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Abstract: Based on the existing research on connectors, a web-embedded composite shear connector
was proposed in this paper. Further, six types of push-out specimens were carried out on static
push-out and low-cycle repeated load tests. The failure forms, load–slip curves, and load–strain
curves of the tests are analysed. On the basis of the experiment, the finite element analysis is also
carried out to enlarge the parameters of the specimens. The results showed that the shear stiffness
of the web-embedded composite shear connector was larger than that of pure stud shear connector
or perfobond rib shear connector, the slip limit was smaller, and ductility was good. A parameter
analysis showed that penetrating steel rebars have the greatest impact on ultimate shear bearing
capacity, reaching 43.82% of ultimate shear bearing capacity. Following repeated loading, the ultimate
shear bearing capacity of the specimen decreased, the ultimate slip increased, and the ductility
decreased. Based on the experimental results of this study, a new calculation equation for the ultimate
shear bearing capacity of a web-embedded composite shear connector was proposed with a finite
element model for verification.

Keywords: steel–concrete composite structure; web-embedded connector; push-out test; finite
element analysis; shear performance

1. Introduction

The stud [1–4] and perfobond rib shear connector (PBL) [5] are two types of traditional
shear connectors. The PBL shear connector is rigid, whereas the stud shear connector is
flexible [6]. The stud shear connector has the characteristics of convenient construction, low
cost, and consistent shear resistance in all directions [7–10]. The PBL shear connector has
higher shear resistance and shear stiffness, as well as having the advantages of excellent
fatigue resistance and simple construction [11–16]. The web-embedded connector is a
type of shear connector that effectively combines the stud shear connector and the PBL
shear connector.

Web-embedded connectors originate from puzzle (PZ)-shaped composite dowel shear
connectors, the removal of traditional shear connectors in case of the low utilisation of the
upper flange, and the cutting of steel plates into various shapes to connect with concrete.
Germany first used PZ shear connectors without a flange plate to build the Perkinger
Viaduct [17], following which different types of web-embedded connectors began to appear.
The yield strength of the steel rebar also changes when the fabrication process changes,
which also affects the shear properties of the shear connector. When the Tempcore process
is used, the yield and ultimate tensile strengths of the rebar increase [18,19].
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Guoqiang [20,21] proposed a new composite beam with an embedded web, wherein
the upper flange plate was removed from the structure to form a steel plate shear connector
with a slot at the upper end of the web plate. The Pennsylvania Department of Trans-
portation developed a highway bridge comprising T-shaped steel beams and penetrating
rebars embedded in concrete slabs. Naito CJ [22] developed a full-scale bridge model and
studied its flexural performance; the results showed that the design and manufacturing
method satisfied the AASHTO limit state standard [23]. Yuanlong [24] constructed nine
external U-shaped steel–concrete composite beams with an embedded web (WUSCB) and
investigated the effects of the shear span ratio, concrete wing width, joint spacing and
inclination angle, bottom longitudinal bar diameter, stud and stirrup setting, and U-shaped
steel web height-to-thickness ratio on its shear performance.

However, the research on web-embedded connectors is insufficient, and there is
no universal consensus. When considering different internal geometries, there remains
considerable research space for web-embedded connectors.

Therefore, this study proposed an economical and reasonable connection web-embedded
composite shear connector (WECSC) that saves construction time and improves the ef-
ficiency of WECSCs, which are directly used in web hole T-shaped steel (Figure 1). The
WECSC comprises four parts: concrete, embedded steel web, penetrating rebar, and studs.
In order to study the shear properties of the WECSSC, seven push-out specimens of six
types with different internal structures were designed and made in this paper, and push-out
tests were carried out on them, focusing on the analysis of the failure forms, load–slip
curves, and load–strain curves of the tests. The specimen was simulated by ABAQUS (2022)
finite element software, and an expanded parameter analysis was carried out on the basis
of the test. Through experiments and finite element analysis, the failure form and force
transfer mechanism of the composite shear key with embedded web are discussed, and the
proportion of different shear members in the ultimate bearing capacity of the composite
shear key with embedded web is expected to be obtained. In addition, considering the ex-
isting calculation equation and combining it with the test data of this study, an equation for
calculating the ultimate shear bearing capacity (USBC) was proposed and verified through
tests and finite element simulations. The flowchart of this paper is shown in Figure 2.
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2. Push-Out Test
2.1. Specimen Design and Manufacture

