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Abstract: To address the problems of existing methods that struggle to effectively extract fault features
and unstable model training using unbalanced data, this paper proposes a new fault diagnosis method
for rolling bearings based on a Markov Transition Field (MTF) and Mixed Attention Residual Network
(MARN). The acquired vibration signals are transformed into two-dimensional MTF feature images
as network inputs to avoid the loss of the original signal information, while retaining the temporal
correlation; then, the mixed attention mechanism is inserted into the residual structure to enhance
the feature extraction capability, and finally, the network is trained and outputs diagnostic results. In
order to validate the feasibility of the MARN, other popular deep learning (DL) methods are compared
on balanced and unbalanced datasets divided by a CWRU fault bearing dataset, and the proposed
method results in superior performance. Ultimately, the proposed method achieves an average
recognition accuracy of 99.5% and 99.2% under the two categories of divided datasets, respectively.

Keywords: fault diagnosis; Markov Transition Field (MTF); Mixed Attention Residual Network
(MARN); unbalance dataset

1. Introduction

As one of the most important parts of rotating machinery, rolling bearings play a deci-
sive role in the smooth operation of equipment [1]. Due to the harsh working environment
of most rolling bearings, faults often occur; if they are not detected and troubleshooted
in time, not only will there be economic losses, but they may also be life-threatening [2].
Therefore, the use of accurate fault diagnosis methods to monitor the operational status of
bearings is a hot topic in current research [3].

As technology and computer arithmetic develop, data-driven DL methodologies
are becoming favoured by many scholars, and such methods are able to automatically
extract fault features without too much human involvement [4–7]. Sun et al. proposed a
CNN-LSTM based model for bearing fault diagnosis in complex operating environments,
and the results show that the model has better load generalisation capability and noise
immunity [8]. Wang et al. proposed the RQA-Bayes-SVM for the healthy diagnosis of
bearings; experiments showed that RQA-Bayes-SVM has better performance in fault mode
diagnosis and fault degree differentiation [9]. Zhao et al. proposed the DenseNet-BLSTM
for the problem of extracting features effectively using traditional fault diagnosis methods
rolling bearings; experiments show that the DenseNet-BLSTM has good fault diagnosis
capability [10].

The data-driven deep learning methods mentioned above are usually constructed
with datasets that are set to be class-balanced. However, when dealing with unbalanced
datasets, these models usually focus on the majority category and may ignore the minority
category samples, resulting in low diagnostic accuracy of the minority fault samples [11,12].
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Current research efforts to solve the unbalanced fault classification problem have focused
on the following two areas:

(1) Data level: resampling techniques are mainly used to convert an unbalanced
dataset into balanced dataset to enhance the diagnostic capability of the model. Zhang et al.
used a generative adversarial network (GAN) to study the mapping between the noise
distribution and the actual sample distribution in order to extend the available dataset,
and their results show that augmenting the data with GAN improves the accuracy of the
diagnosis [13]. Luo et al. used conditional generative adversarial networks to enable model
training to generate new samples towards the constraints, resulting in higher quality new
samples [14].

(2) Model level: feature enhancement extraction and integrated learning are mainly
used. Lu et al. proposed an Improved Active Learning (IAL) diagnostic method for the
intelligent labelling of unlabelled samples with a limited number of labelled samples,
showing that IAL can significantly improve the classification of unbalanced data [15].
Qin et al. proposed an IGAN method for bearing fault diagnosis for a small dataset
and unbalanced dataset that combines the coordinate attention mechanism to effectively
mine information from a limited number of fault samples, thus increasing the diagnosis
accuracy [16]. Wei et al. proposed an improved channel-attention CNN for the fault
diagnosis of rolling bearings; this method can be better used for the feature extraction of
unbalanced data compared to other shallow models [17].

Although all the above-mentioned methods are effective in categorising and diagnos-
ing unbalanced data, there are some limitations. (1) At the data level: most methods directly
input the original signals into the network for training, which may cause information loss;
there are also some 2D transformation methods that result in feature maps that may hinder
feature recognition in the network. (2) At the model level: in most network structures,
simple overlapping convolutional layers can recognise more features; however, in practice,
network performance degradation and feature extraction is worse instead.

