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Abstract: In this paper, a layered method based on focal depth is proposed for the fast generation of
computational holograms. The method layers objects with focal depth as spacing and approximates
triangles on the object as projections on the layers based on the physical properties of the focal depth to
simplify the computation. Finally, the diffraction distributions of all layers are calculated via angular
spectral diffraction and superimposed to obtain the hologram. The proposed method has been
proven to be about 20 times faster on a CPU than the analytical polygon-based method. A hologram
containing tens of thousands of triangles can be computed on a GPU in a fraction of a second. In
addition, this method makes it easy to attach complex textures, which is difficult with polygon-based
analysis methods. Finally, holograms of objects with complex textures were generated, and the
three-dimensionality of these holograms was confirmed by numerical and optical reconstruction.

Keywords: computer-generated hologram; holographic 3D display; depth of focus; polygon-based method;
layer-based method

1. Introduction

Holographic display technology is widely considered to be the most promising three-
dimensional (3D) display technology since it can completely reconstruct the light field of
a three-dimensional scene [1–8]. A computer-generated hologram (CGH) simulates the
physical interference process of holography for numerically represented 3D objects [9–12],
and it plays an important role in holographic display technology because these objects can
be conveniently generated by computers and can be used to reconstruct virtual objects.
According to the sampling method used for the numerical representation of 3D objects, the
methods for generating CGH can be divided into point-based methods, polygon-based
methods, and layer-based methods.

The point source method is the most widely used because of its simple and intuitive
principle. However, to ensure image quality, the number of discrete points in three-
dimensional objects is usually millions of orders of magnitude, which leads to too long
of a computation time for generating holograms. To solve this problem, many algorithms
have been proposed to simplify the process and reduce calculation time [13–21]. However,
the large number of samples is still an important factor slowing down the calculation
speed. The polygon-based method treats three-dimensional objects as a collection of
polygons [22,23], which can reduce the number of samples by two to three orders of
magnitude compared to the point source method. Due to this method of discretizing
objects into polygons, rendering information such as lighting, shadows, and textures in
computer graphics can be utilized to enhance the rendering of the scene [24]. For many
years, scholars have been dedicated to the research of polygon-based methods, proposing
many advanced and efficient methods [25–31]. The layer-based method performs layer
sampling on 3D objects [32–35], and compared to point source and panel methods, it has the
least number of samples. When the number of layers is fixed, the computational complexity
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of layer-based methods is not affected by the scene’s complexity, while point-based and
polygon-based methods do not have this advantage. Layer-based methods consume less
memory and compute faster, thus having great potential in real-time holographic 3D
displays. At present, these methods have achieved good results in computational efficiency
and imaging quality after years of development and iteration. For example, a convolutional
symmetric compressed look-up table (CSC-LUT) [36] method proposed by Wei et al. can
achieve real-time (>24 fps) color holographic display corresponding to three perspectives
of a 3D scene. The WRP-like method [37] proposed by Wang et al. can compute holograms
with tens of thousands of triangles in seconds, even with a CPU. Liu et al. proposed a
dual-channel parallel neural network (DCPNet) [38] that can generate 2 k phase holograms
with high fidelity in 36 ms.

In this paper, a new approach is proposed based on the study of focal depth. This
method utilizes the property wherein the diffraction of a point source in the focal depth
range can be approximated as its projection. The triangles on the object are layered at inter-
vals of the focal depth, and their projections on the layers are considered their diffractions
onto the layers. After layering and projecting all the triangles on the object, the object is
approximated as a set of planar light sources with focal depth spacing, which are parallel
to the holographic plane. Therefore, the diffracted field of an object in the hologram plane
is approximated as a superposition of the diffracted fields of these parallel planes. The
diffracted field is calculated using angular spectrum theory, and this calculation is acceler-
ated by the fast Fourier transform (FFT). The proposed method projects the tilted triangles
onto the layers without considering the diffraction calculation of the tilted triangles, so the
calculation speed is greatly improved. This paper compares the computational efficiency
of the proposed method with a polygon-based analytical method and demonstrates a
computational speed increase of about 20 times on a CPU. In addition, the polygon-based
parsing method makes it difficult to generate holograms with complex textures because
it relies on the analytic form of the spectrum, and many scholars have researched this
challenge [39]. In contrast, the proposed method is based on FFT and can easily generate
holograms with complex textures. In this paper, holograms with complex textures are
generated using the UV mapping method, and the effectiveness and three-dimensional
sense of the holograms are proved by numerical and optical reconstruction.