In this study, the shear properties of WECSC were analysed via a push-out test [25,26].
The concrete grade was C50, and the unilateral volume was 180 mm × 430 mm × 500 mm.
To eliminate the end-bearing effect, a gap of 100 mm × 70 mm × 50 mm was set in the
inner–middle part of the outsourced concrete. The hole steel web was 16 mm thick using
a Q345 steel plate with dimensions of 480 mm × 320 mm and a hole diameter of 44 mm.
The steel bar model was HRB400, with a length of 400 mm and diameters of 14, 18, and
22 mm, respectively. The stud was used in accordance with the literature [27], with the
selected model being Ø13, composed of ML-15. Further, HRB400 steel bars with a diameter
of 10 mm were selected for the stirrup. The specific structure and size of the specimen
P-18-S are shown in Figure 3.

In this experiment, the sizes of the perforating steel bar, stud, and end bearing action
of the WECSC were selected as the test analysis parameters (Table 1). There were seven
specimens in this test, which were divided into six types. The P-0 specimens were connected
to only a perforated steel plate. The P-18 specimens were connected to the steel bars. P-n-S
(n = 14, 18, and 22) specimens were set to penetrate the rebar bars and stud connections.
Based on the P-18-S specimens, in P-18-S# specimen, the voids in the inner middle and
lower parts of the enclosed concrete were eliminated, and an end-bearing area was added.
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Among them, two specimens of P-18-S were used for push-out test and low-cycle repeated
load test, while the other specimens were only used for push-out test. The connection
details are shown in Figure 4.
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Table 1. Internal component parameters of test specimens.

Specimen
Number Concrete Label Diameter of Penetrating

Rebar/mm Stud Type End Pressure

P-0 C50 / / none

P-18 C50 18 / none

P-18-S C50 18 Ø13 none

P-18-S# C50 18 Ø13 yes

P-14-S C50 14 Ø13 none

P-22-S C50 22 Ø13 none

The actual compressive strength of concrete was fcu = 56.9 MPa, measured through
the standard cube test. Parameters of steel components are presented in Table 2.
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Table 2. Steel component properties.

Material Type Thickness/Diameter
(mm)

Elastic Modulus Es
(GPa)

Yield Strength fy
(MPa)

Ultimate Strength fu
(MPa)

Q345 Steel plate 16 210 340 475

ML-15 Stud 13 206 442 525

HRB400 Steel

14 200 450 540

18 200 450 570

22 200 450 580

2.2. Test Device and Measurement Scheme

The device used for the push-out test is shown in Figure 5.
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(1) Push-out test

The value of the preloading was set about 0.3 times the calculated USBC, about 15 min.
A combination of load and displacement control was adopted for formal loading.

First, load control was used to perform graded loading: 10–20 kN at each stage in the
elastic stage and 5–10 kN in the elastoplastic stage. Furthermore, the load was held for
5 min after each stage was loaded to ensure that the internal components of the specimen
were fully deformed, and the outer concrete was observed for cracks. After the specimen
entered the plastic stage, displacement control was chosen instead of the loading mode,
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with a displacement of 0.1 mm at each stage. When the specimen reached the peak load, it
continued to be loaded up to 50% of the peak load or stopped loading when the penetrating
rebar broke. In this test, the loading rate was 1 kN/s and the displacement loading rate
was 0.02 mm/s.

(2) Low-cycle repeated load test

Preloading was also performed before the repeated low-cycle load tests. The test
adopted an increased one-way repeated load. The static push-out test showed that the
slip limit of the specimen was not large. Therefore, the increment in the repeated load
at each stage was controlled by the load shown in Figure 6. After the repeated loading,
unidirectional loading was applied until the specimens were damaged.
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2.3. Test Process and Failure Pattern

(1) External failure pattern

According to the failure mode of each specimen (as shown in Figure 7), the crack
failure mechanism of the WECSC is as follows: (1) Vertical cracks appeared on the outer
side of the concrete, extending from the bottom to the upper side. Subsequently, the cracks
expanded in all directions and continued to expand vertically with a high probability,
which was caused by the dilatancy effect of the compressive concrete of the specimen.
(2) The cracks in the upper part of the concrete originated at the hole in the steel web and
extended along the steel bar axis. (3) Oblique shear cracks appeared inside the concrete slab,
generally starting at the position from where the upper row of steel bars ran through and
extending diagonally downward from the steel–concrete junction. (4) The front concrete
was pulled apart in the vertical direction, and the crack extended upward from the bottom,
corresponding to the hole position. (5) With the development of cracks, the concrete front
cracks connected with the top cracks or with the inner cracks such that the inner wall of the
concrete was split off entirely. When the cracks were on the front, the inside and top three
sides of the concrete were connected, network cracks formed, and the inner wall concrete
fell off as a sheet piece. The development of major cracks was accompanied by the crushing
of the concrete in the cracks, as well as the concrete at the bottom.

