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Featured Application: Automatic detection, classification, and accounting of mussel larvae in their
different stages of growth using computer vision.

Abstract: The European Union’s mussel production industry is dependent on obtaining mussel larvae
as seed for cultivation, a process traditionally monitored through labor-intensive manual sampling
and microscopic counting prone to human error and time-consuming procedures. To address these
challenges, our research presents a computer vision-based methodology for accurately identifying,
classifying, and quantifying mussel larvae individuals across various developmental stages from
microscopic images of water samples. Utilizing a neural network architecture derived from the YOLO
method, our approach integrates convolutional, pooling, and fully connected layers to automate
detection, classification, and accounting tasks. Through training with manually labeled samples and
employing data augmentation techniques, we established a robust framework capable of processing
diverse larval specimens effectively. Our research not only streamlines mussel larvae monitoring
processes but also underscores the potential of computer vision techniques to enhance efficiency and
accuracy in aquaculture industries.

Keywords: computer vision; neural network; mussel larvae

1. Introduction

Spain produced about 7 in every 10 tons of the EU’s farmed Mediterranean mussels
(Mytilus galloprovincialis) in 2022, largely due to its rafts in the estuaries of northern Spain
using the ‘off bottom’ method [1]. The Mediterranean mussel (Mytilus galloprovincialis) is
the most common species in the EU and represents 61% of the total community mussel
production in the EU-28. This species is cultivated in Mediterranean countries (Italy, Greece,
France, Spain, Bulgaria, Croatia, Slovenia), as well as in Galicia (Atlantic coast of Spain) [1].
Spain produces more than 250,000 tons per year (except in 2013, when red tide or algae
blooms caused a drop in production) [2]. It is the largest producer in the EU (with 41%
of Community production), followed by Italy, France, the Netherlands, Denmark, and
Germany, with 8–12% of Community [1].

The supply of mussel seed is critical for the development of industrial mussel culti-
vation [3]. Mussel farming in Galicia (NW Spain) requires 9000 Tm of mussel seed per
year to support the current mussel production rate [4]. A total of 66% of mussel seed
used in mussel cultivation is obtained by scraping directly from intertidal exposed rocky
shores where mussel seed is attached, although gathering of mussel seed from artificial
collector ropes has increased in recent years [4], principally due to its higher growth rate
when cultivated on the raft [5]. Since Galician legislature restricts the number of ropes
per raft (maximum 600 ropes of 12 m length during the larval settlement season), it is
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crucial to increase the seed yield obtained on artificial collectors by the development of
new designs [6].

To improve knowledge about the presence and behavior of larvae in the sea, the Span-
ish administration has a sample collection program underway at seven points distributed
in five Galician estuaries. Through this program, the presence of 3 larval stages can be
identified: an earlier one (D-shaped larvae, 3 to 4 days old, with an average size of 40 µm),
a more advanced stage, close to metamorphosis and subsequent fixation (umbonate larvae,
aged between 25 and 30 days and with an average size of 180 µm), and an intermediate
one (100 µm). This information is of great interest to the sector since it warns of the optimal
moments for the placement of the collector ropes.

Manual counting of small species is presented as a task that requires the intervention of
specialized personnel in addition to requiring a large amount of time. The effectiveness of
the study, in terms of accuracy and reliability, is directly linked to the operator’s experience
and skills, as well as their level of fatigue. For example, when working with a sample plate
with a diameter of 5 cm, it is necessary, either with a magnifying glass or a microscope, to
zoom in on the sample in order to visualize the individuals present in it; Figure 1 displays
mussel individuals in their early stage:
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scope, 1.6 × 1.6 square millimeters is an area that allows manual inspection. 

Figure 1. Mussel larvae at their 40-micrometer size, under microscope.

Counting all the individuals in Figure 1 may require three/five minutes from a quali-
fied person; even more, the visible area in the figure represents a small percentage of the
entire plate area (Figure 2). Consequently, the time to manually detect, classify, and count
the individuals present in a small sample is incremented exponentially.
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Computer vision is a part of artificial intelligence that aims to replicate the human
capability to understand visual information. To achieve this, all that is needed is a computer
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that can analyze the images and differentiate features in them that allow it to “understand”
the objects present in them through algorithms that combine statistics, signal processing,
and machine learning [7]. In this way, artificial vision can be considered an interesting tool
to tackle tasks of this nature, to say the least. A robust machine vision model can drastically
reduce the time it takes to perform these tasks while counteracting the fatigue experienced
by operators. The high processing power of computer vision could be combined with the
ability of specialized personnel to monitor predictions to speed up work and increase the
number of hits.

