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Abstract: Amid the escalating complexity of networks, wireless intelligent devices, constrained by
energy and resources, bear the increasing burden of managing various tasks. The decision of whether
to allocate tasks to edge servers or handle them locally on devices now significantly impacts network
performance. This study focuses on optimizing task-offloading decisions to balance network latency and
energy consumption. An advanced learning-based multi-objective bat algorithm, MOBA-CV-SARSA,
tailored to the constraints of wireless devices, presents a promising solution for edge computing task
offloading. Developed in C++, MOBA-CV-SARSA demonstrates significant improvements over NSGA-
RL-CV and QLPSO-CV, enhancing hypervolume and diversity-metric indicators by 0.9%, 15.07%, 4.72%,
and 0.1%, respectively. Remarkably, MOBA-CV-SARSA effectively reduces network energy consumption
within acceptable latency thresholds. Moreover, integrating an automatic switching mechanism enables
MOBA-CV-SARSA to accelerate convergence speed while conserving 150.825 W of energy, resulting in a
substantial 20.24% reduction in overall network energy consumption.

Keywords: edge computing; energy consumption; latency; offloading decision; multi-objective
optimization; reinforcement learning

1. Introduction

As the prevalence of smart devices, the rapid expansion of the Internet of Things
(IoT), and the rise of 5G networks continue, increasingly complex and computationally
demanding applications are becoming deeply integrated into our lives. While device
processing capabilities have improved, there remains a significant gap compared to the
resource demands of applications. To address these demands, data must be transmitted
to the cloud for computation, leveraging its infinite computing power. However, this
approach is constrained by limited bandwidth between devices and the cloud, exacerbated
by the growing data volume due to application complexity, leading to noticeable increases
in transmission latency. Thus, scholars propose deploying edge servers near smart devices
or IoT devices for task computation, known as mobile edge computing (MEC). While MEC
significantly reduces transmission-induced latency, latency between smart devices and
edge servers remains a notable issue. However, executing all tasks locally on devices can
reduce transmission-induced latency but may excessively deplete the limited energy of
wireless devices, leading to device failure. Therefore, effectively allocating tasks to balance
latency and energy consumption has become a crucial research problem [1].

Cui et al. [2] established four models for computing energy consumption and latency
in edge computing task offloading. To strike a balance between energy consumption and
latency, researchers have formalized the problem as a multi-objective optimization challenge,
employing an enhanced non-dominated sorting genetic algorithm (NSGA-II) to obtain the
optimal solution. Bozorgchenani et al. [3] devised a computational sharing system model,
offloading tasks to nearby smart devices or edge servers for computation. They proposed
a multi-objective evolutionary algorithm (MOEA) to achieve the optimal trade-off between
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energy consumption and task processing delay, further optimizing the offloading quantity
with NSGA-II to prolong network lifespan. Gedawy et al. [4] also introduced RAMOS, which
efficiently schedules tasks to edge devices by utilizing idle computing cycles in heterogeneous
mobile IoT devices. The scheduling operates in two modes: latency minimization maximizes
system throughput while adhering to energy constraints, and the energy-saving mode aims to
minimize total energy consumption while meeting task deadlines. Alfakih et al. [5] presented
MOAPSO-DP, employing a non-preemptive priority algorithm, APSO, and dynamic program-
ming to schedule tasks in edge computing to virtual machines on edge servers, significantly
reducing computation time.

In summary, latency and energy consumption are focal points in edge computing.
However, prioritizing latency often leads to increased energy consumption. Many existing
strategies optimize for a single objective and lack careful consideration of multiple goals,
necessitating multi-objective optimization to find the best compromise between latency
and energy consumption.

Xiao et al. [6] proposed an advanced binary particle swarm optimization algorithm
to refine content caching strategies in multi-objective optimization. Additionally, they
employed a multi-objective bat algorithm to optimize task-offloading decisions, aiming for
reduced latency and energy consumption. They integrated weighting to combine multiple
objective functions, transforming the multi-objective problem into a single-objective one
for streamlined optimization. However, this conversion to a single objective via weighting
may result in unequal importance among objectives. In contrast, Mohan et al.’s ENsdBA
method [7] enhanced the bat algorithm by integrating non-dominated sorting and crowding
distance. While retaining all new solutions to prevent algorithm stagnation, this method
might retain suboptimal solutions. The bat algorithm (BA), compared to genetic algorithms
(GA) and particle swarm optimization (PSO), has demonstrated itself as a more contem-
porary, stable, and rapidly converging method [8]. Therefore, this study preserves the
complete bat algorithm process, augmenting it with non-dominated sorting and crowding
distance calculations from NSGA-II, establishing the multi-objective bat algorithm (MOBA)
to provide comprehensive optimization strategies.

In algorithmic frameworks, the selection of hyperparameters profoundly impacts
performance. Discovering suitable hyperparameters necessitates numerous experiments,
which prove time-consuming and intricate and do not assure optimal findings.

This paper addresses the critical role of hyperparameter selection in algorithmic
performance and introduces reinforcement learning to enhance parameter tuning in multi-
objective optimization algorithms. It discusses the integration of NSGA-II and SARSA
into NSGA-RL by Kaur et al. [9] and the use of Q-learning by Liu et al. [10] to refine the
parameters for MOPSO. The comparison highlights the risk differences between Q-learning
and SARSA, emphasizing SARSA’s lower risk and superior learning effectiveness [11].

This paper proposes applying an enhanced-learning-based multi-objective bat algo-
rithm to the task-offloading decision-making process in edge computing, addressing the
trade-off between latency and energy consumption. The distinctive features of this study
can be summarized as follows:

(1) This study optimizes edge computing task-offloading decisions to address network
latency and energy consumption issues, aiming to prolong the lifespan of smart devices.