In addition, concrete cracking and spalling became increasingly evident with an
increase in the internal components of the specimens. The change in the diameter of the
penetrating rebar mainly affected the crack development in the top concrete. The larger
the diameter, the more obvious the crack development along the penetrating rebar and
the more obvious the steel–concrete separation phenomenon. Increasing the end bearing
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area resulted in an increase in small cracks outside the concrete; however, it weakened the
tendency of crack widening.
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(2) Internal failure pattern

(1) Embedded steel web

As shown in Figure 8, no visible buckling deformation or plastic deformation was
observed. The concrete dowel in the P-0 specimen was cut, and a certain amount of concrete
broke owing to the absence of a reinforcing bar in the opening hole. The remaining steel
plate holes were arranged with penetrating rebars; thus, the concrete in the holes was
subjected to the joint action of embedded steel web and penetrating rebars, accompanied
by shear damage.

(2) Stud

Shear failure did not occur in any of the studs because the arrangement of the stirrup
resulted in the concrete restraining the studs and the reinforcement bore a part of the shear
force. Consequently, all studs in the test pieces were bent and deformed at the root. The
degree of stud bending in the P-14-S specimen was significantly higher than that in the
P-22-S specimen because the penetrating rebar in the P-22-S specimen bore greater shear.
The damage patterns of the studs are shown in Figure 9.
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(3) Penetrating rebar

The failure mode of the penetrating rebars was flexural shear failure along the loading
direction instead of shear failure. Furthermore, the degree of bending of the upper bars was
higher than that of the lower bars, indicating that the upper bars exhibited higher shear
degrees. Because the end-bearing area shared a portion of the shear force, the bending
degree of the penetrating rebar in P-18-S# specimen was smaller than that in P-18-S, and
the same was true for the other specimens. After the P-18-S specimen was subjected to a
low-cycle repeated load, the curvature of the penetrating rebar decreased. The damage
patterns of the penetrating rebar are shown in Figure 10.
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2.4. Load–Slip Curve

To study the USBC of each part in the WECSC, the load–slip curves of four specimens
were obtained (Figure 11). Additionally, the USBCs and corresponding displacements are
listed in Table 3.
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Table 3. USBC and slippage from test result.

Specimen Number USBC/kN Slippage Corresponding to Peak Load/mm

P-0 223.05 0.68

P-18 694.26 1.81

P-18-S 821.43 1.96

P-18-S# 1077.5 3.09

In Figure 11, three stages were observed in the load–slip curve: elastic, nonlinear, and
descending. In the elastic stage, the load changes significantly albeit with less slip, meaning
that the WECSC was a rigid shear connector, and most of the load was borne by the shear
capacity of the concrete dowel.

Before entering the nonlinear stage, the maximum load values of P-0, P-18, P-18-S,
and P-18-S# were 150.36, 531.44, 590.16, and 700.65 kN, respectively, accounting for 67.41,
76.54, 71.84, and 65.02% of USBC, respectively. After entering the nonlinear stage, the
development trends of the four curves were similar. The slope of the curve tended to be flat,
the load growth was slow in this stage, and the slip gradually increased. This is because the
load was slowly transferred from concrete to steel members at this stage. When the peak
load was reached, the curve entered the descending stage. At this time, the concrete dowel
was crushed, and the load was fully borne by the shear action of penetrating rebars because
the steel member had good ductility leading to obvious slip. Owing to the large rigidity of
the specimen, the internal steel members were not cut; thus, when the load dropped to a
certain range, it was no longer reduced.

The results in Table 3 show that different components have different effects on the
growth of the USBC. The USBC of the P-0 specimen can be regarded as being provided
by the shear capacity of the concrete dowel as well as the chemical bonding and friction
forces of the steel–concrete interface. By contrast, the USBC of P-18 specimen increased
by 471.21 kN, which was provided by the shear action of penetrating rebars. Compared
with P-18, studs were added to the P-18-S specimen; therefore, the USBC increased by
127.17 kN, which was provided by the shear resistance of the stud. However, the USBC
did not increase significantly, because the bearing capacity of the stud itself was lower
than that of the perforating steel bar, fewer studs were arranged, and the model used in
this test was small. Based on the P-18-S specimen, an end-bearing area was added to the
P-18-S# specimen, and the USBC was increased by 256.09 kN, which was provided by the
end concrete.