2. The Layered Method Based on the Depth of Focus
2.1. Method

In [40], it has been theoretically demonstrated that the focal depth characteristics of an
LCOS imaging system exhibit the property where, within the depth of field, the diffracted
light field of a point source can be approximated as a direct projection of the point source,
and an expression for calculating the depth of focus has been derived:

dh =
2λd2

(N∆)2 , (1)

where dh represents the depth of focus, λ stands for the wavelength of light, d denotes the
distance from the object to the hologram plane, N signifies the number of samples taken
across the hologram, and ∆ represents the sampling interval. In this paper, this theory
is used to approximate and simplify the algorithm for generating holograms of objects
composed of polygons.

Suppose two mutually parallel planes exist, L1 and L2, with the distance between
them equal to the depth of focus dh. Within the space between these parallel planes lies a
triangle labeled ABC, as shown in Figure 1. Since the size of the triangle lies within the
range determined by planes L1 and L2, any point on the triangle has a distance to plane L1
that is less than the depth of focus dh. According to the physical properties of the depth of
focus mentioned above, the diffraction of the light wave from the point source P on the
triangle ABC onto the plane L1 can be approximated as the projection of the point P onto
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the plane L1. In this way, after projecting all points on the triangle, a projection triangle
A′B′C′ can be obtained on the plane L1, and this projected triangle can be considered as
the diffraction distribution of the triangle ABC on the plane L1.
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Figure 1. Approximating the diffraction of a triangle as its projection in the depth-of-focus range.

We noticed that the depth of a triangle is not always less than the depth of focus, and
it may also be greater than the depth of focus (the depth of a triangle is the length of the
triangle along the direction of light wave spreading). In this case, we need to split the
triangle into polygons with depths not exceeding the focal depth and then project these
polygons onto the nearest layer, as shown in Figure 2. After the projection is complete, a
tilted triangle light source can be transformed into a set of plane light sources that are planar
to the hologram plane. The diffraction distribution of this set of planes in the hologram
plane can be calculated by angular spectrum theory. The angular spectrum method is a
common method for calculating the diffraction of light waves between two parallel planes,
which can be expressed by the equation

UH = F−1
{

F{Uo}exp
[

j
2π
λ

d
√

1 − (λ fx)
2 −

(
λ fy
)2
]}

, (2)

where, UH represents the optical field on the hologram plane, Uo signifies the optical field
on the object plane. j denotes the imaginary unit, λ is the wavelength of light, d indicates the
propagation distance, and fx and fy denote the coordinates in the frequency domain. Here,
F{} and F−1{} represent the Fourier transform and its inverse, respectively. Therefore,
as shown in Figure 3, each layer is parallel to the hologram plane, so the propagation of
the light wave from each layer to the hologram plane can be calculated using the angular
spectrum method. Finally, the light waves from these layers in the hologram plane are
summed to obtain the object diffraction distribution UH .
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Figure 3. Schematic of the angular spectrum method for calculating the propagation of each layer to
the holographic plane.

2.2. Verification

In order to verify the feasibility of the layered projection method based on depth of
focus, the diffraction distributions of random triangles computed by this method and the
analytical polygon-based method [41] are compared. The analytical polygon-based method
calculates the diffracted field of tilted triangles through 3D affine transformations and the
analytical form of the spectrum, and there is no approximation and interpolation in the
calculation process, so the calculation results of this method are more accurate. Therefore,
the computational results of this method are used as a reference to verify the feasibility of
the proposed method.