Artificial neural networks are inspired by the neural structure of our brains. In a
simplified way, the aim is for these neurons in the network to learn to solve the situations
on which they have been inductively trained based on previous experience [8]. At each
stage, when receiving mathematical information, these signals are weighted with different
statistical methods. In this way, in the training stage of the network, the ‘weights’ of
each neuron are adjusted so that the differences between the actual result and the result
predicted by the network are minimized [9]. This is achieved by presenting pre-labeled
data so that the network ‘learns’ from its errors through an iterative process in which the
aforementioned weights for each neuron are adjusted in a graduated manner. Figure 3
shows the common structure of a neural network [10]:
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Figure 3. Structure of an artificial neural network: each neuron takes an input and applies an activa-
tion function to it. This input, depending on the layer we are in, will have different mathematical
characteristics of the dataset or the output of a previous layer of the network. The neuron will apply
an activation function to the sum of the weighted inputs and transmit the result to all the neurons in
the next layer. To go from one neuron to another, a kind of ‘toll’ has to be paid, which are the weights
mentioned above. Weights, therefore, control the strength of the connection between neurons, deter-
mining how much influence the input will have on the output. That is, when transmitting different
inputs between neurons, the weights are applied together with an additional value called bias.

In the context of this work, the idea that the algorithm works with numerical parame-
ters that guide the neural network towards the correct solution through predictions is taken
up. The data passes through the network multiple times, which will cause a progressive
refinement of the numerical values of the network until optimal results are reached, bring-
ing us closer to the theoretically ideal parameters that cause a greater success rate. After
the testing phase, the machine learning model is obtained, which will be able to perform
the task for which it has been trained. The model is essentially composed of the numerical
parameters obtained thanks to the algorithm and the Confidence for decision-making.
The model represents the product obtained after the training of the algorithm and is the
program used to perform the proposed task.
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The idea of using computer vision and neural networks is not new and has been
profusely used in the literature in other fields. In [11], different neural networks are used in
series, combined with a feature vector that is made of image intensities sampler over a sten-
cil neighborhood, proving advantages over previous membrane detection methods in the
context of an automated system for the reconstruction of the connectome [11]. The authors
of [12] use AI-aided cystoscopy to outperform urologists at recognizing and classifying
bladder lesions using convolutional neural networks over the PubMed-MEDLINE database.
The authors of [13], on the other hand, use supervised classification to compare histograms
of oriented gradients and convolutional feature extractors in the field of detecting salmon
muscle gaping using SVM with great results. A similar approach, but in a different context,
can be found in [14], where authors address a key issue in neuroanatomy (segmentation of
neuronal structures shown in electron microscopy images; the strategy here is to provide a
pixel classifier to label each pixel whether it is a neuron or not, using convolutional and
max-pooling layers that extract features, providing a probability of each class [14]. The
authors of [15] automate the diagnostic process with the use of an intelligent system that
would recognize malaria parasites, and aid efforts for the total elimination of malaria using
microscopy and a specifically tailored CNN that outperforms VGGNet [15].

The proposed algorithm is based on the YOLO (You Only Look Once) method [16], a
two-stage detector for objects in images. The initial phase of the method involves producing
a broad array of region proposals for each image using either a heuristic algorithm or
CNN [17], followed by the classification and regression of these identified candidate
regions. In the context of object detection using computer vision, the main approaches
followed in the literature are one and two-stage detectors [18].

YOLO is the most known example of a one-stage detector, which obtains a prediction
of the existence of an object in a bounding box and classifies it into one of the different
classes in one only inspection of the original image. Other well-known one-stage strategies
are RetinaNet [19] and the Single Shot Multibox Detector (SSD) [20]. All one-stage strategies
have in common that they divide the input image into cells to obtain a prediction of the
subarea in the grid where the potential objects are present in their different classes, just
using each cell at a time. They are particularly effective in real-time applications and
commonly selected in low-computational scenarios because they are focused on the time
needed to detect the objects.

As for two-stage detectors, although typically slower, they usually obtain more ac-
curate object detections [21]. The main difference with one-stage mechanisms is how
two-stage mechanisms propose the regions and how they classify the objects in their classes.
In this case, the process is divided into two steps: first, the detector selects certain areas of
the input image that have more likelihood of having the presence of the pursued object,
using methodologies like RPN (region proposal networks) or selective search. Once the
potential areas are identified, they are refined and classified to conclude whether there
is an existence of the object and where. One-stage methods use the whole input image
to obtain a prediction of the bounding boxes; two-stage mechanisms, on the other hand,
perform a refinement of the selected areas of the input image (proposed in the first step)
and accomplish the obtention of the bounding boxes and the classification based on the
features found in the first stage. Two-stage methods do not focus on speed but accuracy is
a common choice when computation resources are not an issue and the objects in the image
present difficulties like overlapping or a high density [22]. In the context of this research,
performing detection in a single step provided faster detection and allowed a simpler yet
effective approach; the speed advantage was key to enabling real-time detection not only
in still images but also in videos and life detections on the microscope.