(2) Retaining the bat algorithm’s (BA) single-objective optimization process, we introduce
multi-objective optimization to create the multi-objective bat algorithm (MOBA). This
approach proposes multiple objective decisions to select candidates from intricate
solution variances, fostering evolutionary progress.

(3) Enhanced-learning SARSA is integrated to automatically adjust the hyperparameters
of the multi-objective bat algorithm, simplifying complex hyperparameter experi-
ments and statistical analyses. Moreover, we introduce an automated mechanism to
adjust the search scope, enhancing overall performance.

(4) Customized multi-objective functions are devised within the edge computing frame-
work, considering intelligent mobile devices’ remaining energy and computational
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capacities. A custom-enhanced learning reward function is also proposed based on
the edge computing objective function.

2. System Architecture and Problem Formulation

In this section, we will present an overview of edge computing architecture. Addi-
tionally, we will define the pertinent functions of local computation and edge computing
separately. Lastly, this paper will introduce MOBA-CV-SARSA, as proposed herein.

2.1. System Architecture

In edge computing, computational resources move closer to smart devices, transition-
ing from the cloud to local proximity, as depicted in Figure 1. Edge servers are strategically
placed at the network periphery. This shift eliminates the need for devices to send data
to the cloud for processing, thereby economizing transmission time and circumventing
bandwidth limitations. The strategic deployment of compact base stations enhances connec-
tivity for myriad smart devices. Although edge computing reduces latency by minimizing
transmission distances, the finite energy of wireless devices and transmission lags between
devices and edge servers necessitate careful consideration. Consequently, this study will
delve into the intricacies of edge computing’s local architecture and extensively analyze
these pertinent issues.
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Figure 1. Edge computing network architecture diagram.

This study adopts the framework proposed in reference [2], which includes mobile
edge computing (MEC) servers and Macro eNodeBs (MeNBs). MeNBs connect to multiple
Small eNodeBs (SeNBs), as illustrated in Figure 2. SeNBs are divided and interconnected
based on the location of Smart Mobile Devices (SMDs), facilitating task transmission. In
this architecture, computational capabilities are exclusive to edge servers and smart devices.
The configuration comprises one edge server, MeNB collectively, M SeNBs, and S SMDs.
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In this architecture, wired connections enable continuous power and data transmission
between Macro eNodeBs and Small eNodeBs, simplifying transmission time and energy
consumption considerations. Wireless links connect Small eNodeBs with smart devices,
which lack continuous power and necessitate attention to residual energy and limited com-



Appl. Sci. 2024, 14, 5088 4 of 21

putational capabilities. Task states remain until offloading decision optimization, allowing
focused latency and energy consumption resolution. The edge computing server gathers
optimization information from smart devices, including task sizes and computational
capabilities. Considerations of network latency and energy consumption ensure balanced
offloading decisions.

The offloading decision for the k-th task from the j-th smart device under the m-th MeNB
is represented as Om,j,k. A task is processed remotely if Om,j,k equals 1; otherwise, if the task
chooses local processing, Om,j,k equals 0. Since a single smart device can generate multiple
tasks, Equation (1) is applied to convert the task count into binary form [2]. This method
converts the number of tasks (ks) from smart device (s), where s ∈ {1, 2, . . ., S}, and S denotes
the total number of smart devices in the system. The bit length is ks. By using the conversion
formula, decimal values are transformed into binary format, enabling the assignment of
offloading decisions to each task independently. This allows the determination of whether
each task should be processed remotely or locally, as depicted in Figure 3.

Bs = 2ks − 1, (1)
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2.2. Problem Formulation

Given the inherent trade-off between energy consumption and latency, this study
delves into the network’s energy consumption and latency dynamics by analyzing task-
offloading strategies. It aims to discern whether individual tasks best suit local or remote
computation. The ensuing discourse will explore the formulas quantifying energy con-
sumption and latency for local and remote computation scenarios. These formulas will be
tailored to the architecture of the j-th smart device within the m-th zone, as depicted in
Figure 4, defining pertinent parameters.
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First, we define the delay time (tlocal
m,j ) and energy consumption (elocal

m,j ) when the j-th
smart device in the m-th zone selects local computation. The delay time is the total com-
putational capacity required by all tasks generated by the device, divided by the device’s
computational capacity (fm,j) [12]. km,j represents the total number of tasks generated by
the device. In contrast, cm,j,k represents the computational capacity required to complete
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the k-th task, namely the CPU cycles needed to complete the task. Equation (2) describes
the required computation delay to the j-th smart device in the m-th zone:

tlocal
m,j =

∑
km,j
k=1(1 − Om,j,k)cm,j,k

fm,j
, (2)

Through the computation of the CPU cycles necessary for processing a 1-bit task
(CPUcm,j,k ) and the data size associated with it (dm,j,k), we can ascertain the total CPU cycles
needed to accomplish the task [12]:

cm,j,k = dm,j,k × CPUcm,j,k , (3)

The energy consumption (elocal
m,j ) incurred by local computation results from the mul-

tiplication of the computational capacity needed for each task (cm,j,k) by its respective
offloading decision (Om,j,k). Subsequently, this value is further multiplied by the energy
consumption coefficient (εm,j) and the square of the smart device’s computational capability
(fm,j) [12].

elocal
m,j = εm,jf2

m,j

(
∑

km,j
k=1(1 − Om,j,k)cm,j,k

)
, (4)

In the upcoming discussion, we will explore the latency and energy consumption
associated with remote computation. When the j-th smart device in the m-th zone engages
in remote computation for the kth task, it is crucial to factor in the energy and time needed
for task transmission from the device to the small base station and, subsequently, from the
small base station to the edge server. Also, this study excludes consideration of the energy
consumption and latency of the returned results, given their relatively small data volume
and minimal impact on the overall network performance.