In order to address the shortcomings of existing problems, this paper proposes a
diagnosis method for rolling bearings based on Markov Transition Field (MTF) and Mixed
Attention Residual Network (MARN), there are four contributions:

1. The acquired different vibration signals are converted into 2D images using the MTF
method, which preserves timing information and avoids the problem of losing the
original signal information.

2. Introducing a mixed attention mechanism on the structure of the residual network to
increase recognition of feature signals. Avoiding network degradation while enabling
the extensive use of channel and spatial information.

3. Other 2D transformation methods are compared on the Case Western Reserve Uni-
versity (CWRU) fault bearing dataset, confirming the superiority of utilising MTF as
the data preprocessing method; while also validating the advantages of the mixed
attention mechanism for feature extraction.

4. Balanced and unbalanced datasets are divided to verify the superiority of the model.
In comparison with the current state-of-the-art fault diagnostic models, overall, the
MTF-MARN provides the best diagnostic results.

The paper is structured as follows. Section 2 describes the rationale for the methodol-
ogy. Section 3 describes the structure of MARN and the bearing fault diagnosis process.
Section 4 gives comparative experiments of different methods. Section 5 describes conclu-
sions and prospects.

2. Related Work

This section introduces the principle of the implementation of Markov Transition Field,
the structure of residual networks and the implementation process of the two attention
mechanisms; it lays the theoretical foundation for the subsequent research.
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2.1. Markov Transition Field (MTF)

Markov Transition Field (MTF) can encode one-dimensional vibration signals into
two-dimensional images [18]. It mainly uses Markov matrices to preserve time domain
information and enables the encoding of dynamically transferred information. Figure 1
shows the MTF coding schematic.
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Given the one-dimensional time series, X = {xt, t = 1, 2, . . ., T}. Firstly, divide X in
groups of j points; then, discretise the value domain of these points into N equal parts, where
the ith part is denoted by ni (0 < i ≤ N); each point in X is mapped into a corresponding
value domain ni. Finally, the transfer probability between the value domains ni of each
point is calculated according to the Markov chain, and in this way, an N × N weighted
neighbourhood matrix W is constructed, which can be represented as:

W =

w11 · · · w1N
...

. . . · · ·
wN1 · · · wNN

 (1)

where the value of the element w is determined by the probability that all sequence points
in the value domain nt are transferred to the value domain ni.

In order to facilitate the expression of time series features, an M × M MTF matrix is
constructed according to the serial data, which can be represented as:

M =

 m11 · · · m1M
...

. . .
...

mM1 · · · mMM

 =

 wti|x1∈nt ,ni
· · · wti|x1∈nt ,xM∈ni

...
. . .

...
wti|xM∈nt ,x1∈ni

· · · wti|xM∈nt ,ni

 (2)

where the element m represents the transfer probability from the value domain nt of xi to
the value domain ni of xj.

Utilising MTF as a pre-processing method can have several advantages:

1. The original signal and the 2D image are coded mapping relations, avoiding the loss
of information of the original signal.

2. The dependency between each grouping and the time step is considered, which
preserves the temporal correlation of the signal over time.

3. Different colours reflect the probability of transfer between different data, and the
two-dimensional space amplifies the temporal information, facilitating greater perfor-
mance of the residual network.
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2.2. Feature Extraction Based on Residual Network

Residual networks solve the gradient vanishing and explosion problems of traditional
convolutional models and are widely used as deep learning networks [19]. They have a
deeper network structure for better feature extraction, and this intrinsic structure is shown
in Figure 2.
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Where x represents the input feature matrices; f (x) represents the mapping function;
Relu represents the non-linear activation function; the normalisation mode is BN; and h(x)
represents the constant function, as determined by the following equation:

h(x) = f (x) + x (3)

The feature extraction is performed by 2–3 convolutional layers on the main line
of each residual structure, and the feature data on the shortcut branches can be directly
added to the feature data on the main line, which can be achieved by simply assuring that
input matrices x and mapping functions f (x) are of the same dimension. The cumulative
stacking of residual structures increases the number of convolutional layers and improves
feature extraction.

2.3. Feature Extraction Based on Attention Mechanisms

Convolutional layers of different dimensions in residual networks can be used to
recognise a large amount of feature information; however, most convolutional layers
process the input features in the same way, resulting in some loss. Accordingly, the model
introduces two attentional mechanisms to distinguish different feature weights in terms of
channel and spatial dimensions, which makes the model more enhanced for recognising
the representation of the feature regions of the images [20].