Most mollusk identification processes rely on human visual ability and are an exten-
sive and laborious task. This presents major limitations in terms of efficiency and scalability.
In [23], the different techniques used in the scientific literature are shown. The morpho-
logical mechanisms using microscopic examinations are the primitive yet still more used
method, despite the subjective nature of its philosophy (comparing images with voucher
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collections and preserved specimens [23]. Due to being subjective, it is a method clearly
prone to human error [23]. The immunological techniques, on the other hand, rely on
unique ‘signature’ molecules that, once injected into a vertebrate host, will trigger an im-
mune response that generates identifiable antibodies [23]; in this vein, polyclonal antibodies
excel because of the higher affinity and wider reactivity, but it is an expensive method
that only provides a markup for the individuals in the sample (keeping the classification
according to size/age and account to the human operator). Finally, DNA-based systems use
a combination of cytogenetics and cytology after dissolving the shell; this type of method is
really accurate and bases its strategy on comparing a DNA sequence that is sampled from
well-known identified cases (especially grown-up mussels), with the one extracted from
the larvae to be identified. Again, this is a mechanism that not only takes time and money
but also does not provide size classification according to age or automatic accounting [23].

Focusing on bivalve larvae, most of the literature is based on techniques based on
image analysis (manual or automatic) [24]. The fact that both immunological and DNA-
based mechanisms need specialized equipment not available in many laboratories, those
methods based on images obtained through the microscope are coping with every case [24].
This reality brings the need for automatization of the inspection, detection, classification,
and accounting of the species in the sample, and this is why different research for the
development of intelligent systems is born [24]. To the best of our investigations, the
automatized methods for mollusk larvae in the literature are scarce.

In the Mussel Classifier System Based on Morphological Characteristics [25], an au-
tomatic classifier of five species of mollusks based on their morphological characteristics
is developed. This mimics the same procedure that skilled operators carry out to visually
identify the different kinds of mollusks. The proposed system goes further by including
statistical information on crop developments. With this system, a recognition rate of around
95% has been achieved, obtaining the results in a matter of seconds as long as the visual
interface that demonstrates the results is not active.

Other studies focus on proposing solutions to prevent the settlement of invasive
aquatic species. The following paper describes an autoencoder-based automated system
for extracting features from image sets. An autoencoder is a type of neural network used to
reduce and extract relevant features about a dataset. In other words, this technique is not
designed to identify and classify different types of mollusks but to detect the differences
between them in order to discriminate against invasive species. With this technique, a
harmonic average between sensitivity and reliability of 97% has been achieved [26].

Another novel technique is the ShellBi method, which consists of the supervised
classification of images by means of birefringence stops in the shells of bivalve larvae. The
research seeks to improve the accuracy of ShellBi. The improvements have been obtained
in larvae reared in conditions similar to those of the natural environment, so it concludes
that it has application with field samples with a potential future to the extension of different
marine systems [27].

In [28], an image processing algorithm is introduced to identify, classify, and count the
mussels in seawater using computer vision, but the research is focused on grown mussels,
not microscopic larvae. In [29], a CNN is proposed to identify and classify mussels from
other types of species (barnacles, worms), but, again, it uses grown species instead of larvae
under the microscope. The same approach is given in [30], where a CNN method is applied
to perform image segmentation, with a genetic programming mechanism (but applied to
buoys). Finally, in [31], Sentinel-2 images are used to automatically identify and count
mussel platforms using MLP and a neural network.

Thus, different perspectives on the use of artificial vision and machine learning to
address the identification of mollusks are highlighted but lack focus on larvae, especially
mussel larvae. This proves that there is already evidence in the field and opens the way for
us to carry out research in this field under a new premise. In addition, we will add a new
approach by proposing an automatic counting of samples to speed up the work process
of experts. The capabilities of this technology will also be explored to try to improve the
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efficiency and accuracy in the identification of different classes according to the age of the
same species of mollusk.

This research arises under the premise of implementing an artificial vision system for
the detection, counting, and classification of bivalve larvae. The focus is on developing
a computer vision model for the classification of cheek larvae according to their size;
specifically, we classified them into 40, 100, and 180 µm (which are the average sizes
of the individuals in their 3 key steps of mussel growth, and the data manufacturers
need to understand when it is the right time to perform the insemination). The goal is,
therefore, to develop, train, and test a specific computer vision model to differentiate the
key characteristics of the mussel larvae individuals, so that automatic detection, accounting,
and classification can be performed with no manual intervention in a small fraction of
the time a human could perform this task. There are several premises that must be taken
into account:

- The individuals to be detected can be in multiple positions and orientations, so a
dataset will be needed, i.e., a set of images, in this case, large and varied enough to
avoid overfitting the model.