The forthcoming discussion will outline the transmission time (ttran
m,j ) and energy

consumption (etran
m,j ) associated with smart devices transferring tasks to small base stations.

The transmission time hinges on the aggregate data size for transmission (Dm,j), regardless
of the transmission rate from the smart device back to the small base station (Rm,j) [2].
Within this context, dm,j,k denotes the data size of the kth task generated by the jth smart
device in the mth zone, Om,j,k signifies the offloading decision for that specific task, and
km,j represents the total number of tasks generated by the device.

ttran
m,j =

Dm,j

Rm,j
=

∑
km,j
k=1 Om,j,kdm,j,k

Rm,j
, (5)

In the above equation, the transmission rate (Rm,j) is determined by the Shannon The-
orem, with B indicating the channel bandwidth, pm,j representing the device’s transmission
power, and Gm,j indicating the channel gain. σ2 stands for noise, while Im,j denotes the
interference on this channel. Rm,j is defined by Equation (6).

Rm,j = B log2

(
1 +

pm,jGm,j

σ2 + Im,j

)
, (6)

The channel gain (Gm,j) from the device to the small base station equals the gain (g0)
divided by the square of the distance between the location (xSMD, ySMD) of the smart
mobile device (SMD) and the location of the small base station (SeNB) (xSeNB, ySeNB) plus
the square of the base station’s fixed height (H) [13]. In this context, g0 denotes the channel
gain at a reference distance of 1 m and a transmission power of 1 watt:

Gm,j =
g0
d

=
g0

(xSMD − xSeNB)
2 +

(
ySMD − ySeNB

)2
+ H2

, (7)
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The product of the device’s transmission power (pl,i) and the channel gain (Gm,l,i)
from the connected small base station determines the total devices (Ul,i) in adjacent cells
employing an identical transmission channel to the smart device (Um,j), leading to the
evaluation of channel interference (Im,j). The channel decision (al,i,m,j) depends on whether
devices (Ul,i) in neighboring cells utilize the same transmission channel as the device (Um,j);
a value of 1 signifies channel congruence, whereas 0 denotes disparate channels.

Im,j = ∑M
l=1,l ̸=m ∑Ul

i=1 al,i,m,jpl,iGm,l,i, (8)

We multiply the aggregate data size of transmitted tasks (Dm,j) by the transmission
power (pm,j) of the device and subsequently divide by the transmission rate (Rm,j) from the
device to the small base station [2]. The energy consumption (etran

m,j ) follows the equation

etran
m,j = pm,j

Dm,j

Rm,j
=

pm,j ∑
km,j
k=1 Om,j,kdm,j,k

Rm,j
, (9)

The total computational capacity needed for all remote computing tasks is calculated
by multiplying the computational capacity required for each task (cm,j,k) by the offloading
decision (Om,j,k) and summing the results. Subsequently, this total is divided by the
computational capacity of the edge server (F):

tmec
m,j =

∑
km,j
k=1 Om,j,kcm,j,k

F
, (10)

The total network latency (T) encompasses the duration of local computation (tlocal
m,j )

for all smart device tasks, the transmission time for remote computation (ttran
m,j ), and the task

computation time at the edge server (tmec
m,j ):

T = ∑M
m=1 ∑Um

j=1

(
tlocal
m,j + ttran

m,j + tmec
m,j

)
, (11)

The total energy consumption (E) comprises the energy used for local computation
(elocal

m,j ) and the transmission energy for remote computation (etran
m,j ) of all smart device tasks.

E = ∑M
m=1 ∑Um

j=1

(
elocal

m,j + etran
m,j

)
, (12)

This study considers three constraint violations (CVs): the combined energy of local
computation (tlocal

m,j ) and remote computation transmission (ttran
m,j ) must not exceed the

device’s remaining energy (em,j).

elocal
m,j + etran

m,j > em,j, (13)

Smart devices must possess computational capabilities that surpass the requirements
for local computations.

fm,j > ∑
km,j
k=1(1 − Om,j,k)cm,j,k, (14)

Local tasks have an offloading decision of 0, while remote tasks have a decision of 1:

Om,j,k ∈ {0, 1}, (15)

Integration is performed using Equations (13)–(15). Optimized task-offloading de-
cisions (Om,j,k) are determined to minimize both overall network latency (T) and energy
consumption (E) while adhering to the constraints:

min
Om,j,k

{T, E},
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s.t. CV1: elocal
m,j + etran

m,j > em,j,

CV2: fm,j > ∑
km,j
k=1(1 − Om,j,k)cm,j,k,

CV3: Om,j,k ∈ {0, 1},

2.3. Design of MOBA-CV-SARSA

Incorporating the multi-objective bat algorithm into the adaptive tuning of hyper-
parameters for the SARSA learning algorithm and considering the constraints of edge
computing (CVs), we introduce MOBA-CV-SARSA, depicted in Figure 5, where A, B, and
C are non-dominated solutions in the multi-object optimization; D is a dominated solution.
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This study introduces MOBA-CV-SARSA, aiming to optimize task-offloading decisions
for achieving equilibrium between network latency and energy consumption, as depicted in
Figure 6. It preserves the bat algorithm’s framework while elevating it to a multi-objective
bat algorithm using non-dominated sorting and crowding distance. Additionally, it incor-
porates SARSA with reinforcement learning to autonomously fine-tune the multi-objective
bat algorithm’s hyperparameters and offers multi-objective decision making for thorough
solution comparisons. This decision will evaluate the bat population’s rank first and then the
crowding distance [14] if the bats have the same rank in each iteration. Post-iteration sorting is
conducted based on energy consumption to extend the network’s longevity. Bats with smaller
energy expenditures will be prioritized. This is because this paper hopes to extend the life
of the network and does not want the device to fail prematurely due to insufficient power.
Therefore, this decision is included before outputting the final result. That is, if bats at the
same level have the same crowding distance at the same time, they will be sorted according to
energy consumption in the final optimized population.
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Figure 6. Initialization of bat group.