Since the proposed method involves two distinct scenarios during its computation
process (wherein one scenario allows for direct projection of the triangle, while the other
necessitates the division of the triangle prior to projection), the experiment encompassed
both cases by selecting multiple different propagation distances for the diffraction calcula-
tions. Thirty triangles were used for the experiment, and the orientations and shapes of
these triangles were randomized, and diffraction distributions of 100 mm, 400 mm, and



Appl. Sci. 2024, 14, 5109 5 of 16

700 mm were calculated for each triangle. Figure 4 shows experimental results for one of
the random triangles. Figure 4a–c represent the diffraction distributions calculated by the
proposed method at distances of 100 mm, 400 mm, and 700 mm, respectively. Figure 4d–f
represent the diffraction distributions calculated by the analytical polygon-based method
at 100 mm, 400 mm, and 700 mm, respectively. Figure 4 shows that there is almost no
difference in diffraction distribution between the two methods when light waves propagate
at the same distance.
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method. (d–f) are the diffraction distributions at 100 mm, 400 mm, and 700 mm, respectively,
calculated by the analytical polygon-based method.

In order to describe the similarity between the diffraction distributions calculated by
the two methods under the same conditions, the peak signal-to-noise ratio (PSNR) between
them was calculated. PSNR is a common and objective method used to determine the
similarity between two images, which can be calculated by Equation (3):

PSNR = 10log10

(
MAX2

I
MSE

)
, (3)

where MAX I refers to the maximum possible value of a pixel in the image. In this paper,
since the images are 8-bit grayscale images, MAX I is taken as 255. MSE stands for mean
square error, and its computation formula is as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j), K(i, j)]2, (4)

where m and n are the height and width of the image, respectively. I(i, j) and K(i, j) are the
two images for comparison, respectively. The diffraction distributions obtained from each
triangle at the same distance using both methods were used to calculate the PSNR using
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Equation (3) to obtain the results shown in Table 1. In Table 1, the first column represents
the numbering of the random triangle, and the second, third, and fourth columns represent
the PSNR between the diffraction distributions calculated by the two methods at light wave
propagation distances of 100 mm, 400 mm, and 700 mm, respectively.

Table 1. PSNR of diffraction distributions of 10 random triangles at different distances calculated by
two methods.

ID Diffraction of 100 mm Diffraction of 400 mm Diffraction of 700 mm

1 32.61 30.96 28.88
2 31.92 31.31 28.68
3 30.50 29.84 28.18
4 29.79 29.57 27.46
5 30.98 30.56 28.71
6 35.67 33.46 30.11
7 35.27 32.23 29.22
8 32.28 31.27 29.59
9 30.16 29.31 27.28

10 33.19 32.13 30.77
11 34.88 33.61 30.93
12 33.00 32.87 31.19
13 32.58 32.29 30.76
14 32.75 32.75 30.87
15 35.03 33.74 30.97
16 35.28 33.34 30.54
17 32.53 31.16 29.55
18 37.98 36.24 32.83
19 29.75 28.75 26.69
20 35.50 34.91 32.18
21 32.17 31.46 29.79
22 31.67 31.19 29.29
23 30.92 30.74 28.93
24 32.56 31.26 29.94
25 36.24 35.86 31.10
26 29.92 28.89 27.05
27 33.83 32.71 30.21
28 30.31 29.53 27.48
29 33.39 33.03 31.33
30 37.39 30.56 26.07

From Table 1, we can observe a phenomenon that there is a little decrease in the
PSNR value as the diffraction distance increases. We will explain the phenomenon. The
analytic polygon method calculates the diffraction distribution by analytic equation without
approximation, so its results are more accurate, while the proposed method uses the focal
depth as the spacing to layer the triangles, and from Equation (1), we know that the focal
depth is proportional to the square of the distance. Thus, the further the diffraction distance
and the smaller the number of layers, the larger the error between the calculated diffraction
distribution and the actual diffraction distribution. Note that the experiment has included
the case of dividing the triangles into only one layer, which is the case with the largest error.
We calculated the mean and standard deviation of these PSNRs, as shown in Table 2. This
means that at different propagation distances, the PSNR of the diffraction distributions of
the two methods is around 31.5, indicating that the diffraction distributions calculated by
the two methods are extremely similar. Thus, the feasibility of dividing the triangles into
layers based on the depth of focus is demonstrated.
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Table 2. The mean and standard deviation of PSNR.