2.5. Effect of Low-Cycle Repeated Load

Low-cycle repeated loads were applied to the WECSC specimens, and then a static
load was applied until failure. The low-cycle repeated loading curve of the P-18-S specimen
is shown in Figure 12, and a comparison of the USBC and corresponding displacement is
presented in Table 4.

Table 4. Comparison result of P-18-S specimen.

Loading Method USBC/kN Slippage Corresponding to Peak Load/mm

Static loading 821.43 1.96

Low-cycle repeated loading 816.75 2.39

Figure 12 shows that in the first cycle stage, the initial slope was obvious, which is
attributed to the internal of the specimen not being stable, resulting in a certain gap. In
the subsequent cycles, the curve presented a linear change, and the slope was consistent
and tended to be stable, indicating that all parts of the specimen began to work normally.
Analysis of the last section of the unidirectional loading revealed that the load–slip curves
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comprised three phases: elastic, nonlinear, and descending. The difference was that the
slope of the nonlinear stage was gentle and long because the stiffness of the specimen
decreased after several repeated loads.
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The USBC of specimen P-18-S, shown in Table 4, decreased, and the ultimate slip
increased after repeated loading. The decrease in the value was not large because the
number of cycles in this test was small; therefore, the USBC does not change (or decrease)
much with small number of repeated loads. The ultimate slip increment was relatively
obvious, the slip growth was still large after reaching the peak load. Moreover, it was
difficult to enter the obvious decline stage, indicating that the ductility of the specimen
exhibited a decreasing trend. Thus, it can be inferred that the specimen may suffer brittle
failure after repeated loading.

2.6. Study on Failure Mechanism of Component

The strain evolution at the measuring point of the steel member in the P-18-S specimen
was analysed to study the failure mechanism of the member.

The strain evolutions along the lengths of the upper and lower rows of the penetrating
rebar are shown in Figure 13a,b, respectively. Overall, the strain changed closer to the
middle line of the rebar, which corresponds to a hole. This is because the penetrating rebar
directly bears the pressure transmitted by the upper concrete dowel and is simultaneously
squeezed by the reaction force of the lower concrete. Before reaching 650 kN, the strain
through the steel bar was relatively stable. When the strain exceeded 650 kN, there was a
significant increase, indicating that the steel bar began to participate in the shear resistance,
and the concrete gradually failed. At approximately 750 kN, the upper row of the steel bars
reached the yield, whereas the lower row of the steel bars did not yield until the peak load.
This indicated that although the components in the two holes were exactly the same, their
stress levels were different, and thus the shear resistance in the lower row holes should
be reduced in the subsequent design. The internal force of the specimen is complicated;
however, it can be concluded that the steel bar is primarily subjected to pressure, and the
failure mode of the steel bar is consistent with the stress process analysed by strain, which
is consistent with the numerical analysis value.
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Figure 14 shows the deformation of the stud along the length. As is evident, the strain
at each stage of the stud root increased more evenly before 600 kN and increased more
sharply after 600 kN. However, the strain surge through the reinforcement mentioned
above did not occur. This is because the stud root was connected to the steel plate, which
resulted in the load being directly transferred to the stud root to move it downward with
the steel web. Moreover, the concrete below the stud root produced a reaction force. Strain
was experienced at the root of the stud. Simultaneously, the stud root strain was obviously
greater than the stud head strain. Thus, the stud root entered the plastic state earlier and
yielded at approximately 750 kN. Owing to the restraining effect of the concrete, the stud
head exhibited a small strain. It can be observed that after 750 kN, the strain at the stud
head exhibited a relatively large increase because the concrete near the root entered the
plastic state or failed, and the reaction force no longer increased. To balance the applied
load, which continued to increase, the concrete outside the root continued to provide a
reaction force. The plastic area of the stud gradually developed from the root to the head.
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3. Numerical Analysis
3.1. Finite Element Model

The concrete plastic damage model (CDP model in ABAQUS software (2022)) [28] was
used to perform the simulation, with a uniaxial concrete stress–strain relationship based
on the literature [29]. To balance the calculation accuracy and cost, grids with different
size controls should be adopted for each part. Taking the P-18-S test piece as an example,
the global seed size of large solid units, such as embedded webs and outsourced concrete,
was 20 mm. For a solid unit with a small volume, the global seed size of the penetrating
rebar and stud was 5 mm. The grid divisions of each part of the P-18-S specimen model are
shown in Figure 15.
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Figure 15. Finite element model. (a) Concrete; (b) split steel plate; (c) penetrating rebar; (d) stud.