2.3.1. Channel Attention-Based Feature Extraction

The channel attention mechanism identifies remote location dependencies of input
data along two dimensions directions, and the channel attention structure for MARN is
shown in Figure 3. The input matrices data are average pooled horizontally and verti-
cally to compress the channel dimensions, followed by a two-layer 1 × 1 convolutional
dimensionality reduction with simultaneous nonlinear activation; then, splitting along
the spatial dimension is performed to obtain the direction-aware feature matrix and the
location-sensitive feature matrix. Finally, the two matrices are weighted to obtain the
channel attention feature matrix. This process can be represented as:

Hc(M) = σ
(

f 1×1
x,y

(
S
(

σ
(

f 1×1([Avgpool(Mx), Avgpool
(

My
)])))))

(4)

where M represents the input matrix; σ represents activation function; f 1×1 represents
convolution algorithm with 1 convolutional kernel; S represents the split operation; and
Avgpool represents average pooling.
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2.3.2. Spatial Attention-Based Feature Extraction

The spatial attention mechanism takes into account the different levels of importance
of spatial dimensional information and ultimately results in a spatial attention feature
matrix with different weights. The structure of spatial attention used for MARN is shown
in Figure 4. Firstly, average and maximum pooling are used on the input data in both
directions simultaneously, and subsequently, the results are spliced to generate a transition
matrix, which is then downscaled using a 7 × 7 convolutional layer, and finally weighted
to obtain the spatial feature matrices of the different positional information to determine
the positions that need to be attended to. The specific process can be expressed as follows:

Hs(M) = σ
(

f 7×7([Avgpool(M), Maxpool(M)])
)
= σ

(
f 7×7([MAvg, MMax

]))
(5)

where f 7×7 represents the convolution algorithm with seven convolutional kernels.
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3. Model Structure and Fault Diagnosis Process

This section details the MARN structure for bearing fault diagnosis and sets up the
appropriate diagnostic process.

3.1. MARN Model Structure

The MARN model is shown in Figure 5, which in general consists of the residual
feature extraction layers, the mixed attention feature enhancement layers and the Softmax
classification layers.

In order to learn as many features as possible from the input images, the feature
extraction layer uses 16 groups of residual structures (each containing two 3 × 3 convo-
lutional layers) for feature extraction; all the features extracted by the feature extraction
module are subsequently passed through the feature enhancement layer to augment the
representation of the features. In residual networks, a portion of the input feature matrices
are passed directly from the bottom layer to the top layer, so further channel compression
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and refinement are required; and the top layer information obtained through mainline
convolution lacks location and detail information, although it contains more global abstract
information. Therefore, channel and spatial mixed attention mechanism is introduced
to utilise high- and low-level information fusion enhancements to make the information
more complete.
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After feature enhancement, the global average pooling (GAP) is used to match each
feature matrix assigned with different intrinsic meanings to the fault categories, which
better integrates global spatial information and reduces the network parameters. Finally,
the Softmax classifier is used to classify the faults.

3.2. Fault Diagnosis Process

The fault diagnosis process is shown in Figure 6, which can be split into the follow-
ing steps:

Step 1: Data acquisition and preprocessing. The vibration signals collected from the
CWRU bearing data were first converted into 2D MTF-encoded images and divided into
corresponding datasets (balanced and unbalanced data).

Step 2: Build and train the network. The network is built, specific parameters are set,
and the dataset divided in the previous step is input into MARN for training.

Step 3: Use MARN to validate the comparison of other 1D to 2D coding methods
under the same data, and verify the performance of the mixed attention mechanism.

Step 4: Compare popular fault diagnosis models on divided balanced and unbalanced
datasets to validate the superiority of the proposed method.
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4. Experimental Analysis

This section evaluates the effectiveness of the MTF-MARN using CWRU bearing data.
All network models are trained using Python 3.7 programming with Pytorch framework,
Intel Core i7-7300 CPU@3.2 GHz, GTX1050(4G) under Windows 10.