Initially, Figure 6 delineates the population’s initialization settings [2]. Each row symbol-
izes a bat (Xibats ,Xibats = {x1, x2, . . . , xN}), with N indicating the bat’s dimensionality, equiv-
alent to the overall count of smart devices (S). The total population consists of npop rows,
signifying the aggregate number of bats. Each bat encapsulates task-offloading decisions
across dimensions. The first bat performs local computation for all device tasks, whereas the
second conducts remote computation. Bs reflects the outcome following the conversion of all
functions of the sth device to remote computation, as defined by Equation (1).

In each iteration, the loudness (Ai) and pulse emission rate (ri) of the bats undergo
initial updates. According to Reference [15], optimal performance occurs when the loudness
value (α) and pulse emission rate value (γ) fall within the range of 0.9 to 0.98. This study
conducts a brute force experiment with 8250 trials and statistical analyses to determine the
optimal values for MOBA-CV by combining and examining α and γ. Multiple experiments
are required to obtain suitable α and γ hyperparameters for loudness and pulse emission
rate. Hence, this paper proposes a multi-objective bat algorithm (MOBA-CV-SARSA)
that employs reinforcement learning SARSA to streamline the cumbersome parameter
experimentation process. SARSA treats the α and γ values used for bat updates as actions,
where actions taken under specific states yield corresponding rewards. The subsequent
section will present the customized reward function.

The primary objective of this research is to minimize both the total delay time (13)
(denoted by f1) and energy consumption (14) (denoted by f2). However, SARSA pursues
the maximization of the reward value. To prevent infinite values as the objective function
becomes zero, a small positive value (e1, e2) is inclusively added to each objective func-
tion. Subsequently, these reciprocated values undergo multiplication with corresponding
weights (ω1, ω2). Considering the absence of units, the energy consumption value (f2)
generally exceeds the delay time value (f1) threefold. Hence, the reciprocal value of delay
time ( 1

f1
) will exceptionally be that of energy consumption ( 1

f2
). To uphold equal significance

for both objectives, ω1 is designated as 0.25 and ω2 as 0.75.

reward = ω1
1

f1 + e1
+ω2

1
f2 + e2

, (16)

Reward values (16) enable the utilization of the Q-value update formula to modify
the Q-table within SARSA. The Q-table format employed in this investigation is depicted
in Table 1. Initially, bats exhibiting diverse states are integrated into the Q-table’s state
table. Following this, α and γ are designated as numerous sets of values, initializing all
Q-values within the Q-table to 0. The respective Q-value undergoes an update upon the
bat colony’s state alignment with an entry in the Q-table. With each iteration, new bats
emerge, prompting a comparison between these bats and the states archived in the Q-table.
Should the new state be pre-existing, the associated state table is employed for Q-value (Qi,j)
updates. Conversely, if the new state is absent from the Q-table, the new bat is appended,
and ε-greedy facilitates the initial action selection and Q-value update.



Appl. Sci. 2024, 14, 5088 9 of 21

Table 1. Q-table for MOBA-CV-SARSA.

Q-Table

State
Action

(α1,γ1) (α2,γ2) · · ·
(
αk−1,γk−1

)
(αk,γk)

X1bats = {x1, x2, · · · , xN,} Q1,1 Q1,2 Qi,j Q1,k−1 Q1,k

X2bats = {x1, x2, · · · , xN,} Q2,1 Q2,2 Q1i,j Q2,k−1 Q2,k

...
...

Xnpopbats
= {x1, x2, · · · , xN,} Qnpop,1 Qnpop,2 Qnpop,j Qnpop,k−1 Qnpop,k

When dealing with a multi-objective problem, a singular objective assessment ap-
proach is inadequate. This study presents a specialized method for multi-objective decision
making to evaluate multiple objectives simultaneously. Within this methodology, a compre-
hensive comparison between the new bat (Xinew_bats ) and the optimal bat (X1bats ) is conducted.
The procedural details are elucidated in Algorithm 1, where ‘M’ denotes the total number
of objective functions. In this investigation, M is set at 2, representing overall network
latency and energy consumption. Initially, each objective function undergoes a comparison
between the new bat and the optimal bat. If the new bat demonstrates superior performance
over the optimal bat in the assessed objective function (fj), the count of dominated objective
functions (dnum) increases. When the number of objective functions dominated by the new
bat matches the total count of objective functions, it signifies complete superiority over the
optimal bat, prompting the replacement of the original bat with the new one. In sum, the
pseudo-code of the aforementioned MOBA-CV-SARS is shown in Algorithm 1.

Algorithm 1: Pseudo-code of MOBA-CV-SARSA algorithm.

