Segmentation of Liver Tumors by Monai and PyTorch in CT Images with Deep Learning Techniques
Abstract
:1. Introduction
2. Literature Methods
3. Materials and Methods
3.1. ResUNet Architecture
- Residual Connection: This component is added to the traditional UNet architecture to address the issues of invisible gradients and enhance network stability. The residual connections allow gradients to flow more easily through the network, improving network accuracy.
- Decoder: This network section is tasked with up-sampling from the encoder feature map and producing segmentation maps corresponding to the input image data. Numerous convolutional and up-sampling layers are produced by the decoder.
- Skip Connections: In the ResUNet architecture, skip connections allow information from the encoder to bypass the residual connection and be directly concatenated with decoder feature maps, enabling the network to maintain the fine features of the input image.
3.2. Liver CT Image Dataset
3.3. Preprocessing of CT Image Data
3.3.1. Dataset Splitting and Preprocessing
3.3.2. Hounsfield Window
3.3.3. Data Augmentation
- Flipped: Flipping enhances the robustness and diversity of the training dataset by providing additional variations of input images without changing semantic information. By using flipping in the training dataset, the model learns to recognize and segment objects from different orientations.
- Rotated: This technique involves rotating the input images along different angles, introducing variations that the model needs to learn and adapt to during training.
- Zoomed: Zoomed aims to enhance the model’s ability to handle scale variations, improve generalization, and increase robustness, leading to better performance on unseen data.
- RandGaussianNoised: This technique involves adding random Gaussian noise to the images. When the training data are relatively small, RandGaussianNoised can artificially increase the size of the dataset.
- RandAffined: This involves applying random combinations of translation, rotation, scaling, and shearing operations to input images during the dataset’s training. Introducing noise and variability into the training dataset can help prevent overfitting.
3.3.4. Image Normalization
4. The Experiments of Liver Tumor Segmentation
4.1. Loss Function
4.2. Evaluation Metrics
4.2.1. Dice Similarity Coefficient Metric
4.2.2. Model Accuracy Metric
Adam Optimizer
5. Results and Discussion
Approach | DSC | Accuracy | Precision | Specificity |
---|---|---|---|---|
Ref. [36] | 0.823 | 0.81 | 0.812 | 0.85 |
Ref. [34], UNet [38] | 67.5 ± 30.8% | 92 ± 3.8% | 0.930 | 0.96 |
Ref. [39], Ref. [40] | 0.83 | 93 | 98.9 | 98.0 |
Ref. [39] | 0.67 | 0.89 | 0.891 | 0.90 |
Our proposed ResUNet | 0.983 | 0.98 | 0.950 | 0.957 |
The Main Contributions of the Research Paper
- We developed a novel method of liver tumor segmentation for CT images with Monai in a single run.
- The main feature of using Monai in this research is that it helps us import the ResUNet architecture instead of writing all the scripts.
- Using the ResUNet deep neural network, we achieve faster testing with few details; UNet provides promising accuracy results, and ResNet extracts high-level features from an image.
- Our research evaluates the proposed technique’s performance completely, comparing it to a few other fully automated techniques.
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization; Çelikgün, S.; Koc, T.; Arslan, E.; Gonca, K.; Yildiz, F.; Emine, G.; Gultop, F.; Argon, M.; Tekin, S.; et al. Cancer. Son. Erişim. Tarihi 2021, 24. Available online: https://www.who.int/news-room/factsheets/detail/cancer (accessed on 3 February 2022).