- This technology has undergone multiple advances in recent years, but there is great
difficulty when it comes to detecting small objects. To the untrained eye, the differences
between the classes to be detected are not obvious. Being aware of this, we must
establish some “limits” of our work and that is that we must always work with the
same zoom and always under the most similar conditions possible to those that have
been used to train the model.

As a result, the goals for carrying out the work were as follows:

- Implementation of an artificial vision system capable of analyzing images containing
the different cheek larvae and distinguishing the characteristics for their classification.

- Creation of image data augmentation techniques to increase the number of samples to
train the model.

- Evaluation of the model’s ability to perform, count, and classify the model, both by
software and by traditional manual analysis techniques.

- Optimization of the model to maximize accuracy and efficiency in the identification of
individuals, exploring possible adjustments and improvements in the algorithm.

- Develop a software tool for counting the predicted classes in order to be able to handle
and work with the collected data.

These goals for the identification, accounting, and classification of mussel larvae are in-
tegrated within the purpose of achieving an artificial vision model capable of differentiating
between an indeterminate variety of species and the species under study.

The manuscript is organized as follows: Section 2 describes the materials and methods
that have been used both in the Marine Research Center belonging to Xunta de Galicia and
the University of Vigo; Section 3 depicts the results obtained and provides a discussion;
and finally, Section 4 introduces the conclusions.

2. Materials and Methods

An image is made up of pixels and in order to form these images, the spatial dis-
tribution of these pixels is important. That is why artificial neural networks are not an
optimal architecture for developing computer vision models. This is how convolutional
neural networks (CNNs) emerged, which are especially useful for images. The main char-
acteristic of these networks is that they have many layers of convolutions. This makes it
possible to differentiate features in a hierarchical way where each layer is good at detecting
different shapes. The deeper the deeper the shapes, the more complex the shapes can be
differentiated. CNN architectures are made up of 3 main layers:

- The convolutional layer: a convolution is a mathematical operation that combines two
functions, giving rise to a third by superimposing and mixing the originals according
to the equation:
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( f ∗ g)(t) =
∫ ∞

−∞
f (η)g(t − η)dη (1)

Input images are applied kernels or filters using the convolution operation, which leads
to the highlighting of crucial features of the objects present in the image. This is because
these operations generate convolutional feature maps that serve to highlight patterns (edges,
shapes, or textures). After each convolution operation, a nonlinear activation function is
applied to introduce nonlinearity factors and learn complex patterns.

The non-linear activation function that is applied is ReLU, which in a simplified
way involves looking for the maximum value between an interval (0, z). This function is
very advantageous in order to avoid the disappearance of the gradient that is a relatively
common problem during training phases, especially in those that have many layers. The
problem is that the gradients of the weights become extremely small. This means that
the adjustments of the values of the weights are negligible, that is, the values are barely
being updated during training, resulting in a lack of learning of important characteristics.
Another advantage of ReLU is that it is computationally less expensive than other activation
features. The main disadvantages are that gradient fragility can occur when activations
fall in the region where x < 0 occurs, causing the gradient to be null. This causes those
particular neurons to stop responding to variations in input. Also, the activation range of
ReLU is [0, ∞) which means that there is a chance that the activation value will be triggered.
Figure 4 displays the behavior of the ReLU function:
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- Pooling layer: the next layer performs a pooling operation, which reduces the size of
feature maps and extracts features that are maintained over small shifts in the image.
This operation reduces the number of parameters and computational complexity while
preserving the essential characteristics to be differentiated.

- Fully connected layer: with the previous two layers, relevant features are obtained
and fully connected layers are then used. These are responsible for classification and
have connections between all the nodes in the previous layers. A softmax function is
incorporated into them to generate ranking probabilities:

( f ∗ g)(t) =
∫ ∞

−∞
f (η)g(t − η)dη (2)

The above outputs are transformed into normalized probabilities that add up to one,
and the model’s Confidence in the membership of each class is evaluated. In the function
above, y represents the input vector and j represents the index of each class.

In order to accomplish real-time mussel larvae detection, accounting, and classification
in their three primary categories, an evolution of the YOLO method has been developed.
The strategy followed consists of adding a first step of attention methodology to the inner
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network, which allows the network to find resources for the key features; then, the standard
Mean Squared Error is used for the loss, resulting in great stability for the bounding box
regression. The final step was to generate extra images from the original dataset using
common augmentation techniques.