1: Initial bats’ solutions/locations
Xibats = (x1, x2, . . . , xN), velocities (v i), frequencies (f i), loudness (A i), pulse rates (r i

)
;

2: i =
{

1, 2, . . . , npop
(
number of bat′s population

)}
, N is dimension of Xibats , rand ∈ [0, 1]

3: Calculate the multi-objective functions value f = (f1, f2, . . . , fM) for Xibats , M is number of
multi-objective functions
4: Process non-dominated sorting (based on ranking and crowding distance) for Xibats

5: for t = 1 to T (number of iterations)
6: Update A_iˆ(t + 1) and r_iˆ(t + 1) with SARSA
7: for i = 1 to npop
8: Select the best solution/location (X1bats )
9: Adjust frequencies (f i) and update velocities (v i), and generate solutions/locations
(Xinew_bats )
10: if rand > pulse rate (r i) then
11: Generate a local solution/location around the local best solution/location
12: end
13: Calculate the multi-objective functions value f = (f1, f2, . . . , fM) for Xinew_bats

14: if rand < loudness (Ai) then
15: Process multi-objective decision to decide whether Xinew_bats replaces Xibats

16: end
17: end
18: Concatenate Xibats and Xinew_bats

19: Process non-dominated sorting of Xibats and Xinew_bats

20: Select bats’ solutions/locations (Xibats ) for next iteration
21: end
22: if bats’ solutions/locations (Xibats ) have the same rank and crowding distance then
23: Sort in ascending order according to energy consumption
24: end
25: Display the final results
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The proposed SARSA reinforcement learning algorithm optimizes hyperparameters
α and γ in a range between 0 and 1. However, to accelerate the convergence, we firstly
find the optimal α∗ and γ∗ obtained from MOBA-CV-SARSA with a broad search step.
Then, we refine the best solutions using Formulas (17) and (18), creating narrower search
intervals with finer steps.

α range (narrow search) = [⌊α∗⌋, ⌊α∗⌋+0.1], (17)

γ range (narrow search) = [⌊γ∗⌋, ⌊γ∗⌋+0.1], (18)

Once the identified α∗ and γ∗ values converge to the specific values which are most
frequently found, the search range for α and γ values contracts, triggering automatic switch-
ing, as depicted in Figure 7. By executing a fresh search and update within this narrowed
range, the method not only hastens convergence but also determines more precise α and γ

values. It balances network latency and energy consumption by optimizing task-offloading
decisions. This research employs a multi-objective bat algorithm to negotiate solutions in
multi-objective functions. It employs SARSA reinforcement learning to adjust hyperparam-
eters dynamically, eliminating the necessity for intricate hyperparameter experiments. The
enhanced MOBA-CV-SARSA-DA can accurately identify suitable parameter ranges.
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3. Experimental Results and Analysis

The forthcoming analysis will examine the outcomes derived from utilizing the multi-
objective bat algorithm with SARSA reinforcement learning (MOBA-CV-SARSA) as pre-
sented in this study. Assessment and scrutiny of the conclusive Pareto solution sets
produced by individual methodologies are carried out in this section.
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3.1. Experimental Procedure

This study conducts comparative experiments on three sets of Pareto solutions. In the
initial experiment, edge computing constraints (CV) are integrated into the multi-objective
bat algorithm (MOBA) alongside NSGA-II [2] and MOPSO [16]. The second experiment
introduces an enhanced-learning method for hyperparameter adjustment alongside con-
straints. The efficacy of the proposed MOBA-CV-SARSA is compared with NSGA-RL [9]
and QLPSO [10] under the same initial conditions.

The proposed method is implemented by using C++ 23 software, and the resulting
offloading decisions are validated by utilizing ns-3, employing a 5G millimeter-wave
(mmWave) network architecture [17].

3.2. Evaluation Metrics

In order to conduct a detailed evaluation of the pareto optimal solution set found by each
comparative method, the hypervolume index [18] is used to measure the dominance space of
the solution, and the diversity metric [19,20] is used to evaluate the diversity of solutions.

3.2.1. Hypervolume

The main objective is to measure the extent of the solution set’s dominance over the
target space. A higher hypervolume value for the solution set suggests broader dominance
within the target space, indicating a superior distribution. Computing the hypervolume
entails establishing a reference point (r). The values of this reference point must surpass those
of all solutions across each dimension in the non-dominated solution set under evaluation.
Once established, the area between all solutions and the reference point can be determined, as
depicted in Figure 8, where A–C are non-dominated solutions. In this research, the reference
point (r) is defined as (200, 700), denoting that the delay time and energy consumption of all
solutions derived from the methods are below 200 s and 700 W, respectively. Consequently,
the area between each solution set and the reference point is computed.
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3.2.2. Diversity Metric

The diversity metric evaluates the equality of the distribution within the solution set.
Initially, boundary solutions are recognized in multi-objective functions. Then, the Euclidean
distance between each solution and its neighboring solutions is calculated, yielding a set
of distance values (di). Average (d) and difference (di − d) values are derived from this set.
Lastly, Equation (19) is utilized to compute the diversity index of the solution set.

diversity metric =
df + dl + ∑N−1

i=1

∣∣∣di − d
∣∣∣

df + dl + (N − 1)d
, (19)
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3.2.3. The Number of Retained Non-Dominated Solutions

This study utilizes non-dominated sorting [14] to assess the Pareto solution sets
generated by different methods. The process is delineated in Figure 9. All Pareto solution
sets from each technique are initially collected, and non-dominated solutions are preserved.
Subsequently, the non-dominated solutions across all methods are amalgamated, uniquely
identifying each method’s solutions. Then, all solutions undergo non-dominated sorting.
After sorting, each solution receives a rank, and those not at rank 1 are removed, leaving
only dominant solutions. Finally, the quantity of retained non-dominated solutions per
method is determined based on their assigned numbers.
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3.3. Experimental Parameters

Tables 2 and 3 below illustrate the pertinent parameters for edge computing, the
multi-objective bat algorithm (MOBA), and reinforcement learning (SARSA).

Table 2. Configuring parameters for the MOBA.

Parameters Value

Total number of SeNBs in the system, M 5

Total number of SMDs in the system, S 98

Transmission power of SMD (Um,j), pm,j {4, 5, 6} W

Power consumption coefficient of SMD (Um,j), εm,j 10−28

SMD’s remaining energy, em,j 90,000 J

Computation capability of MEC server, F 30 GHz

Computation capability of SMD (Um,j), fm,j [0.5, 1] GHz

Data size of task τm,j,k, dm,j,k [500, 1000] K bits

Number of CPU cycles required to perform a bit of the task,
CPUcm,j,k

500 CPU cycles/bit

Bandwidth, B 20 MHz

Number of channels 10

The fixed altitude of base station, H 10 (m)

Noise power, σ2 −100 (dBm)
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Table 2. Cont.