The stirrup was embedded in the outer concrete by selecting the embedding mode
in the constraint. Both the stud and the penetrating rebar were selected to be bound for
simulation. Other interactions occurred in the surface–surface contact mode, and the
boundary condition was finite slip. The friction coefficient between the embedded web
and concrete was 0.1, and that between the inside of the hole and concrete dowel was
0.904 [30]. The friction coefficient between the stud and stress surface of concrete was
0.35 [31]. A complete specimen model was established with six degrees of freedom at
the bottom constrained, as shown in Figure 16. According to the actual situation, it is
considered that there is no relative displacement or corner at the bottom of the model, and
the 6 degrees of freedom at the bottom of the model are constrained to ensure the accuracy
of the simulation to the greatest extent.
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The constitutive relation of concrete adopts the CDP model and non-associated flow
rule, and its main parameters are shown in Table 5. The constitutive relation of steel adopts
the strong elastoplastic model in the twofold model, and its main parameters are shown in
Table 6.

Table 5. ABAQUS concrete material parameter setting.

Poisson’s Ratio υ Dilation Angle φ Eccentricity m fbo/fco k Viscosity Coefficient µ

0.2 35◦ 0.1 1.16 0.6667 0.0001

Table 6. ABAQUS steel parameter setting.

Material
Yield Strength fy

(MPa)
Ultimate Strength fu

(MPa)
Elastic Modulus Es

(GPa) Poisson’s Ratio

Perforated steel plate 345 490 210 0.3

Rebar 426 646 206 0.3

Stud 340 480 206 0.3

3.2. Finite Element Model Verification
3.2.1. Load–Slip Curve Verification

The load–slip curve based on the test results was compared with that of the finite
element simulation (Figure 17). The simulated curves of all specimens increased linearly in
the elastic stage and gradually decreased in the nonlinear stage. The trend of the simulated
curve was consistent with the test curve. A comparison of the curves revealed that the
simulated overall stiffness was slightly less than the measured stiffness owing to the
presence of many unbalanced forces in the nonlinear analysis process. With the continuous
calculation of the model, certain concrete elements began to gradually fail, rendering it
difficult to achieve convergence in the iterative calculation. Once the iteration number
reached the upper limit, ABAQUS provided the calculation result, which was generally
slightly lower than the true value. Further analysis was performed on the error between
the finite element simulated and measured USBCs (Table 7).

Table 7. Comparison of USBC values.

Specimen Number Test Value/kN Simulated Value/kN Error/% Average Error/%

P-0 223.05 214.2 4.0

5.9

P-18 694.26 657.4 5.3

P-18-S 821.43 787.5 5.4

P-14-S 745.79 701.7 5.9

P-22-S 952.37 892.6 6.3

P-18-S# 1077.52 989.5 8.2

As shown in Table 7, the overall simulated USBC was less than the measured value,
and there were errors between the simulated and measured values. The comparison results
showed that the errors ranged as 4.0–8.2%, and the average error of the finite element
simulation was 5.9%. This indicated that the simulation results were numerically accurate
and reliable.
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Figure 17. Load–slip curves from tests and simulations. (a) Comparison of P-0 test and finite element
load-slip curves; (b) Comparison of P-18 test and finite element load-slip curves; (c) Comparison
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load-slip curves; (e) Comparison of P-22-S test and finite element load-slip curves; (f) Comparison of
P-18-S# test and finite element load-slip curves.

3.2.2. Deformation Verification of Member

The stress nephogram and deformation of the embedded web, penetrating rebar, and
stud, in the P-18-S model as an example, is compared and analysed.

The simulated stress, as shown in Figure 18, was mainly distributed above the hole of
the embedded steel web and at the joint between the surface and the stud. In practice, the
reaction force of the concrete dowel is exerted above the hole of the embedded web, and
the shear at the joint between the stud root and embedded web causes stress concentration,
indicating that the stress cloud diagram is consistent with the actual stress mechanism. The
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maximum stress (325 MPa) occurred at the connection between the surface of the embedded
web and stud, and it did not exceed the steel yield strength (340 MPa). Consequently, the
web did not buckle, which was consistent with the test results.
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Figure 18. Comparative analysis of perforated steel plate in P-18-S model. (a) Stress cloud image of
steel web at 0.95 times peak load; (b) deformed steel web; (c) deformation simulation of steel web.