The process begun with the bounding boxes defined by 9 anchors that limit the
area and the aspect ratio of the object. In order to stablish the bounding box priors,
clustering of k-means was used on the dataset, using the Euclidean distance metric as the
algorithm for clustering. The idea behind k-means is that the data come from the k precise
center plus certain noise in the Gaussian form. The algorithm initially selects k points
(randomly) for centroid candidates, and then assigns every data point to their nearest
cluster centroids. After that, the centroids are recalculated on the formed clusters after
each iteration. This process of assigning and evaluating the centroids is repeated until
the centroids are finally stabilized, or when a limit of iterations is reached. At last, the
ultimate anchor size corresponds to the center of the polygon formed by the 9 clusters.
This methodology helps alleviating the learning challenge for the model and improves the
model’s ability to detect bounding boxes.

For the context of identifying mussel larvae in their three primary stages (40, 100, and
180 µm), the images have to be obtained at a specific zoom factor, according to the zoom
the model was trained; consequently, no change of scale was needed. The input image
is divided into grids of P × P, where the objects are to be detected and their bounding
boxes need to be centered. Once divided in grids, the neural network generates the maps,
extracting the features from each division. After that, the Feature Piramid Network [32]
employs upsampling of the output feature maps and subsequently concatenates them with
the output from the preceding convolutional layer. The next step consists of a layer of
attention, to focus the network on the key features for every channel. If we call Fin the
a × p dimensions of the convolution layer with n channels, then the feature fl of channel
number l, having l in {1, . . ., n}, will be Fin = {f1, f2, . . ., fl}. In every convolution, a squeeze
operation is performed on Fin through the a × p dimensions, generating global features
r ϵ Rn, encoding the features on each channel. Consequently, dimension feature number i
can be calculated as follows:

ri = Fe( fi) =
1

a × p

a

∑
i=1

p

∑
j=9

fl(i, j) (3)

From there on, the excitation was conducted on the global features. In order to capture
the non-linear relation among the individual channels, we employed a straightforward
gating method with an activation sigmoid function.

act = Fe(z, p) = σ(p2(τp1r)) (4)

σ is the Rectifier Linear Unit; p1 represents the weight of the first fully connected layer
that performs a compression in the parameters of the channels; p2 denotes the weight of
the second fully connected layer, to restore back the number of channels; and finally, the
sigmoid function is represented by τ. At last, we propose the following:

∼
fl = Fes(fl , yl) = fl ·actd (5)

Which is the scaling function, where the yl parameter is a scalar that multiplies the

feature of the d channel and obtains the output of this block of layers as {
∼
f1,

∼
f2, . . . ,

∼
fn} for

every channel.
As in the YOLO function, the function that evaluates the total loss can be calculated as

the sum of the losses of each step (classification loss, Confidence loss, and bounding box
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loss). The loss produced in the classification step can be obtained using categorical cross
entropy, as given by the following:

Lcl = −
P2

∑
x=0

Bm
xy ∑

g in classes
[P̂robxyLn

(
Probxy

)
+ (1 − P̂robxy)Ln

(
1 − Probxy

)
] (6)

where Bm
xy denotes the y box preceding in the x grid cell (P × P grid); in case that preceding

bounding box can predict the location of the target bounding box, Bm
xy will be 1, and zero

in other case. P̂robxy represents the estimation of the probability that the larva belongs to
class g, and Probxy is the label of the ground truth.

The loss originated by the Confidence function has been selected as a modification of
focal loss [33], which addresses the class imbalance by reshaping the standard cross entropy
loss such that it down-weights the loss assigned to well-classified examples [33]; their
strategy focuses training on a sparse set of hard examples and prevents the vast number of
easy negatives from overwhelming the detector during training [34]. In our case, no weight
was used to address the scale issue since the dataset and the samples were obtained using
a specific zoom to handle the different sizes of the mussels in their growth; consequently,
the proposed equation is as follows:

Lco = −∑P2

x=0 ∑C
y=0

[
β
(
1 − Cxy

)δ ĈxyLn(Ĉxy)+(1 − β)Cδ
xy

(
1 − Ĉxy

)
(7)

where Ĉxy stands for the prediction of the Confidence, and Cxy is the Confidence of the
ground truth box. The values of β and δ were obtained during the tests, with values of 0.75
and 2, respectively.

Finally, the loss of the localization of the bounding box prediction is given by MSE
(Mean Squared Method), which quantifies the difference between the coordinates of the
predicted bounding box and the coordinates of the ground truth bounding box. The
operation is performed separately for the coordinates of the center of each bounding box
and for the size of each bounding (for every bounding box found in the image). Using MSE,
the average squared difference between the parameters of the bounding boxes (predicted
and ground truth) can be estimated, using not only the accuracy of the location but also the
accuracy of the size; minimizing this MSE value during the training step, the prediction
mussel locations of the model is improved [35].

