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Abstract: Photoacoustic imaging integrates the strengths of optics and ultrasound, offering high
resolution, depth penetration, and multimodal imaging capabilities. Practical considerations with
instrumentation and geometry limit the number of available acoustic sensors and their “view” of the
imaging target, which result in image reconstruction artifacts degrading image quality. To address this
problem, YOLOvVS8-Pix2Pix is proposed as a hybrid artifact-removal algorithm, which is advantageous
in comprehensively eliminating various types of artifacts and effectively restoring image details
compared to existing algorithms. The proposed algorithm demonstrates superior performance in
artifact removal and segmentation of photoacoustic images of brain tumors. For the purpose of
further expanding its application fields and aligning with actual clinical needs, an experimental
system for photoacoustic detection is designed in this paper to be verified. The experimental results
show that the processed images are better than the pre-processed images in terms of reconstruction
metrics PSNR and SSIM, and also the segmentation performance is significantly improved, which
provides an effective solution for the further development of photoacoustic imaging technology.
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1. Introduction

Photoacoustic imaging (PAI) has shown great potential in providing detailed views of
human anatomy [1-5]. Photoacoustic imaging technology enables high-resolution imaging
of human tissues by delivering pulsed laser beams. In this technique, light signals that
are preferentially absorbed by the tissue cause the generation of acoustic waves, which
are subsequently detected and imaged by a conventional ultrasound (US) transducer.
Photoacoustic imaging is widely used for the detection and treatment of cancer, vascular
monitoring, medication delivery, surgical navigation, and metal implant detection [6-10].
However, radioactivity artifacts are often present in photoacoustic images, which can pose
diagnostic and therapeutic challenges for clinicians [11-13]. Radioactivity artifacts are
primarily caused by strong reflection of acoustic waves, which is often not adequately
accounted for by conventional beam imaging methods. Reflections [14-16] lead to signal
localization errors and thus affect image accuracy. At the same time, inconsistencies in the
acoustic environment, such as variations in sound speed, density, or attenuation, make it
difficult to accurately model acoustic wave propagation. Although photoacoustic imaging
technology has a promising future for clinical applications, the presence of artifacts limits
its further development [17-19].

There are various methods to remove artifacts from photoacoustic images in current
studies. Traditional methods such as singular value decomposition [20] and Gaussian
filters [21] can only remove some artifacts caused by strong acoustic reflection [22]. Photoa-
coustically guided focused ultrasound (PAFUSion) technology uses an innovative method
to eliminate reflection artifacts by simulating the photoacoustic(PA) field, but it needs
to meet the requirements of ultrasound and photoacoustic image matching, which may
reduce the frame rate and bring errors in the case of tissue movement [23]. Alternatively,
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some studies have attempted to utilize neural networks [24-26] to estimate beamforming
delay functions to reduce artifacts caused by sound velocity errors. Other studies have
explored Wasserstein generative adversarial networks (WGAN-GP) to reduce finite-view
and finite-bandwidth artifacts [27,28], but these approaches have not yet adequately con-
sidered the effects of light excitation and propagation on imaging quality. There are also
studies using Pixel-DL [29] technology to improve PAT image reconstruction quality and
reduce computational costs, but this method is not suitable for heterogeneous media (such
as in vivo imaging).

In this paper, a new photoacoustic image processing model is proposed to cope with
different types of artifacts in photoacoustic images by using the YOLOv8-pix2pix algorithm.
The YOLOVS algorithm handles the precise segmentation of brain tumors [30,31] and the
removal of artifacts near the signal source. Meanwhile, the Pix2Pix conversion approach
primarily addresses artifacts caused by signal aliasing. After the modeling process, not
only are the artifacts effectively removed, but also the quality of the images is significantly
improved. Meanwhile, the application of the YOLOVS algorithm in image segmentation
provides reliable image data support for the detection and treatment of brain tumors.

2. Materials and Methods
2.1. Overview of the Framework

Figure 1 illustrates the overall structure proposed in this paper. The framework in-
cludes five steps of photoacoustic image generation, removal of mixing artifacts, removal
of artifacts outside the signal source, deep learning image segmentation, and model vali-
dation and evaluation, which are extensively utilized in medical image processing. First,
photoacoustic images are generated by k-wave simulation; second, the generated photoa-
coustic images are de-artifacted using the Pix2Pix network to eliminate useless information.
Subsequently, YOLOVS is used to remove artifacts beyond the signal source. Moreover,
the deep learning model (YOLOVS) is used to segment the images before and after artifact
removal to aid in verifying the artifact-removal effect and assessing the accuracy of the
removed images. Finally, various combinations of deep learning models are evaluated
and validated.