Parameters Value

Channel power gain at a reference distance of 1 m and a
transmitting power of 1 W, g0

0.1

Population size, npop 100

Dimension of bat, N 98

Loudness, Ai [0, 1]

Pulse rate, ri [0, 1]

Initial pulse rate, r0 0.6

fmin 0

fmax 2

Iterations 100

Table 3. Configuring parameters for the SARSA.

Parameters Value

lr, learning rate 0.3

df, decay factor 0.9

ε of ε-greedy [0, 1]

∆ε of ε-greedy 0.04

ω1 of reward 0.25

ω2 of reward 0.75

3.4. Experimental Results

Each method undergoes 30 experiments, after which the resulting Pareto solution sets are
assessed. Then, the simulations of the obtained offloading policies are performed using ns-3.

3.4.1. Edge Computing Constraints

In Table 4, MOBA-CV without reinforcement learning, while considering constraints,
enhanced the hypervolume indicator by 4.68% and 1.54% compared to NSGA-II-CV and
MOPSO-CV, respectively, across 30 experiments. Despite MOBA-CV displaying a higher
standard deviation than the other methods, it outperformed NSGA-II-CV even in the worst
experiment, achieving a hypervolume value of 10,599.12. Thus, despite more significant
variability, MOBA-CV remains the most effective among the three methods. Further-
more, in Table 5, MOBA-CV showed a 2.72% improvement over NSGA-II-CV and a 1.05%
improvement over MOPSO-CV regarding the diversity indicator.

Table 4. Comparative analysis of hypervolume without reinforcement learning.

Method
Hypervolume

Average Percentage Standard Deviation

MOBA-CV 10,967.27 X 190.33

NSGA-II-CV 10,453.76 4.68% 97.8

MOPSO-CV 10,798.6 1.54% 118.57

In comparing non-dominated sorting over 30 iterations, none of the methods yielded
a “retained non-dominated solution count equals 0”, indicating each method’s successful
discovery of non-dominated solutions. MOBA-CV consistently retained the highest number of
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non-dominated solutions, as evidenced by the “retained non-dominated solution count equals
the most” in each comparison, underscoring its superior performance, as depicted in Table 6.

Table 5. Comparative analysis of diversity metric without reinforcement learning.

Method
Diversity Metric

Average Percentage Standard Deviation

MOBA-CV 0.2098 X 0.0029

NSGA-II-CV 0.2155 2.72% 0.0025

MOPSO-CV 0.212 1.05% 0.0029

Table 6. Comparative analysis of non-dominated solutions.

Method
Times

Number of Non-Dominated
Solutions Is Zero

Number of Non-Dominated
Solutions Is Maximum

MOBA-CV 0 30

NSGA-II-CV 0 0

MOPSO-CV 0 0

Table 7 displays the outcomes of the optimal solutions identified by three methods
concerning total network energy consumption and latency. Latency and energy consumption
represent conflicting objectives; however, when latency is constrained within acceptable
limits, MOBA-CV achieves reductions of 77.543 W and 34.722 W in energy consumption
compared to NSGA-II-CV and MOPSO-CV, respectively. These results unmistakably indicate
MOBA-CV’s capability to attain a more harmonized solution amidst such trade-off dilemmas.
Additionally, Table 8 outlines the mean computation time for each approach. MOBA-CV
exhibits computations of 3.562 s and 642.416 s, making it swifter than NSGA-II-CV and
MOPSO-CV, respectively. Given the context of edge computing, shorter computation time
aligns better with optimizing task-offloading determinations in this domain. In Figure 10, we
can clearly observe the comparison results after non-dominated sorting. MOBA-CV retains
41 non-dominated solutions, and NSGA-II-CV and MOPSO-CV have 9 and 24 solutions,
respectively. Obviously, MOBA-CV not only obtains the largest number of non-dominated
solutions, but more importantly, these solutions achieve a balance between delay time and
energy consumption. These solutions are mainly concentrated in the center of the graph. In
comparison, the solutions obtained by other comparison methods are mainly concentrated in
the upper left and lower right corners. This means that although these solutions optimize one
objective, they sacrifice performance for another objective.

Table 7. Latency time and energy consumption.

Method
Latency Time (s) Energy Consumption (W)

Value Difference Value Difference

MOBA-CV 147.1 2.81 594 X

NSGA-II-CV 144.3 X 671.5 77.54

MOPSO-CV 145.5 1.2 628.7 34.72

Table 8. Comparative analysis of average execution time without reinforcement learning.

Method Average Execution Time (s)

MOBA-CV 7.373

NSGA-II-CV 10.935

MOPSO-CV 649.789
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3.4.2. Constraints in Edge Computing and the Application of Reinforcement Learning

In Table 9, MOBA-CV-SARSA shows a 0.9% improvement in the hypervolume indi-
cator compared to NSGA-RL-CV. In contrast, its improvement over QLPSO-CV reaches
15.07%. In 30 comparative experiments, MOBA-CV-SARSA exhibits a slightly higher
standard deviation than NSGA-RL-CV. Although MOBA-CV-SARSA’s worst performance
yields a hypervolume value of 10,771.17, somewhat lower than NSGA-RL-CV’s average, it
still outperforms QLPSO-CV. In Table 10, MOBA-CV-SARSA’s diversity indicator surpasses
NSGA-RL-CV by 4.72% and QLPSO-CV by 0.1%. In Table 11, both MOBA-CV-SARSA
and NSGA-RL-CV never have zero retained non-dominated solutions in 30 comparisons.
QLPSO-CV has this issue seven times, indicating SARSA’s superiority over Q-learning.
Under the “most retained non-dominated solutions” scenario, MOBA-CV-SARSA consis-
tently preserves the most solutions, thus achieving the best overall performance. Table 12
illustrates the average computation time for each method. Notably, MOBA-CV-SARSA
computes 64.338 s faster than NSGA-RL-CV and 200.524 s faster than QLPSO-CV.