As shown in Figure 19, the stress concentration occurred in the middle of the pene-
trating rebar in both the upper and lower rows. The stress decreased from the middle to
both ends. Both test and simulation results indicate that the deformation of the upper row
penetrating rebar was obviously greater than that of the lower row. The maximum stress
value of the upper row of the rebar was 590 MPa, below the ultimate strength (646 MPa).
Moreover, there was no fracture. The maximum stress value of the lower bar was 468 MPa,
and the yield phenomenon also occurred, later than that of the upper bar.

These phenomena indicate that the simulation results were consistent with the actual
force transfer mechanism, and good simulation results were obtained. By observing the
evolution animation of the stress cloud map, it was found that the time of obvious stress
changes in the penetrating rebars was the same as the time of large amounts of damage in
the concrete. This indicated that after the gradual failure of the concrete, the penetrating
rebars began to provide shear resistance.

Figure 20 shows the stress cloud map of the stud at 0.95 times the peak load and
the comparison between the actual deformation tested and the simulated deformation.
The maximum stress of stud reached 436 MPa at the root, below the ultimate strength
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(480 MPa). Thus, the root of the stud had yielded instead of cut, which is consistent with
the test results.
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By observing the evolution animation of the stress nephogram, it was found that the
shear action provided by the stud was very early, indicating that its shear action was not
completely controlled by the concrete, but also depended on the embedded web.
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3.3. Finite Element Parameter Analysis

Three parameters were set for analysis, including the thickness of the embedded
web, the hole diameter, and the diameter of the stud. After finite element analysis, it was
concluded that (1) the USBC of the model increased slightly with increase in web thickness;
(2) the larger the hole diameter, the greater the lifting effect of the USBC, and an increase
in the diameter of the penetrating rebar weakened the lifting effect of the hole diameter;
(3) the USBC increased when the stud diameter increased.

4. Calculation Equation of USBC
4.1. Shear Resistance Mechanism of WECSC

In the test, a specimen with an end-bearing area was set up to study the effect of the
concrete end bearing on the USBC. However, in the actual layout, the WECSC is generally
arranged in a continuous manner, so there is no end bearing area. Therefore, the design
of the shear strength does not consider the end bearing effect. There are certain adhesive
friction effects between the concrete and steel plate, and owing to it values being very small,
it is usually ignored in the calculation of PBL shear connectors. However, owing to the
difference in the structure of the composite shear connectors embedded with a web plate,
the contact area between the concrete and steel plate was increased by directly embedding
the web plate into the concrete plate, and no oil treatment was performed on the contact
surface in the test. Therefore, in this study, the adhesive and friction forces were considered
in the calculation of the shear capacity.

The shear bearing mechanism of WECSC is shown in Figure 21. The USBC Pn is
primarily a linear superposition of the following four parts: (1) Pb caused by chemical
adhesion and friction between the concrete and embedded web, (2) Ps owing to the stud,
(3) Pc owing to concrete dowels, and (4) Ptr caused by penetrating steel bars.
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Therefore, the equation for calculating the USBC Pn of the WECSC can be expressed
as follows:

Pn = Pb + Ps + Pc + Ptr (1)

4.2. Pb Calculation Equation

Pb represents the shear capacity provided by the chemical adhesion and friction
between the concrete and embedded web. Its value is primarily determined by the contact
area between the concrete and web and the strength of the concrete. Considering the He S
formula [32], the calculation equation of Pb can be expressed as follows:

Pb = τb Ab
τb = −0.022 fc + 0.306

√
fc − 0.573

Ab = 2 ×
(
tmhm − nπd2/4

) (2)

where τb is the friction force between concrete and shear connector surface per unit area
(N/mm2), Ab is the contact area between concrete and perforated steel plate (mm2), tm is
the embedment depth of steel web (mm), hm is the steel web embedding height (mm), fc is
the compressive strength of concrete axis (N/mm2), n is the number of holes, and d his the
hole diameter (mm).

4.3. Ps Calculation Equation

Currently, the calculation method of the USBC for stud connectors is included in many
national codes, and many representative calculation equations have been proposed by
scholars. Because of the different parameters considered in the derivation and calculation
methods, and the differences in the tests, the existing equations for calculating the USBC of
the stud connector are not completely consistent with the calculation results. However, the
shear mechanisms based on them are the same.