YOLOv8-Pix2Pix YOLOvE

PAI( Artifact) PAI( Artifact-free) Prediction

Figure 1. Schematic diagram of deep learning structure for photoacoustic images.

2.2. Deep Learning Algorithm for Photoacoustic Image Segmentation

The YOLOVS algorithm [32,33] is a fast single-stage target detection method with
excellent performance and efficient real-time performance. It is able to accurately capture
target features in photoacoustic images and provide accurate segmentation results while
maintaining a fast processing speed. Its network structure draws on the design principles
of the YOLACT network to achieve real-time object-instance segmentation and maintain a
high accuracy rate.

The YOLOVS network [34] is mainly composed of a backbone network and a head
network, as depicted in Figure 2. The backbone network utilizes 3 x 3 convolution, the C2f
module, and the SPPF module, which are lighter than YOLOv5. The C2f module replaces
the traditional C3 module and enhances the gradient flow through jump connections and
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segmentation operations. Additionally, the CSP version of the network employs residual
connections and direct connections to optimize the information flow. The neck structure
is enhanced with the FPN+PAN configuration to facilitate feature fusion, which helps in
detecting objects at multiple scales. During training, YOLOvVS improves the training data
with image enhancement techniques such as mosaic enhancement, enhancing the model’s
adaptability to various scenes. The technique forces the model to learn how to detect objects
that are partially obstructed and in different locations. Over the past 10 training cycles, the
YOLOVS8 network has deactivated mosaic enhancement, a method that has proven effective
in improving network accuracy.
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Figure 2. YOLOVS architecture.

Applications of YOLOVS to photoacoustic image processing of brain tumors include
artifact removal and segmentation of brain tumors. The model was trained on labeled brain
and brain tumor pictures, and it can successfully remove artifacts from non-signal sources
and segment brain tumors, allowing brain tumor segmentation and artifact removal from
photoacoustic images.

2.3. Deep Learning Algorithm for Photoacoustic Image Artifact Removal

Deep learning is widely used in removing artifacts, but existing algorithms can only
remove bar and ring artifacts in photoacoustic images and cannot effectively deal with
various complex artifacts. The YOLOv8-Pix2Pix model proposed in this paper (the model
framework is shown in Figure 3) addresses the characteristics of photoacoustic images
and can comprehensively handle different types of artifacts while effectively recovering
image details. The model first utilizes the YOLOvS8 algorithm (Figure 3a) to localize
the photoacoustic image and accurately segment the photoacoustic source to remove
artifacts outside the photoacoustic source. Then, the Pix2Pix algorithm (Figure 3b) is
employed to process the artifacts in the photoacoustic image caused by radiation artifacts
and the mixing of the photoacoustic source, enabling comprehensive artifact removal in
the photoacoustic image.
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Figure 3. YOLOv8-Pix2Pix model flow for processing photoacoustic image artifacts.

Pix2Pix [35,36] is a Conditional Generative Adversarial Network (cGAN)-based image-
to-image translation model designed for image transformation tasks that require explicit
one-to-one correspondence, and can effectively remove aliasing artifacts within optical
sound sources. The model consists of two core components, the generator (G) and the
discriminator (D). The generator’s task is to convert the input image into an output image,
which is continuously optimized by means of adversarial training in order to deceive the
discriminator and generate a sufficiently realistic image. The discriminator is responsible
for distinguishing between the generated image and the real image, thus prompting the
generator to produce a more realistic image. Pix2Pix GAN’s objective function VPix2Pix
GAN is defined as

argmin(;maxDVpiprixGAN(G/ D) = Ex"’Plow(x)/yNPfull(y) [ZOgD(x/ ]/)] + EXNPIW,(X) [10g(1 - D(x/ G(x)))] 1

where x ~ Plow(x) denotes the brain tumor Magnetic Resonance Imaging (MRI) image
and y ~ Pfull(y) denotes the corresponding brain tumor photoacoustic image. The
discriminator loss is defined as the cross-entropy, as shown in Equation (2), which is used
to adjust the weights of the discriminators. Compared to the common L2 loss, the L1 loss
enforces low-frequency correctness, as shown in Equation (3), and encourages the reduction
of image blur. Therefore, the generator is trained by minimizing the difference between the
de-artifacted image and the reference image, i.e., the mean absolute error (MAE).

