and the number of iterations are kept constant, ensuring a fair
evaluation. The experiments were conducted in Python using the TensorFlow framework
on a host system equipped with an Intel Xeon Silver 4214 processor and NVIDIA Quadro
P2200 graphics card (NVIDIA, Santa Clara, CA, USA).

Regarding the discriminator, Figure 5 illustrates the loss function curve during the
discriminator’s training process. The study decomposes the total loss of the SSGAN
discriminator, which is designed for N + 1 class classification, into three parts: real sample
classification loss, unlabeled sample true and false loss, and generated sample true and
false loss. This breakdown allows for a more in-depth understanding of the discriminator’s
performance in different functions.

When training with the influencing factor sample set, the true and false loss for
generated and unlabeled samples stabilizes after a small number of iterations, indicating
that the model quickly recognizes true and false samples. However, the overall loss
function remains relatively high. This might be attributed to a high learning rate for the
generator and the relatively simple distribution of influencing factor data, resulting in
rapid convergence for true and false judgments and a continuous decrease in the model’s
classification loss for true labeled samples. After 100 iterations, the loss for true labeled
samples reaches approximately 0.276, indicating improved classification performance.

In contrast, when using optical image datasets, the loss in determining the authenticity
of generated and unlabeled samples fluctuates significantly. Initially, there is a sharp
decrease, followed by a continuous upward trend. This behavior may be due to the high
resolution of optical images, which introduces more image noise and a complex feature
distribution. This complexity can lead to generator instability, making it challenging for the
discriminator to accurately distinguish between samples generated by the generator and
labeled samples. Consequently, the model struggles to correctly interpret environmental
features, resulting in suboptimal classification performance for labeled samples.
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Figure 5. Comparison of Discriminator Training Process. (a) Sample set of landslide impact factors.
(b) Sentinel-2A optical remote sensing sample set. (c) Joint sample set.

For the joint sample set, the model effectively mitigates the issues encountered in
optical image training. The judgment of true and false images remains relatively stable, and
the loss, although still high, stays below 0.6 overall, which falls within an acceptable range
for deep learning model training. Notably, the classification loss for labeled samples is
significantly reduced compared to using only influencing factor features, reaching around
0.221 after 100 iterations. These results indicate that the model’s performance is promising
and will be valuable for landslide classification tasks.

In terms of generators, this paper sets fixed random noise seeds during the training
process to output the generator generated image results after a specific round of itera-
tions. Some of the results are shown in Figure 6. On three types of datasets, the generator
gradually generates results similar to the real data distribution as the number of iterations
increases; however, with slight differences. From a more intuitive point of view, using opti-
cal image datasets to generate results with more noise is consistent with the discriminator
training curve. The overall results of using the joint dataset are clearer and closer to the
real sample.

Based on the performance comparison of SSGAN on three types of datasets in both
the discriminator and the generator, it can be inferred that completing semi-supervised
landslide recognition tasks solely relying on optical images poses challenges. However, the
model demonstrates better performance when combining optical images with image factor
features compared to using only influencing factor features. Therefore, in light of these
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findings, this paper will utilize the training results from the joint sample set for subsequent
landslide recognition tasks, aiming to deliver more accurate and reliable outcomes.

Figure 6. Comparison of generator training results.

5. Results and Discussion
5.1. Characteristic Analysis of Landslide Factors

The results of multicollinearity analysis are depicted in Figure 7. The VIF values for
the ten selected landslide influencing factors in this study fall within the range of 1–3. The
maximum VIF value (2.189) is observed for the distance to rivers, while the minimum value
(1.036) is associated with average annual rainfall. The tolerance values range from 0.4 to 1,
with a maximum value of 0.965 and a minimum of 0.457. These results indicate that all ten
selected influencing factors satisfy the critical value criteria for VIF and Tolerance. This
suggests that they exhibit good independence and do not suffer from collinearity issues.
In summary, the ten influencing factors chosen in this study can be confidently utilized in
subsequent model training and result evaluation, ensuring the data’s validity and accuracy.