Equations proposed by the Oehler’s formula [33], Eurocode 4 [34], AISC2005 [35], the
literature [6], and Shi Weihua’s formula [36] have been compared and analysed.

For the USBC of the WECSC, according to the test results, we consider the smaller
result reference equation in the literature [6], introduce the test conversion coefficient αs,
and obtain αs = 0.98 through the test data. Therefore, Ps can be expressed:{

Ps = 1.19αs As fu

(
Ec
Es

)0.2( fcu
fu

)0.1
= 1.17As fu

(
Ec
Es

)0.2( fcu
fu

)0.1

As = nsπd2
s /4

(3)

where fu is the minimum ultimate tensile strength of stud (N/mm2), fcu is the compres-
sive strength of concrete cube (N/mm2), As is the cross-sectional area (mm2) of the part
connecting the stud and the interface, ns is the number of studs, ds is the stud bottom
diameter (mm), Ec is the elastic modulus of concrete (N/mm2), and Es is the stud elastic
modulus (N/mm2).

4.4. Pc Calculation Equation

Pc represents the shear capacity of the concrete dowels. Although the influence of the
thickness of the embedded web was studied using finite element analysis, it was found
to have minimal influence. Moreover, the reduced coefficient related to the thickness of
the embedded web could not be directly extracted in this test; therefore, its value was
expressed by multiplying the concrete dowel section area by the shear strength.

According to the principles presented in the literature [37], the shear strength of
concrete under pure shear is τc = 0.39 f 0.57

cu . However, in this research, the concrete dowel
was subjected to double shear; thus, this shear strength value should be considered as
2 times when under pure shear. The concrete in the hole was constrained by embedded
web, penetrating rebar, and other conditions; thus, its strength was improved. Therefore,
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the lifting coefficient αc was introduced and αc = 3.55 was obtained through the test data.
Therefore, the calculation equation of Pc can be expressed:{

Pc = 2αc Acτc = 2.77Ac f 0.57
cu

Ac = nπ(d − dtr)
2/4

(4)

where fcu is the compressive strength of concrete cube (N/mm2) and Ac is the concrete
dowel area (mm2).

4.5. Ptr Calculation Equation

Ptr represents the shear strength of the penetrating rebar. The calculation formulae
for the USBC of the PBL shear connectors in Eurocode 4 [34], the Leonhardt formula [38],
Oguejiofor formula [39], He S formula [32], and Hu Jianhua formula [40] have been referred.

According to the force transmission mechanism analysed above, the shear bearing
effect of the lower row of penetrating rebars was smaller than that of the upper row of
penetrating rebars. Therefore, the shear bearing capacity of multiple rows of penetrating
rebars cannot be determined by a simple multiple relation. Thus, the test conversion
coefficient αtr must be introduced and obtained as αtr = −0.0375dtr+1.76 through the test
data. In addition, the shear strength of the steel bar in the pure shear state is τtr = fy/

√
3.

Therefore, the calculation equation of Ptr can be expressed:{
Ptr = 2αtr Atrτtr = 1.155(1.76 − 0.0375dtr)Atr fy
Atr = nπd2

tr/4
(5)

where fy is the yield strength of steel bar (N/mm2), Atr is the cross-sectional area of the
steel bars (mm2), and dtr is the diameter of the penetrating rebar (mm).

4.6. General Equation of Shear Capacity

The equation for calculating the USBC of the WECSC is expressed as follows:

Pn =
(
2tmhm − nπd2/2

)(
−0.022 fc + 0.306

√
fc − 0.573

)
+0.69nπ(d − dtr)

2 Ac f 0.57
cu

+0.29nπd2
tr(1.76 − 0.0375dtr)Atr fy

+0.29nsπd2
s fu

(
Ec
Es

)0.2( fcu
fu

)0.1

(6)

Equation (6) was used to calculate the WECSC specimens in this test and compared
with the test and finite element simulation results (Table 8). The results show that there is
minimal error between the results obtained using Equation (6) and the test results, with
a maximum error of 9.66%. The variance in results was analysed, and the p-value was
0.91, indicating that there was no significant difference between the results obtained using
Equation (6) and the experimental values. A correlation analysis was performed on the
results, and the correlation coefficient R2 = 0.99 was obtained, indicating that the results of
the two groups were very similar, and results using Equation (6) were consistent with the
experimental values.