The Mean of PSNR The Standard Deviations of PSNR

31.46 2.42

2.3. Use on Three-Dimensional Objects

The feasibility of the proposed method to compute the diffraction distribution of
individual triangles has been verified above, and we will next use the method to compute
the hologram of the 3D object.

First, a set of planes parallel to the hologram plane is defined to divide the 3D object,
and the spacing of this set of planes is equal to the depth of focus. Then, we need to project
the triangles on the 3D object onto these planes according to the following rules:

1. If the triangle lies between two neighboring planes, project the triangle along the
direction of propagation of the light wave onto the closest plane, such as triangle ABC
in Figure 5.

2. If the triangle passes through one or more planes, use the plane that passes through it
to cut the triangle, and then the polygon obtained by the cutting is projected along the
direction of the optical axis onto the nearest neighboring plane, as shown in triangle
DEF in Figure 5.
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Assuming that the object’s light wave travels in the positive direction along the z-
axis, the process for the proposed method to compute the hologram of a 3D object is
visually presented in Figure 6, which enables a more lucid comprehension of the entire
calculation procedure.
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3. Performance

The core problem of the polygon-based method is the diffraction of tilted triangles.
In contrast, the proposed method approximates the diffraction calculation of tilted trian-
gles to the diffraction calculation between parallel planes by projecting the triangles into
layers according to the depth of focus, thus reducing the computational burden of the
polygon-based method. To test the computational efficiency of the proposed method, the
computational time consumption of the method is compared with that of the analytical
polygon-based method [41] under the same conditions.

The experiment was performed on a Windows 10 system, where algorithms were
programmed in C++ within Visual Studio 2019 and then executed and displayed using
MATLAB 2022. The computation time was measured using the “tic” and “toc” commands
in MATLAB. The CPU version is the 11th Gen Intel(R) Core (TM) i7-11800H. For accuracy
and consistency, we limited the computation to a single thread. We created a 3D model
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using Blender and adjusted all models to have the same length along the z-axis. We set the
hologram resolution to 1024 × 1024, the pixel spacing to 0.018 mm, the light wavelength
to 532 nm, and the diffraction distance to 200 mm. The experimental results are shown
in Table 3 and Figure 7. Table 3 shows the computational time consumption of the pro-
posed method and the analytical polygon-based method, as well as the ratio of the time
consumption of the analytical polygon-based method to that of the proposed method when
computed on a CPU. Figure 7 shows the change in computation time with the number of
triangles for both methods when computed on the CPU.

Table 3. Comparison of time consumption between two methods on a CPU.

The Number of
Triangles

The Proposed
Method

The Analytical
Polygon-Based Method Acceleration Ratio

4704 10.7 s 233.9 s 21.9
9408 22.2 s 483.9 s 21.8

14,112 35.1 s 709.4 s 20.2
18,816 48.5 s 947.2 s 19.5
23,520 60.3 s 1178.9 s 19.6
28,224 76.3 s 1411.7 s 18.5
32,928 92.3 s 1670.8 s 18.1
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The experimental results show that the computational speed of the proposed method
is improved by about 20 times compared to the analytic polygon-based method, which
confirms that it has a very high computational efficiency. The analytic polygon-based
method, in order to calculate the diffraction of tilted triangles, requires a three-dimensional
affine transformation of each triangle and the solution of complex analytic equations.
Therefore, the computational time of this method is greatly affected by the number of
triangles. Meanwhile, the proposed method avoids the direct computation of the diffraction
of tilted triangles by approximating the triangle mesh as a set of planar light sources parallel
to the holographic plane through the layered projection of the triangles according to the
depth of focus. In the proposed method, the projection calculation of triangles does not
involve complex calculations. It has a very low computational complexity, so the step
can be accomplished in a very short time. In addition, the diffraction between the layer
and the holographic plane can be quickly calculated using angular spectral diffraction
with the support of the fast Fourier transformation. Therefore, the method has high
computational efficiency.
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Furthermore, we can observe that the computational time consumption of both meth-
ods is linearly related to the number of triangles. This is easy to explain because both
methods have a separate computation that needs to be performed for each triangle, and the
computational effort for this part of the computation is not affected by factors such as the
shape or size of the triangles, so the computational effort grows linearly with the number
of triangles.