4.1. Acquisition and Division of Datasets

The experimental data were acquired from the CWRU bearing experimental platform
(Figure 7). Taking the fan-end bearing SKF-6203 as an example, motor speed is 1772 r/min,
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set up single-point damage with different failure diameters for the inner ring, rolling body
and outer ring (@3, @6, @12) of the bearings, respectively; and placed the sensor (sampling
frequency is 48 khz) on the fan-end bearing housings for the collection of vibration signals.
Three different damage diameters of the outer ring, rolling element (@6) and inner ring are
selected as fault samples, and a normal sample is also included, a total of ten categories to
produce the corresponding dataset. The different failure types are labelled as “IR”, “RF”,
“OR”, and “NOR”.

Most equipment tend to be healthy in practice and it is difficult to obtain a large
amount of labelled fault data [21]; therefore, the proposed method in this paper is trained
on both balanced and unbalanced data. DatasetA (DA) can be seen as an idealised balanced
dataset, while DB/DC/DD divides the different fault samples into different proportions to
simulate the missing data. It is worth noting that DA takes the first 400 samples of each
faulty signal segment, while DB/DC/DD are randomly selected data from DA divided into
unbalanced datasets, respectively. To avoid chance occurrence, each dataset is randomly
divided into training and validation sets according to 9:1, and the division strategy is
shown in Table 1.
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Figure 7. CWRU bearing experiment platform [22].

Table 1. Four forms of division of datasets with different data distributions.

Condition Diameter/(in) Label DA DB DC DD Train:Val

NOR 0 0 400 400 400 400

0.007 1 400 100 300 200

IR 0.014 2 400 100 300 200

0.021 3 400 100 300 200

0.007 4 400 200 100 300 9:1

RF 0.014 5 400 200 100 300

0.021 6 400 200 100 300

0.007 7 400 300 200 100

OR 0.014 8 400 300 200 100

0.021 9 400 300 200 100

4.2. Data Generation Method and Training Parameter Settings
4.2.1. Data Enhancement

In most neural networks for fault diagnosis, data enhancement is an effective means
to achieve more desirable classification accuracy and to prevent the occurrence of data
overfitting. In this paper, overlapping sampling of vibration signals using sliding windows
is used as a data enhancement method. The advantage of this enhancement method is
that two neighbouring coded images will contain overlapping timing information, which
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allows the MTF to fully exploit the intrinsic temporal correlation between the overlapping
signals and the two neighbouring segments before and after. The data enhancement is
shown in Figure 8.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 19 
 

Each slide of the sliding window generates an MTF image under the corresponding 
data to assure that each MTF coded image contains signal points for one revolution of the 
bearing, as determined by the following equation: 

60 qFn
R
×

=  (6)

where n represents the number of points sampled per revolution of the failed bearing; R 
represents rotational speed, which is 1772 r/min; and Fq represents the sampling frequency 
of the sensor. 

 
Figure 8. Data enhancement. 

The sliding window size is calculated to be 1024 and the sliding step size is taken as 
512. Considering the fact that images that are too small have compressed characteristics 
and images that are too large are affected by hardware devices, a 300 × 300 MTF image 
was generated for each sliding. Different types of fault images are shown in Figure 9. 

. 

Figure 9. MTF coded images. (a) NOR-L0; (b) IR-L1; (c) IR-L2; (d) IR-L3; (e) RF-L4; (f) RF-L5; (g) RF-
L6; (h) OR-L7; (i) OR-L8; (j) OR-L9. 

4.2.2. Training Parameter Settings 
The training set can be image cropped and flipped during training to increase the 

generalisation of the model. The optimiser can guide the gradient of the loss function (LF) 
in the back propagation process of the model to approach the convergence continuously; 
in this paper, the use of the Adam optimiser can reduce the memory requirement and 
reduce the load of the hardware device. To avoid the model converging too slowly, the 
learning rate (LR) is taken as 0.001; the specific training parameters are shown in Table 2. 

Figure 8. Data enhancement.

Each slide of the sliding window generates an MTF image under the corresponding
data to assure that each MTF coded image contains signal points for one revolution of the
bearing, as determined by the following equation:

n =
60 × Fq

R
(6)

where n represents the number of points sampled per revolution of the failed bearing;
R represents rotational speed, which is 1772 r/min; and Fq represents the sampling fre-
quency of the sensor.