- Li, Q.; Cao, M.; Lei, L.; Yang, F.; Li, H.; Yan, X.; He, S.; Zhang, S.; Teng, Y.; Xia, C.; et al. Burden of liver cancer: From epidemiology to prevention. Chin. J. Cancer Res. 2022, 34, 554. [Google Scholar] [CrossRef] [PubMed]
- Christ, P.F.; Elshaer, M.E.A.; Ettlinger, F.; Tatavarty, S.; Bickel, M.; Bilic, P.; Rempfler, M.; Armbruster, M.; Hofmann, F.; D’Anastasi, M.; et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention, Athens, Greece, 17–21 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 415–423. [Google Scholar]
- Li, D.; Liu, L.; Chen, J.; Li, H.; Yin, Y. A multistep liver segmentation strategy by combining level set based method with texture analysis for CT images. In Proceedings of the 2014 International Conference on Orange Technologies, Xi’an, China, 20–23 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 109–112. [Google Scholar]
- Song, X.; Cheng, M.; Wang, B.; Huang, S.; Huang, X.; Yang, J. Adaptive fast marching method for automatic liver segmentation from CT images. Med. Phys. 2013, 40, 091917. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Chen, L.; Deng, Y.; Zhou, C. Rethinking pretraining on medical imaging. J. Vis. Commun. Image Represent. 2021, 78, 103145. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef] [PubMed]
- Meraj, T.; Rauf, H.T.; Zahoor, S.; Hassan, A.; Lali, M.I.; Ali, L.; Bukhari, S.A.C.; Shoaib, U. Lungnodulesdetectionusingsemantic segmentation and classification with optimal features. Neural Comput. Appl. 2021, 33, 10737–10750. [Google Scholar] [CrossRef]
- Yang, D.; Xu, D.; Zhou, S.K.; Georgescu, B.; Chen, M.; Grbic, S.; Metaxas, D.; Comaniciu, D. Automatic liver segmentation using an adversarial image-to-image network. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2017, Proceedings of the 20th International Conference, Quebec City, QC, Canada, 11–13 September 2017; Proceedings, Part III 20; Springer: Berlin/Heidelberg, Germany, 2017; pp. 507–515. [Google Scholar]
- Shafaey, M.A.; Salem, M.A.M.; Ebied, H.M.; Al-Berry, M.N.; Tolba, M.F. Deep learning for satellite image classification. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 1–3 September 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 383–391. [Google Scholar]
- Peng, J.; Dong, F.; Chen, Y.; Kong, D. A region-appearance-based adaptive variational model for 3D liver segmentation. Med. Phys. 2014, 41, 043502. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Huang, Q.; Li, X. Classification of liver tumors with CEUS based on 3D-CNN. In Proceedings of the 2019 IEEE 4th international conference on advanced robotics and mechatronics (ICARM), Toyonaka, Japan, 3–5 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 845–849. [Google Scholar]
- Yasaka, K.; Akai, H.; Abe, O.; Kiryu, S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: A preliminary study. Radiology 2018, 286, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Chen, L.; Deng, Y.; Ning, J.; Zhou, C. Toward better semantic consistency of 2D medical image segmentation. J. Vis. Commun. Image Represent. 2021, 80, 103311. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Khan, Z.; Yahya, N.; Alsaih, K.; Al-Hiyali, M.I.; Meriaudeau, F. Recent automatic segmentation algorithms of MRI prostate regions: A review. IEEE Access 2021, 9, 97878–97905. [Google Scholar] [CrossRef]
- Zhou, T.; Li, L.; Bredell, G.; Li, J.; Konukoglu, E. Quality-aware memory network for interactive volumetric image segmentation. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2021, Proceedings of the 24th International Conference, Strasbourg, France, 27 September–1 October 2021; Proceedings, Part II 24; Springer: Berlin/Heidelberg, Germany, 2021; pp. 560–570. [Google Scholar]
- Christ, P.F.; Ettlinger, F.; Grün, F.; Elshaera, M.E.A.; Lipkova, J.; Schlecht, S.; Ahmaddy, F.; Tatavarty, S.; Bickel, M.; Bilic, P.; et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv 2017, arXiv:1702.05970. [Google Scholar]
- Li, W.; Jia, F.; Hu, Q. Automatic segmentation of liver tumor in CT images with deep convolutional neural networks. J. Comput. Commun. 2015, 3, 146. [Google Scholar] [CrossRef]
- Hu, P.; Wu, F.; Peng, J.; Liang, P.; Kong, D. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys. Med. Biol. 2016, 61, 8676. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Shi, T.; Bai, Z.; Huang, L. Ahcnet: An application of attention mechanism and hybrid connection for liver tumor segmentation in ct volumes. IEEE Access 2019, 7, 24898–24909. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Liao, X.; Qian, Y.; Wang, Q.; Yuan, Z.; Heng, P.A. Channel-Unet: A spatial channelwise convolutional neural network for liver and tumors segmentation. Front. Genet. 2019, 10, 1110. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Xiong, H.; Liu, S.; Sharan, R.V.; Coiera, E.; Berkovsky, S. Weak label based Bayesian U-Net for optic disc segmentation in fundus images. Artif. Intell. Med. 2022, 126, 102261. [Google Scholar] [CrossRef] [PubMed]
- Karthik, R.; Radhakrishnan, M.; Rajalakshmi, R.; Raymann, J. Delineation of ischemic lesion from brain MRI using attention gated fully convolutional network. Biomed. Eng. Lett. 2021, 11, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Goshtasby, A.; Satter, M. An adaptive window mechanism for image smoothing. Comput. Vis. Image Underst. 2008, 111, 155–169. [Google Scholar] [CrossRef]
- Jin, Q.; Meng, Z.; Sun, C.; Cui, H.; Su, R. RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans. Front. Bioeng. Biotechnol. 2020, 8, 1471. [Google Scholar] [CrossRef]
- Sabir, M.W.; Khan, Z.; Saad, N.M.; Khan, D.M.; Al-Khasawneh, M.A.; Perveen, K.; Qayyum, A.; Azhar Ali, S.S. Segmentation of liver tumor in CT scan using ResU-Net. Appl. Sci. 2022, 12, 8650. [Google Scholar] [CrossRef]
- Simpson, A.L.; Antonelli, M.; Bakas, S.; Bilello, M.; Farahani, K.; Van Ginneken, B.; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.; Menze, B.; et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv 2019, arXiv:1902.09063. [Google Scholar]
- Christ, P.; Ettlinger, F.; Grün, F.; Lipkova, J.; Kaissis, G. Lits-liver tumor segmentation challenge. In ISBI and MICCAI; 2017; Available online: https://competitions.codalab.org/competitions/17094 (accessed on 15 July 2023).