Figure 7. Multicollinearity analysis results of landslide influencing factors.
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Upon verifying the suitability of the chosen factors, the study seeks to acquire an initial
insight into the manner in which these factors impact landslides. To this end, the random
forest (RF) algorithm is utilized to prioritize the selected influencing factors according to
their significance in feature importance. RF is a widely used method in the realms of data
mining and feature selection. It reduces model variance by aggregating predictions from
multiple decision trees, demonstrating robustness against outliers and noise, handling
high-dimensional data effectively, analyzing nonlinear, collinear, and interactive data,
and providing variable importance scores during data analysis [50,51]. In this paper, the
importance score of different factors in relation to landslide occurrence is calculated using
the out-of-bag (OOB) error rate method within the RF framework. The results are then
sorted in descending order of importance. The ranked factors are as follows: distance to
roads (0.1716), elevation (0.1664), distance to faults (0.1593), distance to rivers (0.1285),
average annual rainfall (0.1129), slope (0.0888), NDVI (Normalized Difference Vegetation
Index) (0.0584), aspect (0.0500), lithology (0.0455), and land use (0.0189). Notably, distance
to the roads emerges as the most critical factor, underscoring the significant impact of
human engineering activities on landslide occurrence. Elevation and the presence of faults
create conditions conducive to landslides. Meanwhile, rivers and rainfall contribute to
landslides by influencing soil structure, while the other factors exhibit varying degrees
of association with landslide occurrence. It is worth noting that the landslide samples
mentioned in this research are not solely based on their proximity to human activity
areas, but rather obtained through the use of remote sensing interpretation technology
from a broader geographic range. Meanwhile, the purpose of the landslide susceptibility
assessment is to better prevent landslides that may pose a threat to humans. Landslide
samples in remote areas may be relatively fewer, so they have a limited impact on the
main purpose of this research. It is precisely based on this comprehensive data collection
approach and clear research focus that the results of the ranking of the importance of
landslide influencing factors are reasonable.

5.2. Landslide Recognition Results

This paper utilized the trained model to conduct supplementary landslide recogni-
tion in the main urban area of Lanzhou City. To demonstrate the effectiveness of semi-
supervised generative adversarial learning, a comparative study was conducted using
a model that only includes the discriminator part of SSGAN. This comparative model
takes labeled samples as input and outputs two classification results, while keeping other
hyperparameters consistent with SSGAN. After pixel-level recognition, to align with the
actual development of landslides, the generated results were clustered and smoothed. The
landslide recognition results of the two models are depicted in Figure 8a illustrates that
the model without semi-supervised generative adversarial training (GAN) recognized
204 landslides, including constraint recognition results, covering a total area of 10.913 km2.
SSGAN identified 160 landslides in the study area, the minimum landslide area identified
is 68 m2 and the maximum is 0.68 km2, the total area is 10.328 km2, which is 3.139 km2

more than the recognition results of the landslide constraints, as shown in Figure 8b. From
Figure 8, it is evident that more small landslides were identified without the adversarial
learning model. The SSGAN recognition results align closely with the distribution of the
sample landslides, providing more detailed information about the landslide edges, and
even capturing some individual landslides that exceed the original landslide areas. Both
methods identified more landslides than the original sample.
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1 
 

 
Figure 8. Comparison of accurate landslide recognition results in the main urban area of Lanzhou
City: (a) GAN; (b) SSGAN. Pink represents the accurate landslide recognition results by GAN, green
represents the accurate landslide recognition results by SSGAN.

Based on the above accuracy analysis and evaluation indicators, Table 4 presents the
quantitative results for two distinct models, Model a represents the result of the traditional
network generated by adversarial learning without semi-supervision (GAN), and Model b
represents the results obtained by SSGAN used herein:

Table 4. Comparison of landslide recognition and evaluation indicators.