Table 8. Comparison of the results of the derived equations with the experimental results.

Specimen Number Test Value/kN Value Based on Equation (6)/kN Error/% p-Value R2

P-0 223.05 223.14 −0.04

0.91 0.99
P-18 694.26 654.21 5.76

P-18-S 821.43 822.64 −0.15

P-14-S 745.79 673.73 9.66

P-22-S 952.37 961.29 −0.94
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To further verify Equation (6) for the WECSC, it was necessary to compare it with
a large amount of data. However, because the specific structure of the composite shear
connectors with an embedded web was proposed in this study and no test specimen with
the same structure has been found in the existing literature, 22 models considering different
parameters were simulated using Abaqus. The model number was CxSyHzPm (x, y, z,
and m represent the concrete strength, stud type, open-hole aperture, and diameter of the
penetrating rebar, respectively). The simulation results are presented in Table 9.

Table 9. Finite element simulation result.

Model Number Simulated Values/kN Model Number Simulated Values/kN

C50S13H34P14 652.92 C40S13H44P22 899.15

C50S13H54P14 761.15 C50S16H44P18 837.45

C50S13H34P18 748.81 C50S19H44P18 912.76

C50S13H54P18 833.12 C50S10H44P18 783.37

C50S13H34P22 863.63 C40S16H44P9 656.91

C50S13H54P22 934.83 C40S10H44P9 533.47

C30S13H44P14 692.64 C40S19H44P9 680.23

C40S13H44P14 699.84 C40S13H44P9 584.98

C30S13H44P18 723.62 C40S13H24P9 403.15

C40S13H44P18 729.68 C30S13H24P9 384.96

C30S13H44P22 892.76 C50S13H24P9 427.83

Figure 22 shows a comparison between the values calculated using Equation (6), the
test value, and the finite element simulation value. It is evident these three values can be
well matched with each other, with a correlation coefficient of R2 = 0.93.
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In summary, Equation (6) derived in this study has a clear physical meaning, and
through a comparative analysis, it was found that it can predict the USBC of the WECSC
like those mentioned in this article.
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5. Conclusions

This study proposed a shear connector, the WECSC, to conduct push-out test studies
on its USBC. Seven specimens in six categories were set up, the failure mode, load–slip
curve, and load–strain curve were analysed. Numerical and parameter analyses were
performed and verified using the test results. The shear mechanism of the WECSC was
summarised, and a new equation for calculating the USBC was derived.

(1) The shear stiffness of the WECSC was high, the ultimate slip was low, and the shear
connector exhibited good ductility after reaching the ultimate load. The failure forms
were the partial crushing of the concrete dowel and splitting of the outer concrete.
The penetrating rebars and studs were bent and shear-deformed, without cut. This
indicated that the shear connectors could still maintain a good shear bearing capacity
after exceeding the ultimate load, and every component of the shear connectors was
fully used.

(2) The force transfer mechanism of the WECSC was studied based on tests and numerical
analyses. After the failure of the concrete dowel, the penetrating rebars gradually
began to participate in the shear resistance. Because of the position of the load, yield
deformation occurred at the midpoint of the steel bars, and because the load was
transmitted from top to bottom, the upper row of steel bars yielded earlier and entered
the strengthening stage. Simultaneously, the stud was driven downward by the steel
plate, the concrete below the root produced a reaction, and the head was constrained
by the concrete. Thus, the stud root produced an obvious bending shear deformation.
As the load continued to increase, the plastic area of the stud gradually began from
the root and developed towards the head.

(3) The proportion of USBC of different shear members was different. The proportion of
the penetrating rebar being the largest, followed by the end-bearing area, and that of
the studs is the smallest. The ultimate slip and USBC of the WECSC increased with
an increase in the diameter of the penetrating rebar, not linear. The larger the hole
diameter, the greater the lifting effect of the USBC, whereas an increase in the diameter
of the penetrating rebar weakened the lifting effect of the hole diameter. After repeated
loading, the USBC of the specimen decreased, the ultimate slip increased, and the
ductility of the specimen decreased.

(4) The USBC of the WECSC was mainly provided by the chemical bonding force and
friction among the concrete, embedded web, stud, concrete dowel, and penetrating
rebar. A new suitable calculation equation for the USBC was derived. The correlation
coefficient between the calculated, experimental, and numerically simulated values
was 0.93, indicating that the calculation method was more accurate and had a certain
reference value.
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