The sliding window size is calculated to be 1024 and the sliding step size is taken
as 512. Considering the fact that images that are too small have compressed characteristics
and images that are too large are affected by hardware devices, a 300 × 300 MTF image
was generated for each sliding. Different types of fault images are shown in Figure 9.
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4.2.2. Training Parameter Settings

The training set can be image cropped and flipped during training to increase the
generalisation of the model. The optimiser can guide the gradient of the loss function (LF)
in the back propagation process of the model to approach the convergence continuously; in
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this paper, the use of the Adam optimiser can reduce the memory requirement and reduce
the load of the hardware device. To avoid the model converging too slowly, the learning
rate (LR) is taken as 0.001; the specific training parameters are shown in Table 2.

Table 2. Method of setting training parameters.

Preprocessing Method Batch Size LF Optimizer LR

Random resize crop
Random horizon flip 32 Crossentropy Loss Adam 0.001

Normalize

4.3. Experimental Analyses
4.3.1. Comparison of Different 2D Transformation Methods

To verify the superiority of MTF as a preprocessing method, this section compares
other commonly used 2D image transformation methods. Under the same original vi-
bration signals, the corresponding datasets were generated using Gramian Angle Field
(GADF/GASF) and recurrence plot (RP), respectively, and compared with the MTF method.
They were inputted into the MARN model for training, respectively. Taking the balanced
dataset DA as an example, 150 rounds of model iterations were performed for each set of
models in order to ensure sufficient model convergence.

Figure 10 shows example images of several transformation methods, and Figure 11
shows the training curve of the model. As can be seen in Figure 11, using MTF as the
preprocessing method has the highest validation accuracy after the same model training.
Additionally, it is clear that the model is the most stable and has the lowest training loss
during training using MTF as the data input, so it can be shown that several other methods
are not as good as MTF in terms of characterisation.

To further explore the advantages of MTF as a data preprocessing method, the time
used to generate each coded image and the image size were also included. Table 3 shows
the comparative indicators of the different transformation methods, it can be seen that each
GASF image has the smallest size and the shortest network training time, but MTF has the
minimum transformation time and highest validation accuracy.
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Table 3. Comparison of indicators for different transformation methods (Bold are optimal data).

Method MTF GADF GASF RP

Size of each image/(KB) 200–210 230–240 180–190 210–230

Transformation time of each image/(s) 0.052 0.061 0.061 0.073

Training time for DA/epoch 116 s 119 s 115 s 118 s

Highest validation accuracy for
DA/(%) 99.5 99 96.8 92

4.3.2. Comparison of Different Attention Mechanisms

To verify the advantages of the mixed attention mechanism, residual networks built in
this paper are used to embed different attention mechanisms separately for comparison. The
CA and SA modules are embedded in the residual network separately, and an additional
residual network without the introduction of the attention mechanism is included as a
comparison model (where CA and SA are both methods proposed in the paper). Several
models are iterated for 150 rounds under each of the four datasets to validate the feature
recognition capability of the mixed attention mechanism.

Taking the unbalanced data DB as an example, Figure 12 shows the training perfor-
mance curves of different attention mechanisms. From Figure 12, it can be seen that the
mixed attention mechanism fluctuates gently and is more stable during training. In contrast,
the single attention mechanism and the model without the introduction of the attention
mechanism may have occasional sharp jumps during training, and the accuracy is not as
good as the proposed model. Table 4 shows the maximum validation accuracies of several
methods on the four datasets. It can be seen that the mixed attention mechanism achieves
an optimal classification accuracy no matter under which data distribution. Therefore,
it can be demonstrated that the mixed attention mechanism is capable of more stable
feature recognition.

Table 4. Maximum validation accuracy of different attention mechanisms under four datasets (Bold
are optimal data).

Dataset/Method MARN/(%) CARN/(%) SARN/(%) Non/(%)

DA 99.5 99.3 99 98.5

DB 99.5 99.5 99.1 97.7

DC 99.5 99.1 99.1 98.6

DD 98.6 98.6 97.7 98.2
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4.3.3. Visualisation Analysis

Figure 13 shows the classification confusion matrices of MARN under the four datasets.
The horizontal and vertical coordinates of the confusion matrix represent the true and
predicted labels, respectively, and diagonal numbers represent the prediction accuracies
of two labels. Taking the randomly divided validation set as example, it can be seen that
label2 has the lowest accuracy in DA and DC, label4 has the lowest accuracy in DB and DD,
and the other labels are able to achieve full classification. The reason for the individual
misclassification of labels is that some sample images are more similar to other categories,
but overall MARN has excellent fault classification capabilities.
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The method of t-SNE dimensionality reduction (Figure 14) can be used to visualise the
classification effect of the MARN.