Table 9. Comparative analysis of hypervolume with reinforcement learning.

Method
Hypervolume

Average Percentage Standard Deviation

MOBA-CV-SARSA 11,008.45 X 143.85

NSGA-RL-CV 10,909.92 0.9% 51.51

QLPSO-CV 9348.99 15.07% 138.77

Table 10. Comparative analysis of diversity metric.

Method
Diversity Metric

Average Percentage Standard Deviation

MOBA-CV-SARSA 0.2098 X 0.0092

NSGA-RL-CV 0.2197 4.72% 0.0016

QLPSO-CV 0.21 0.1% 0.0027
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Table 11. Comparative analysis of 0 and MAX with reinforcement learning.

Method
Diversity Metric

Average Percentage Standard Deviation

MOBA-CV-SARSA 0.2098 X 0.0092

NSGA-RL-CV 0.2197 4.72% 0.0016

QLPSO-CV 0.21 0.1% 0.0027

Table 12. Comparative analysis of average execution time with reinforcement learning.

Method Average Execution Time (s)

MOBA-CV-SARSA 61.018

NSGA-RL-CV 125.356

QLPSO-CV 261.542

3.4.3. Dynamic Range Adjustment

In this section, we explore the impact of dynamic tuning and its outperformance.
Initially, MOBA-CV is introduced, focusing solely on constraint conditions. The opti-
mal α and γ values for this approach are determined through 8250 iterations of hyper-
parameter experiments, complemented by the optimal range values as referenced by
Yang et al. [15]. Subsequently, we introduce MOBA-CV-SARSA with a fixed range, utilizing
a predefined search range, and MOBA-CV-SARSA-MA, which employs manual adjustment
for a narrower search scope. Lastly, MOBA-CV-SARSA-DA dynamically adjusts the param-
eter ranges, incorporating an automatic switching mechanism. Table 13 presents various
methods and their respective parameter configurations for the comparative experiment.

Table 13. Configuring parameters for the MOBA with dynamic range adjustment.

Method Parameters

MOBA-CV
α: 0.03, γ: 0.93 (8250 runs of hyperparameter experiment)

α: 0.9, γ: 0.9 (reference [15])

MOBA-CV-SARSA with fixed range α: [0, 1], γ: [0, 1]
α, γ difference is 0.01

MOBA-CV-SARSA-MA α: [⌊α∗ ⌋, ⌊α∗ ⌋ + 0.1], γ∗: [⌊γ∗ ⌋, ⌊γ∗ ⌋ + 0.1]
α, γ difference is 0.006

MOBA-CV-SARSA-DA

broad search

α: [0, 1], γ: [0, 1]
α, γ difference is 0.01

narrow search

α: [⌊α∗ ⌋, ⌊α∗ ⌋ + 0.1]
γ: [⌊γ∗ ⌋, ⌊γ∗ ⌋ + 0.1]
α, γ difference is 0.006

The hypervolume indicator in Table 14 illustrates that under the sole consideration of
edge computing constraints, MOBA-CV achieves superior performance when optimized
with α and γ values derived from experimental design, surpassing the performance of
the MOBA-CV referenced in [15]. Furthermore, as in MOBA-CV-SARSA, augmenting
MOBA-CV with reinforcement learning enhances its performance compared to MOBA-
CV without such augmentation. Notably, MOBA-CV-SARSA-MA, which utilizes optimal
solutions α∗ and γ∗ obtained from 100 searches of MOBA-CV-SARSA with a fixed range,
exhibits a 0.11% improvement over MOBA-CV-SARSA with a fixed range. Since MOBA-
CV-SARSA-MA leverages the search outcomes of MOBA-CV-SARSA with a fixed range,
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this study integrates both approaches. It introduces an automatic switching mechanism in
MOBA-CV-SARSA-DA.

Table 14. Comparative analysis of hypervolume with dynamic range adjustment.

Method
Hypervolume

Average Percentage Standard Deviation

The total number of iterations is 100 times.

MOBA-CV
the best α, γ 10,967.27 0.58% 190.33

reference [15] 10,950.75 0.73% 195.63

MOBA-CV-SARSA with fixed range 11,008.45 0.20% 143.85

The total number of iterations is 200 times.

MOBA-CV-SARSA-MA 11,020.47 0.1% 134.63

MOBA-CV-SARSA-DA 11,031.05 X 214.02

The total number of iterations is less than 200 times.

MOBA-CV-SARSA-DA 11,023.87 0.07% 216.49

MOBA-CV-SARSA-DA employs two distinct strategies: (1) a total of 200 iterations for
both fixed-range and small-range searches, and (2) 100 iterations for fixed-range searches
combined with the same for small-range searches, resulting in a total of fewer than
200 iterations. Our analysis of the results reveals that when the total iteration count
reaches 200, MOBA-CV-SARSA-DA exhibits a 0.095% enhancement in the hypervolume
indicator compared to MOBA-CV-SARSA-MA. Moreover, MOBA-CV-SARSA-DA achieves
performance akin to MOBA-CV-SARSA-MA without necessitating the completion of
200 iterations. In Table 15, MOBA-CV-SARSA with a fixed range showcases the most
favorable diversity metric. Its broader search range provides increased flexibility in adjust-
ing solutions, facilitating the exploration of a more comprehensive array of solutions.