To further increase the computational speed of the proposed method, using GPU
parallel computing was considered. Therefore, the parallelized program of the proposed
method and the parallelized program of the resolved polygon method were implemented
through CUDA C++ for comparison. The GPU used was the NVIDIA GeForce RTX 3060
Laptop GPU. The experimental platform, development environment, and experimental
parameters were the same as those of the computational performance experiment on the
CPU above. The experimental results are shown in Table 4 and Figure 8. Table 4 shows
the computational time consumption of the proposed method and the analytical polygon-
based method, as well as the ratio of the time consumption of the analytical polygon-based
method to that of the proposed method when computed on a GPU. Figure 8 shows the
change in computation time with the number of triangles for both methods when computed
on a GPU.

Table 4. Comparison of time consumption between two methods on a GPU.

The Number of
Triangles

The Proposed
Method

The Analytical
Polygon-Based Method Acceleration Ratio

4704 0.33 s 4.83 s 14.64
9408 0.36 s 9.45 s 26.25

14,112 0.41 s 14.17 s 34.56
18,816 0.45 s 18.85 s 41.89
23,520 0.49 s 23.54 s 48.04
28,224 0.53 s 28.31 s 53.42
32,928 0.57 s 33.05 s 57.98
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The proposed method experiences a more efficient computation on GPUs; generating
a hologram of 30,000 triangles only takes about 0.5 s. Further, the acceleration ratio of
the proposed method over the analytic polygon-based method gradually increases as
the number of triangles increases. This indicates that the computational efficiency of the
analytic polygon-based method is more sensitive to the number of triangles. In contrast,
the proposed method is less affected by the number of triangles. This is mainly because
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GPUs are good at simple operations such as addition and subtraction, while they are weak
at complex operations such as calculating sine, cosine, and exponentials. There are a lot
of complex exponential operations used in the analytic polygon-based method, which is
the shortcoming of the GPU. In the proposed method, only the hierarchical projection
is involved in the number of triangles. These calculations can be performed using basic
mathematical calculations only and can be highly parallelized. Therefore, the proposed
method can perform the computations extremely fast on GPUs. However, since this method
is an approximation, it is more suitable for scenarios that require high computational speed
but lower accuracy requirements.

It is worth noting that the computation speed of the proposed method is not solely
dependent on the number of triangles in the input object. This is because the method
includes calculations such as the fast Fourier transform for each layer, meaning that the
computation speed is also related to the number of layers into which the three-dimensional
object is divided. The depth of focus and the length of the object determine the number
of layers, while the depth of focus is related to the wavelength of light, the LCOS (liquid
crystal on silicon) size, and the diffraction distance, all physical parameters that will affect
the calculation speed of the proposed method. However, the number of triangles remains
the main factor affecting the calculation speed.

4. Texture Mapping

Unlike the analytical polygon-based method, the proposed method in this paper
utilizes FFT to perform angular spectrum diffraction, which consequently affords it sub-
stantial convenience when applied to texture-mapping tasks. In this section, we present
the application of one of the most common texture-mapping methods, UV mapping, to the
proposed method in this paper.

In 3D modeling software, it is possible to paint texture maps onto 3D models, which
can then be exported as triangle meshes where each vertex of the triangles is assigned a
set of UV coordinates. However, merely knowing the UV coordinates at the vertices of a
triangle is insufficient for texturing purposes because we need to determine the texture
information at any point within the triangle. Barycentric interpolation is one method that
addresses this issue, enabling us to calculate the attribute values at any arbitrary point
within a triangle based on the attributes of its three vertices. The barycentric interpolation
can be expressed by the following equation:

P = αA + βB + γC. (5)

Here, A, B, and C denote a specific property of the triangle’s three vertices, which
could be coordinates, UV coordinates, colors, or normals, among others; P represents
the same property of a point within the triangle; and (α, β, γ) denote the barycentric
coordinates of that point. The following relationship exists between α, β, and γ:

α + β + γ = 1, (6)

where, α, β, and γ can be calculated using the method detailed in [42], and hence, the UV
coordinates of point P can be obtained through barycentric interpolation, as represented by
Equation (5), utilizing the UV coordinates of points A, B, and C. In the proposed method,
the triangles need to be projected, but the projection does not change the UV coordinates of
the points.