Precision Recall F1 Score Kappa Coefficient MIoU

Model a
(GAN) 0.795 0.961 0.860 0.858 0.887

Model b
(SSGAN) 0.829 0.952 0.879 0.878 0.899

Lanzhou City primarily experiences mixed, mid-level, and small loess landslides, with
the landslide body composed mainly of loess and secondary loess of various origins. These
landslides exhibit spectral and textural characteristics highly similar to the surrounding
environment, posing significant challenges to their accurate identification. The method
proposed in this paper outperforms the model without semi-supervised adversarial learn-
ing across four comprehensive evaluation metrics: precision, F1 score, Kappa coefficient,
and MIoU. However, the latter model achieves a higher recall rate of 96.09%. Recall rate
measures the detection coverage of the detector on all targets to be detected, and the higher
recall rate suggests that the model may be sensitive to data noise, erroneously classifying
other ground features as small landslides. This results in a higher recall rate but lower
accuracy rate. It is worth noting that the evaluation of a deep learning model should
consider several indicators, the synthesis of these indicators furnishes a more holistic ap-
praisal of the model’s performance. Based on the five indicators quantified in this study,
the model proposed in this paper exhibits a better balance and overall performance. When
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provided with a substantial amount of unlabeled environmental features, semi-supervised
generative adversarial learning helps distinguish landslides from non-landslides in images
and reduces the false detection rate of landslides in complex geographical environments.
Consequently, the model presented in this paper emerges as a dependable tool for landslide
extraction, streamlining the creation of an accurate landslide database crucial for landslide
identification. Although the performance improvement of the method in this research is
only slight compared to Model a, its significance should not be overlooked. Particularly
in addressing the challenging problem of landslide sample imbalance, the method in this
research has demonstrated its effectiveness and applicability. This small improvement may
seem negligible, but in real-world applications, every bit of performance enhancement can
lead to more accurately predicted landslide events, thereby helping to reduce potential
disaster risks. More noteworthy is that the method proposed in this research not only
provides substantial contributions to current research, but also opens up new ideas and
directions for future researchers.

6. Conclusions

This paper aims to utilize deep learning methods to actively learn landslide features
and conduct automatic landslide identification in the research area. To overcome the
challenges of insufficient landslide samples and imbalanced samples in traditional deep
learning-based landslide identification, this paper proposes to construct a semi-supervised
generative adversarial network (SSGAN) based on the foundation of convolutional neural
networks (CNNs), in order to complete the landslide identification task.

This paper explores the feature sample sets applicable to landslide identification tasks,
including the landslide influencing factor sample set, Sentinel-2A optical remote sensing
sample set, and the combined sample set of influencing factors and optical features. These
three sample sets are separately input into the SSGAN for training. The results show that
the combined sample set has superior performance in both the discriminator and generator,
so the network trained with this data set is used for further landslide identification tasks.
To demonstrate the outstanding performance of SSGAN in landslide identification tasks,
the identification stage uses a model that has not undergone semi-supervised adversarial
training as a comparison. The proposed method in this study exhibits superior performance
in the evaluation of metrics, indicating the accuracy and reliability of the generated results.
After deep learning-based landslide identification, a total of 160 landslides with a total
area of 10.328 km2 were identified in the research area, which to some extent improves the
landslide identification accuracy. In summary, the semi-supervised generative adversarial
network method is a highly reliable landslide identification approach, which can provide a
reference for landslide hazard identification in the main urban area of Lanzhou and similar
working conditions.

This paper attempts to use SSGAN to identify landslides, and some results have
been achieved. However, due to time constraints, we have not yet implemented more
advanced GAN optimization methods, such as gradient penalty and feature matching
and the landslide recognition results did not clearly distinguish landslides by type. In
follow-up research, we will discuss these optimization techniques in depth in order to
improve the ability to understand the characteristics of landslides, so as to obtain more
accurate landslide recognition results.
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