In the left half of each subgraph is the original feature distribution of each dataset
(training set), and the right half is the feature classification result of the fully connected layer
after training by the MARN (different colours represent different fault categories). From
the figure, it can be seen that the dataset is haphazardly distributed in the feature space
before training, and after training, the fault features of each category become uniformly
clustered. There is no significant overlap between different categories, so the MARN has a
good classification effect on balanced/unbalanced fault data.
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4.3.4. Comparison with Existing Popular Models

In this section, to validate the superiority of MARN, several relevant models using 2D
images as input data are compared. Yan et al. and He et al. used an algorithm combining
MTF with residual network [23,24]; Wang et al. used a new MTF-CNN method for fault
diagnosis in complex working conditions [25]; Gu et al. proposed an improved model MTF-
SE-ResNet for the diagnosis of bearings under compound faults [26]; Wei et al. proposed a
GADF with an improved channel attention model (FcaNet) [17]; Gu et al. proposed a RP
and MobileNet-v3 for fault diagnosis of variable speed bearings [27].

To ensure fairness in model training, the same dataset is used as input for the different
networks, with the same training settings for each model. To ensure that the models con-
verged sufficiently, 200 rounds of iterations of each model are performed. The balanced
dataset DA and unbalanced dataset DB are taken as examples, respectively, and the corre-
sponding training performance curves are shown in Figure 15. Table 5 shows the maximum
validation accuracy of different methods on the four datasets.

As can be seen in Figure 15, all models have higher loss and training fluctuations
on the unbalanced dataset than on the balanced dataset, which is due to the fact that a
smaller amount of data has an indispensable effect on the models in terms of deep learning.
Although the lightweight model MobileNet-v3 converged the fastest, the highest validation
accuracy is only about 89% and has the highest training loss; this is due to the intrinsic
structure of the model resulting in inadequate feature extraction. The shallow model
NCNN tends to converge steadily during training, but converges too slowly, requires more
iterations, and has higher training losses. Although the training loss of SE-ResNet and
FcaNet is close to the proposed method, the training is not stable enough, with occasional
sharp fluctuations during the training process. ResNet50 uses a deeper structure for feature
extraction, and the loss is instead higher, thus illustrating that increasing the depth of the
model does not necessarily result in effective feature extraction. Therefore, the proposed
method can keep the loss low and the fluctuation stable regardless of the dataset.

From Table 5, it can be seen that the highest validation accuracy of FcaNet on unbal-
anced datasets DB and DD is the same as the proposed method; and the other methods are
not as good as the present model on different datasets. Therefore, the proposed method
can extract more features.
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Table 5. Highest validation accuracy of different methods on four datasets (Bold are optimal data).

Method/Dataset DA/(%) DB/(%) DC/(%) DD/(%)

ResNet50 [23,24] 98.5 96.8 99.1 97.3
NCNN [25] 94.5 92.5 92.7 91.4
FcaNet [17] 98.5 99.5 98.6 98.6

SE-ResNet [26] 99 99.1 99.1 98.2
MobileNet-v3 [27] 87.7 89.5 88.6 83.6

MARN 99.5 99.5 99.5 98.6

In the field of DL, evaluation metrics are the criteria for determining the performance
of a model, so it is important to compare the classification metrics of different models. Accu-
racy Ac, precision Pr, recall Re, and F1 score are all criteria for determining the performance
of the model, determined by Equations (7)–(10).

Ac =
TP + TN

TP + FP + TN + FN
(7)

Pr =
TP

TP + FP
(8)

Re =
TP

TP + FN
(9)

F1 =
2 × Pr × Re

Pr + Re
(10)

where TP and TN are the number of correct predictions in 10 categories; FP and FN are the
numbers of incorrect predictions in 10 categories.
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To study the advantages and disadvantages of each model more intuitively, Tables 6–9
show the training performance metrics of the different models under the four datasets. For
a more comprehensive analysis, the training time of the different models is also introduced.