If you want to calculate the texture information of the projection point of a point P
within a triangle, you can refer to the steps shown in Figure 9. In the figure, (UP, VP)
denote the UV of point P, and (UA, VA), (UB, VB), and (UC, VC) denote the UV of the
three vertices of the triangle, respectively.
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Figure 9. Process for calculating the texture of a projected point.

In order to inspect the effect of texture mapping applied in the proposed method, a
hologram of the tiger model, as shown in Figure 10a, was generated. Figure 10a shows the
tiger model with texture mapping applied, Figure 10b shows the triangle mesh of the model,
and Figure 10c shows the texture map of the tiger model. In the experiment, the diffraction
distance was set to 300 mm, the resolution of the hologram was 1920 × 1080, the pixel
pitch was 0.045 mm, and the light wavelength was 532 nm. The generated holograms were
numerically reconstructed at different distances to obtain the results shown in Figure 11.
The 3D object carrying the texture is successfully reconstructed in Figure 11. In addition,
the 3D sense of the hologram was verified by focusing on different places.
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Figure 11. Numerical reconstruction of a hologram generated by the proposed method. (a) The
numerical reconstruction focusing on the tiger’s hind legs. (b) The numerical reconstruction focusing
on the tiger’s forelimbs. (c,d) and (e,f) are enlarged portions of the box in (a) and (b), respectively.

In order to test the effect of the textured holograms in real optical experiments, an
optical path was constructed, as shown schematically in Figure 12. In order to be able to
give the reconstructed image higher diffraction efficiency, the hologram was encoded as a
phase hologram and loaded onto a phase LCOS. Some previous studies [43,44] can help us
to better select a suitable LCOS as well as understand its principles. The phase LCOS used
in the experiment had a resolution of 1920 × 1080 with a pixel pitch of 0.045 mm, and the
laser wavelength used was 532 nm. The reconstructed image was received through a CCD
(charge-coupled device) and displayed on a computer connected to the CCD. Since the
CCD used only senses light intensity and not color, grayscale results shown in Figure 13
were obtained.
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Figure 13. Optical reconstruction of holograms generated by the proposed method. (a) The optical
reconstruction focusing on the tiger’s hind legs. (b) The optical reconstruction focusing on the tiger’s
forelimbs. (c,d) and (e,f) are enlarged portions of the box in (a) and (b), respectively.

As can be seen, the optical reconstruction results also contain texture. In addition, the
optical reconstruction image can focus on different places when reconstructed at different
distances. Therefore, texture mapping can work effectively in the proposed method.

Fast generation of polygon-based texture holograms is a major challenge. Currently,
one of the latest polygon-based texture hologram generation methods is an analytic-based
method [45]. This method is more computationally efficient than the previous ones, but
it is still heavily affected by the number of triangles. In this paper, we approximate the
diffraction calculation of tilted triangles by a hierarchical projection based on the depth
of focus, which also facilitates the mapping of the texture. Although the computation is
fast enough to use traditional texture mapping methods, this is an approximation method,
so the computation results are not as accurate as those based on the analytic method. It
is more suitable for scenes that only need to satisfy human eye observation and do not
require high imaging accuracy.

5. Conclusions

In this paper, the diffraction calculation of inclined triangles was approximated to
the diffraction calculation between parallel planes via hierarchical projection based on the
physical properties of the depth of focus. Therefore, the speed of generating holograms
using the polygon-based method was improved. The feasibility of the proposed method
was verified by comparing the computed diffraction distributions with those computed
by the analytic polygon method. The computational efficiency of the proposed method
was then verified by comparing the computational performance with that of the analytic
polygon method on a CPU and GPU. Finally, texture mapping was applied to the proposed
method to generate holograms carrying complex textures, and the three-dimensionality of
holograms was verified by numerical and optical reconstruction.
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