The dataset was also augmented in order to mitigate overfitting, by using two different
mechanisms; the idea is to enhance the model’s generalization capacity by using a greater
quantity of images (since manual data collection and annotation involves an important
amount of effort, we expanded the dataset).

The first data augmentation technique used was CutMix [36]. This technique, instead
of just deleting pixels, substitutes the erased areas with small patches sourced from other
images. At the same time, the ground truth labels are adjusted in proportion to the
cumulative pixel count of the merged images. This methodology allows us to avoid pixels
with little to no information during training, thereby improving training efficiency, while
still keeping the benefits of regional dropout. Moreover, the introduced patches augment
the model’s localization ability by necessitating the identification of objects from partial
perspectives [36]. In this research, CutMix provided different contexts that improved our
generalization capabilities, minimized overfitting, and worked as a regularizer; it provided
identification even when the larvae were under other ones, and reduced the time to create
the dataset database.

The second data augmentation technique used was a rotation of the image. The
rationale is the same: the number of images available for training is limited, so it is
interesting to use data augmentation techniques to increase the number of images we have.
The goal is to improve the generalizability and performance of the models we are going to
develop. The technique consists of applying different manipulations and transformations
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to existing images to generate new data based on previous ones. Given the conditions of
the research, we have decided to rotate the images we have. This makes sense if we think
that the individuals present in a sample can be found in any position: turned, one on top of
the other, etc.

Although this task may seem trivial, we must bear in mind that at the same time
as the images are rotated, we must rotate the coordinates of all the bounding boxes and
store them in new text files to save the new information. We generated the corresponding
rotation matrices and forced the same scale to be maintained during the rotation. By doing
so, certain areas in the images will remain empty; to solve this issue, mirror techniques
have been created and used so as not to leave empty areas. These reflections must also be
taken into account when creating the new files with the coordinates of the bounding boxes,
as there may be detectable individuals that we must tell the algorithm that they are there.
The rotation was performed using OpenCV, following the next steps:

1. Obtention of the labels in the image (transforming the coordinates to the OpenCV format).
2. Rotation of the images: first, a rotation matrix is obtained for every angle in the 0–360◦

interval, with a 2◦ step size; then, the image is rotated.
3. Bounding-boxes translations: whenever the angle is different from 0◦, the points are

moved using the rotation matrix; if the corresponding bounding box is not moved
away from the limits of the image, the change is made permanent, and the coordinates
are translated to the YOLO format again.

Using CutMix and rotation, the dataset obtained was balanced, contained enough
images to perform the training and validation steps, and provided enough context to
achieve good results.

3. Results and Discussion

To perform the training and the testing of the model, two datasets were created:

• The first one was used for training and validation purposes. To create it, 6400 images
of 2.5 cm radius circular laboratory plates were taken, each containing seawater
captured in a mussel sea farm. In the laboratory of the fishing farm, mussels are kept
in separate seawater tanks according to their size and gathered using sleeve filters for
each specific size of each class (40, 100, 180); with this procedure, it can be guaranteed
that each sample just contains individuals of one class, what helps labeling the images.
Table 1 displays the samples obtained for the first dataset:

Table 1. Dataset description.

Class Size (µm) Samples

0 40 2400
1 100 1800
2 180 1200

Table 2 shows the characteristics of the optics used to take the images of the samples;
each sample was photographed twice (in two different microscope configurations) to
handle the different larvae sizes:

Table 2. Properties of the image capturing process in their two configurations.

Configuration Zoom Video Magnification Objective Aperture

1 4.99× 1.6× 1×/0.09 0.09302
2 3.97× 1.3× 1×/0.08 0.07673

• The second dataset was formed by mixing individuals of the three different classes in
a tank of seawater so that it would contain mussels at three different stages in their
growth. This dataset was used for validation purposes, to detect, classify, and count
the individuals.
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Once we had a relatively large dataset, it was labeled to inform the algorithm about the
different classes present in the samples. For this process, an open-source third-party tool,
labelImg, was used. The bounding boxes around each mussel were manually identified by
a team of biology experts, resulting in a text file in which the class is identified with an id
(in this case 0 = 40 µm, 1 = 100 µm and 2 = 180 µm) along with the 4 points that make up
the vertices of the boxes within the images. Figure 5 showcases the process of manually
labeling the samples in the pictures taken:
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Figure 5. Manual labeling of the samples.