- Bilic, P.; Christ, P.; Li, H.B.; Vorontsov, E.; Ben-Cohen, A.; Kaissis, G.; Szeskin, A.; Jacobs, C.; Mamani, G.E.H.; Chartrand, G.; et al. The liver tumor segmentation benchmark (lits). Med. Image Anal. 2023, 84, 102680. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Maqsood, M.; Bukhari, M.; Ali, Z.; Gillani, S.; Mehmood, I.; Rho, S.; Jung, Y.A. A residual-learning-based multiscale parallelconvolutions-assisted efficient CAD system for liver tumor detection. Mathematics 2021, 9, 1133. [Google Scholar] [CrossRef]
- Sun, C.; Guo, S.; Zhang, H.; Li, J.; Chen, M.; Ma, S.; Jin, L.; Liu, X.; Li, X.; Qian, X. Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artif. Intell. Med. 2017, 83, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Trestioreanu, L. Holographic visualization of radiology data and automated machine learning-based medical image segmentation. arXiv 2018, arXiv:1808.04929. [Google Scholar]
- Christ, P.F. Convolutional Neural Networks for Classification and Segmentation of Medical Images. Ph.D. Thesis, Technische Universitat München, Munich, Germany, 2017. [Google Scholar]
- Han, X. Automatic liver lesion segmentation using a deep convolutional neural network method. arXiv 2017, arXiv:1704.07239. [Google Scholar]
- Afzal, S.; Maqsood, M.; Mehmood, I.; Niaz, M.T.; Seo, S. An efficient false-positive reduction system for cerebral microbleeds detection. CMC Comput Mater. Contin. 2021, 66, 2301–2315. [Google Scholar] [CrossRef]
- Wu, W.; Wu, S.; Zhou, Z.; Zhang, R.; Zhang, Y. 3D liver tumor segmentation in CT images using improved fuzzy C-means and graph cuts. BioMed Res. Int. 2017, 2017, 5207685. [Google Scholar] [CrossRef]
- Lu, S.; Xia, K.; Wang, S.H. Diagnosis of cerebral microbleed via VGG and extreme learning machine trained by Gaussian map bat algorithm. J. Ambient. Intell. Humaniz. Comput. 2020, 14, 5395–5406. [Google Scholar] [CrossRef] [PubMed]
Epoch | Loss | Accuracy |
---|---|---|
1 | 0.3927 | 0.7608 |
10 | 0.4286 | 0.8696 |
20 | 0.4525 | 0.9867 |
30 | 0.5462 | 0.9393 |
40 | 0.4127 | 0.9594 |
50 | 0.2027 | 0.9473 |
60 | 0.6548 | 0.9632 |
70 | 0.3710 | 0.9786 |
80 | 0.4284 | 0.9803 |
90 | 0.3455 | 0.9829 |
100 | 0.2997 | 0.9837 |
Author | DS | Accuracy | Std. Deviation |
---|---|---|---|
Ref. [33] | 66 ± 34.6% | 90 ± 2.3% | 0.23 |
Ref. [34] | 0.58 | 86 ± 7.8% | 0.45 |
Ref. [35] | 0.63 | 90 ± 4.2% | 0.23 |
Proposed Model | 98.3% | 98 ± 0.3% | 0.22 |
Sr. No | Evaluation Metrics | ResUNet Network |
---|---|---|
1 | DSC | 0.983 |
2 | Accuracy | 0.98 |
3 | Precision | 0.950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, S.; Zhang, J. Segmentation of Liver Tumors by Monai and PyTorch in CT Images with Deep Learning Techniques. Appl. Sci. 2024, 14, 5144. https://doi.org/10.3390/app14125144
Muhammad S, Zhang J. Segmentation of Liver Tumors by Monai and PyTorch in CT Images with Deep Learning Techniques. Applied Sciences. 2024; 14(12):5144. https://doi.org/10.3390/app14125144
Chicago/Turabian StyleMuhammad, Sabir, and Jing Zhang. 2024. "Segmentation of Liver Tumors by Monai and PyTorch in CT Images with Deep Learning Techniques" Applied Sciences 14, no. 12: 5144. https://doi.org/10.3390/app14125144
APA StyleMuhammad, S., & Zhang, J. (2024). Segmentation of Liver Tumors by Monai and PyTorch in CT Images with Deep Learning Techniques. Applied Sciences, 14(12), 5144. https://doi.org/10.3390/app14125144