Table 15. Comparative analysis of diversity metric.

Method
Diversity Metric

Average Percentage Standard Deviation

The total number of iterations is 100 times.

MOBA-CV
the best α, γ 0.2098 0.43% 0.0029

reference [15] 0.2101 0.57% 0.0023

MOBA-CV-SARSA with fixed range 0.2089 X 0.0092

The total number of iterations is 200 times.

MOBA-CV-SARSA-MA 0.2101 0.72% 0.0030

MOBA-CV-SARSA-DA 0.2095 0.29% 0.0101

The total number of iterations is less than 200 times.

MOBA-CV-SARSA-DA 0.2094 0.24% 0.0101

In Figures 11 and 12, we analyze the convergence curves of MOBA-CV-SARSA-DA and
MOBA-CV-SARSA-MA, comparing their performance using various indicators. Regarding
hypervolume, MOBA-CV-SARSA-DA not only achieves a faster convergence rate than
MOBA-CV-SARSA-MA, thanks to its switching mechanism, but also displays superior
overall performance. Both methods demonstrate substantial solution diversity in the
early iterations when considering the diversity metric. Table 16 illustrates the results of
MOBA-CV derived from α, γ hyperparameter experiments, and MOBA-CV-SARSA with
fixed range using reinforcement learning, both surpassing the MOBA-CV proposed by
Yang et al. [15] based on optimal intervals of α and γ. In Table 17, both methods successfully
identify non-dominated solutions across 30 experiments. Notably, MOBA-CV-SARSA-DA
consistently maintains a higher count of non-dominated solutions.
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Table 16. Comparative analysis of 0 and MAX with dynamic range adjustment.

Method
Times

Number of Non-Dominated
Solutions Is Zero

Number of Non-Dominated
Solutions Is Maximum

The total number of iterations is 100 times.

MOBA-CV
the best α, γ 0 12

reference [15] 1 6

MOBA-CV-SARSA with fixed range 0 12

Table 17. Comparative analysis of 0 and MAX.

Method
Times

Number of Non-Dominated
Solutions Is Zero

Number of Non-Dominated
Solutions Is Maximum

The total number of iterations is 200 times.

MOBA-CV-SARSA-MA 0 13

MOBA-CV-SARSA-DA 0 17

In Table 18, despite MOBA-CV-ref exhibiting shorter latency than MOBA-CV-SARSA
with a fixed range based on the reference settings, it consumes 195.314 W and 119.048 W
more energy than the MOBA-CV derived from hyperparameter experiments. This vividly
illustrates the performance enhancement achieved through reinforcement learning.
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Table 18. Comparative analysis of latency and consumption with/without reinforcement learning.

Method
Latency Time (s) Energy Consumption (W)

Value Difference Value Difference

MOBA-CV with the best α, γ 150.8 6.525 552.4 76.236

MOBA-CV with reference [15] 144.3 X 671.5 195.314

MOBA-CV-SARSA with fixed range 151 6.7 476.2 X

Table 19 showcases that when the delay remains within an acceptable range, MOBA-
CV-SARSA-DA reduces energy consumption by 102.542 W compared to MOBA-CV-SARSA-
MA. This underscores the advantages of employing an automatic switching mechanism for
dynamically adjusting the search scope, validating its capacity to discover more balanced
solutions between the two objectives. Table 20 presents the average computational time
for each method. MOBA-CV-SARSA-MA requires extended computation time based on
the outcomes of MOBA-CV-SARSA with a fixed range. Conversely, MOBA-CV-SARSA-
DA, integrating an automatic switching mechanism for dynamic range adjustment, saves
48.613 s compared to MOBA-CV-SARSA-MA while maintaining comparable performance.
This underscores the efficacy and efficiency of incorporating an automatic switching mech-
anism for dynamic range adjustment in optimization problems.

Table 19. Comparative analysis of latency and consumption with/without dynamic adjustment.

Method
Latency Time (s) Energy Consumption (W)

Value Difference Value Difference

MOBA-CV-SARSA-MA 144.3 X 671.5 102.542

MOBA-CV-SARSA-DA 148.4 4.066 569 X

Table 20. Comparative analysis of average execution time for different tuning mechanisms.

Method Average Execution Time (s)

The total number of iterations is 100 times.

MOBA-CV
the best α, γ 7.373

reference [15] 7.317

MOBA-CV-SARSA with fixed range 61.018

The total number of iterations is 200 times.

MOBA-CV-SARSA-MA 181.881

MOBA-CV-SARSA-DA 180.434

The total number of iterations is less than 200 times.

MOBA-CV-SARSA-DA 131.821

4. Conclusions

This study introduces an advanced learning approach, the multi-objective bat al-
gorithm with reinforcement learning (MOBA-CV-SARSA), designed to optimize task-
offloading decisions in edge computing. This optimization achieves a harmonious balance
between network latency and energy consumption. By adhering to edge computing con-
straints and employing a tailored multi-objective function, task-offloading decisions for
all devices can be concurrently determined. Compared to NSGA-RL-CV and QLPSO-
CV, which integrate enhanced learning and share similar constraints, MOBA-CV-SARSA
exhibits enhancements of 0.9% and 15.07% in hypervolume and 4.72% and 0.1% in the di-
versity metric. Additionally, it notably diminishes network energy usage within acceptable
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latency limits. Leveraging enhanced learning for fine-tuning hyperparameters aids the
MOBA in discovering optimal solutions. MOBA-CV-SARSA-DA outperforms its counter-
parts at the exact iteration count, validating the efficacy of dynamic adjustment ranges.
Ultimately, the enhanced-learning-driven MOBA streamlines complex hyperparameter
experiments and identifies the best trade-off solutions under set constraints.
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