The next step was to perform the data augmentation described in the previous section
and to save 20% of the images taken for the testing phase of our model and keep 80% of
them for training purposes. A Python script was created to perform the CutMix algorithm
and to distribute the files randomly in a train and test folder according to the use they would
have. Special care was taken to make sure that a similar number of images of all classes
were available in order to realistically evaluate the model under random circumstances.

Figure 6 displays a picture of a sample of seawater with mussel larvae to test the
capability of the algorithm:
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The algorithm was implemented under the Python language. Table 3 displays the
average number of individuals accounted in different pictures of different mussel classes,
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and the average manually accounted larvae present, as well as the time spent in both
types of processes. It is shown that the average time the algorithm takes to evaluate the
presence of the larvae remains practically constant, whilst the average time a scientist needs
to account for the individuals is much longer; it is necessary to remark, also, that these
samples just contain larvae of the same class, making it much easier for a human to make
the accounting.

Table 3. Average manual vs automatic accounting.

Class Size (µm) Manually Automatic

# Time (s) # Time (s)

0 40 204 383 206 9
1 100 84 141 83 8
2 180 49 77 51 8

Another test performed to check the validity of the algorithm was to use pictures of
other species, very similar in their larva state, to mussel: clam. Figure 7 displays a picture
under the same zoom conditions and for individuals of the same size (40 µm).
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Table 4 shows the results of the test where the clam was introduced to check whether
the algorithm identified it as a mussel or not. As the table displays, the algorithm correctly
identified no mussel larvae in the same; indeed, although the larvae are very similar to
the human eye, in this sample there were no mussel larvae (consequently, the algorithm
proved to be working properly under this test).

Table 4. Clam larvae of 40 µm to test if they were identified wrongly as a mussel.

Class Size (µm) Manually Automatic

# Time (s) # Time (s)

0 40 183 305 0 6

Additionally, a set of tests were performed using several samples containing a mix of
different larvae (in different stages of their growth) in different sizes. Figure 8 displays a
picture of a sample used in the laboratory where the algorithm has found the individuals,
classified the different classes, and accounted for the number of each class.
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Figure 8. Seawater sample with mussels in different stages (sizes).

Finally, a final set of tests were carried out to determine the effectiveness of the
algorithm, in terms of not confusing another species incorrectly as if they were mussels.
In the laboratory, a dataset of samples that had fine clams were prepared, which are very
similar to mussels in their larva state. Figure 9 displays the results of the detection of
fine clams at their 40–100–180 µm stage of growth: as no bounding boxes are shown, the
algorithm confirms that no individuals of mussel larvae are present in the sample (in which
it is really difficult for the eye to distinguish between them).
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Figure 9. Fine clam under the microscope, in their 40 (left), 100 (center), and 180 (right) µm stages of
growth. The algorithm correctly identified no mussel larvae, although the similarities in size and
shape are clear.

The metrics used to evaluate the algorithm include Precision and the rate of Recall (P
and R, respectively). They both are based on true positives (TP, meaning a correct detection
of a ground-truth bounding box), false negatives (FP, a false detection of a non-existing
object within the image), and false negatives (FN, an undetected ground-truth bounding
box) [37]. In this case, we opted to define as positive samples those with an overlapping
between the predicted bounding box and the ground truth (IoU) of over 0.5.

Precision in computer vision is the ability that a model has to identify just relevant
objects in an image (in percentual terms, the percentage of correct positive predictions).
Recall refers to the capability of the algorithm to find all relevant cases (every ground
truth bounding box in the image); it can be written as the percentage of correct positive
predictions among every give ground truth:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)
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Moreover, the average position was employed to determine the algorithm’s perfor-
mance in terms of detection, calculated as follows:

AP =
∫ 1

R=0
P(R).dR (10)

Finally, mean average recision explains the average precision (AP) calculated not for
every class (size of the mollusk), but for every class under study:

mAP =
1
g

g

∑
i

APi (11)

Figure 10 provides a detailed visualization of the Recall–Confidence Curve for the
various classes, serving as a critical indicator of the algorithm’s performance. The curve
illustrates how the algorithm’s Recall changes as the Confidence threshold is adjusted.
Recall, defined as the ratio of true positive instances to the sum of true positives and
false negatives, measures the ability of the algorithm to identify all relevant instances.
The curve’s shape and the specific data points offer insights into the balance between
correctly identified instances and the Confidence level at which these identifications occur.
This shows the algorithm’s efficacy in recognizing different classes under varying degrees
of Confidence.
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The results highlighted in Figure 10 demonstrate that the algorithm achieves a high
level of accuracy. When applying a reasonable Confidence threshold, it can be observed
that more than 90% of the classes were correctly identified. This high Recall rate indicates
that the algorithm is performing as expected in detecting the majority of relevant instances
within each class, thereby ensuring robust performance across different categories. The
implication is that the algorithm maintains a strong ability to discern relevant data points
even when adjusting for confidence levels, reflecting its overall reliability and precision in
practical applications.