Table 6. Training metrics for different models on the DA (Bold are optimal data).

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

ResNet50 0.9851 0.9850 0.9850 141 s

NCNN 0.9464 0.9450 0.9457 29 s

FcaNet 0.9856 0.9850 0.9853 114 s

SE-ResNet 0.9903 0.9900 0.9901 106 s

MobileNet-v3 0.8766 0.8775 0.8770 38 s

MARN 0.9952 0.9950 0.9951 116 s

Table 7. Training metrics for different models on the DB (Bold are optimal data).

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

ResNet50 0.9745 0.9675 0.9710 77 s

NCNN 0.9064 0.8892 0.8977 16 s

FcaNet 0.9952 0.9950 0.9951 61 s

SE-ResNet 0.9909 0.9917 0.9913 57 s

MobileNet-v3 0.9015 0.8809 0.8911 21 s

MARN 0.9909 0.9950 0.9930 62 s

Table 8. Training metrics for different models on the DC (Bold are optimal data).

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

ResNet50 0.9920 0.9800 0.9860 77 s

NCNN 0.8972 0.8825 0.8898 16 s

FcaNet 0.9750 0.9767 0.9758 61 s

SE-ResNet 0.9904 0.9800 0.9852 57 s

MobileNet-v3 0.8887 0.8500 0.8689 21 s

MARN 0.9952 0.9967 0.9959 62 s

Table 9. Training metrics for different models on the DD (Bold are optimal data).

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

ResNet50 0.9672 0.9742 0.9707 77 s

NCNN 0.9212 0.9050 0.9130 16 s

FcaNet 0.9909 0.9817 0.9863 61 s

SE-ResNet 0.9812 0.9792 0.9802 57 s

MobileNet-v3 0.8191 0.7825 0.8004 21 s

MARN 0.9877 0.9900 0.9888 63 s
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As can be seen from Tables 6–9; Pr on DB; and DD, F1 on DB, the proposed model is
not as good as FcaNet, and the other metrics are better than the other models. It is also
easy to see that the training time of the proposed method is longer and much higher than
the shallow model, but this phenomenon will be improved with the updating of hardware
equipment. Overall, the MARN is applicable to the field of fault diagnosis.

To further explore the classification effects inherent in each model, Figures 16 and 17
show the confusion matrices and t-SNE dimensionality reduction in the fully connected
layers for the different methods. From Figure 16(a4), it can be seen that although FcaNet
achieves the same accuracy as the proposed method on DD, FcaNet misclassifies two labels,
and the proposed method misclassifies only one label; the other models have large-scale
misclassification on most of the labels.

As can be seen from Figure 17(e1–e4), MobileNet-v3 performs very poorly in the
all-connected layer clustering visualisation, with large-scale fault features undergoing
confounding. While other models can achieve clustering of different classes of fault features,
there is still a small amount of conflation between individual labels. Compared with the
proposed method clustering, it still needs further improvement. Therefore, MARN has
clear advantages in the field of fault diagnosis.
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5. Conclusions

To solve most of the methods that are difficult to effectively extract fault features and
unstable model training under unbalanced data, this paper proposes a new rolling bearings
fault diagnosis method based on MTF and MARN, draws the following conclusions:

1. The vibration signals are converted into two-dimensional images using MTF to avoid
the loss of original signal information, while retaining the temporal correlation.

2. Using the residual structure as the body of the network avoids the degradation
problem of the model; meanwhile, the introduction of the mixed attention mechanism
can enhance the feature extraction ability.

3. The superiority of MTF as a data preprocessing method was confirmed on the CWRU
bearing dataset, which further confirmed that the mixed attention mechanism can
extract more features.

4. The model performs stably on the unbalanced dataset, obtaining average recog-
nition accuracies of 99.5% and 99.2% on the divided balanced and unbalanced
data, respectively.

Although the proposed method has been improved at both the data level and the
model level, diagnostic unbalanced data also have excellent fault diagnosis results; the
MARN is trained from the beginning and needs a longer training period. In further
research, the use of transfer learning methods can be considered to decrease training
time. Moreover, the MTF-MARN method should also be used for datasets with complex
operating conditions, such as strong noise and variable operating fault datasets.
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