To further enhance the reliability of the algorithm and mitigate the risk of false posi-
tives, predictions with confidence levels below 50% were systematically discarded. This
threshold was established to ensure that only those predictions with a higher likelihood of
accuracy were considered. By setting this cutoff, the number of incorrect classifications,
or false positives, was significantly reduced. This filtering mechanism ensures that the
algorithm’s outputs are not only accurate but also trustworthy, thereby increasing the
overall integrity of the classification results. The balance between Recall and Confidence
underscores the algorithm’s capability to deliver high-quality predictions while minimizing
errors, making it a valuable tool for classifying the individuals in a water sample.
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Figure 11 illustrates the Precision–Recall curve, a tool for evaluating the performance
of the model in terms of its ability to correctly identify positive instances. Precision, defined
as the number of true positives divided by the sum of true positives and false positives,
measures the proportion of positive identifications that were accurately detected by the
algorithm. This metric helps us to understand how well the model is distinguishing
between true positive cases and false alarms. The Precision–Recall Curve in Figure 11
provides a visual representation of this relationship across different thresholds, highlighting
the model’s efficacy in maintaining high precision while adjusting recall levels.
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Figure 11. Precision–Recall Curve.

The curve indicates that the model demonstrates an average Precision value of 97.6%,
showing its capability to correctly identify positive instances with minimal errors. This high
Precision rate suggests that the model is avoiding incorrect labeling of negative cases, thus
reducing the occurrence of false positives. The ability to achieve this Precision is indicative
of the model’s robustness, particularly in scenarios where accurate detection of positive
cases is critical. Overall, the Precision–Recall Curve not only reflects the model’s strong
performance but also its capacity to deliver precise classifications, making it a valuable
asset in the laboratory.

The F1 score was calculated, providing an evaluation metric that harmonizes the
average between Precision and Recall. The F1 score is particularly interesting in scenarios
where there is an imbalance in the sample sizes among different classes, as it accounts for
both the Precision (the ratio of true positive instances to the sum of true positives and false
positives) and the Recall (the ratio of true positive instances to the sum of true positives and
false negatives). By combining these two metrics, the F1 score offers a balanced measure
that reflects the model’s ability to identify relevant instances while also minimizing the
occurrence of false positives and negatives.

Figure 12 presents the F1-Confidence Curve, which is an indicator of the optimal
Confidence threshold to use for minimizing errors. This curve illustrates how the F1 score
varies with different Confidence levels, guiding the selection of a threshold that balances
Precision and Recall effectively. By identifying the appropriate Confidence level, the model
can reduce both false positive and negative occurrences, enhancing overall prediction
accuracy. This approach ensures that the model performs robustly, even when trained
on an unbalanced dataset, thereby providing reliable and precise classifications across
diverse classes.
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4. Conclusions

The European Union’s mussel production industry is a significant market, dependent
on obtaining mussel larvae as seed for cultivation. Traditionally, the process of monitoring
larvae presence in seawater involves manual sampling and labor-intensive microscopic
counting, susceptible to human error and time-consuming procedures. To address these
challenges, our research introduces a computer vision-based methodology aimed at accu-
rately identifying, classifying, and quantifying mussel larvae individuals across various
developmental stages from microscopic images of water samples.

Our approach is the utilization of a neural network architecture derived from the
YOLO method, incorporating convolutional, pooling, and fully connected layers to au-
tomate the detection, classification, and accounting tasks. Through the use of several
manually labeled samples for model training and evaluation, along with data augmenta-
tion techniques to mitigate overfitting risks, we established a robust framework capable of
effectively processing diverse larval specimens.

The outcomes of our study highlight the effectiveness of the proposed algorithm, as
evidenced by standard performance metrics including Recall–Confidence, Precision–Recall,
and F1 scores. These metrics affirm the algorithm’s aptitude in accurately identifying,
classifying, and accounting for different mussel larval classes present in microscopic images,
surpassing human capacities in both speed and reliability. Consequently, our research
not only presents a viable solution to streamline mussel larvae monitoring processes but
also showcases the potential of computer vision techniques in enhancing efficiency and
accuracy within aquaculture industries.

The next steps in our research include extending the spectrum of species to the rest of
the bivalve mollusks under industrial growth (not only mussels but also clams, oysters,
cockles, razor clams, etc.), and developing an automated machine that will accept laboratory
plates with seawater and will perform the capture of the image and return the accounting
of the different species individuals.
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