V11(G) = Expy, My =Gl @

(X)’yNPfull(y

Then, our final objective function can be expressed as
G* = argmingmaxpVpix2pixcan (G, D) + AV1(G) 3

where A = 100 is an adjustable parameter to control the balance between V}ix2pixca ~N(G,D)
and VLl (G)

YOLOVS8 is a target detection algorithm for automatic identification and removal of
artifacts in photoacoustic images, with efficient real-time target detection and good adapt-
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ability to complex scenes. The source of photoacoustic images usually has a unique shape
and texture characteristics. YOLOVS can quickly and accurately analyze the photoacoustic
images, effectively locate and identify the source of photoacoustic images, and then remove
other contents in the photoacoustic images, so as to improve the quality and clarity of the
photoacoustic images. The high efficiency and accuracy of YOLOv8 make it an important
tool for photoacoustic image processing, which provides reliable image support for medical
diagnosis. reliable image support.

The YOLOvV8-Pix2Pix model proposed in this paper is applied to the task of converting
brain tumor MRI images to brain tumor photoacoustic images. In the training process,
brain tumor MRI images are paired with k-waves to generate corresponding brain tumor
photoacoustic images, and our model, which is trained with appropriate loss functions, is
able to generate photoacoustic images similar to the real images but with artifacts removed.

3. Results
3.1. Experimental Setup

In this study, the image was preprocessed. The original dataset is divided into the train-
ing set, validation set and test set in the ratio of 6:2:1. The image is scaled to 640 x 640 pixels,
while the pixel values are normalized to the range [0, 1]. In the training process, we use a
variety of data enhancement strategies to expand the data set, such as random cropping,
random scaling and random flipping.

The software and hardware environment configurations used for algorithm training
in this paper are shown in Table 1.

Table 1. Experimental environment.

Type Parameter
CPU Intel(R) Core(TM) i7-10700
RAM 32 GB
GPU NVIDIA Quadro P2200
Programming language Python 3.10
Deep learning framework PyTorch 2.2.1, CUDA 12.1
Dependency library Numpy 1.26.4, tqdm 4.66.2, tensorboard 2.16.2,

opencv-python 4.9.0.80

The hyperparameter settings for the algorithm are presented in Table 2.

Table 2. The main hyperparameters of the network.

Network Main Hyperparameters Specific Values
Batch size 16
Image size 640
Optimiser Adam
YOLOv8 Momentum 0.937
Initial learning rate 0.01
epoch 300
Batch_size 1
Momentum 0.5
s Optimiser Adam
Pix2Pix Loss function cGAN
Initial learning rate 0.0002
epoch 200

3.2. Evaluation Metrics

In this study, we comprehensively evaluate the performance of deep learning image
reconstruction and segmentation models. These commonly used indicators include peak
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signal-to-noise ratio (PSNR), structural similarity index (SSIM), accuracy, recall rate, accu-
racy, intersection ratio (IoU), mean BFScore, and Dice coefficient. During the evaluation,
the calculation of PSNR is based on the actual range of reconstructed images, and takes into
account thermal noise, electronic noise and background noise in photoacoustic imaging.
SSIM evaluation covers the brightness, contrast, structural fidelity of photoacoustic images
and the accuracy of the spatial distribution of photoacoustic sources. These dimensions of
comprehensive assessment enable us to more fully understand the deep learning model in
the performance of image reconstruction and segmentation task.
The model evaluation measures are calculated according to Formulas (4)—(12).

MAX?

PSNR = 10 x logy (MSE> 4
1 N £\2

MSE = 5} 3= (I = ) (5)

MAX is the maximum pixel value of the reconstructed image and MSE is the mean
square error, which reflects the degree of difference between the reconstructed image and
the original image. In photoacoustic imaging, the value of PSNR is affected by thermal,
electronic, and background noise. A higher PSNR value usually means that the recon-
structed image shows little difference from the original image and the reconstruction is of
high quality.

(2pxpty + 1) (200 + €2)
(1 + y? + 1) (027 + 0% + c2)

Among them, y, and yzy are the mean values of the original image x and the recon-
structed image y, 0y? and 0;,* are their variances and oy, is their covariance. ¢; and ¢, are
two constants used for stability calculation. SSIM takes into account brightness, contrast
and fidelity of structure, and comprehensively evaluates the characteristics of photoacoustic
imaging images.

SSIM(x,y) =

(6)

precision = TPTi—fFP @)

recall = Tpl_ﬂl_ipm 8)

Accuracy = 757 131133 i ]I:ZZ\\][ Y FN ®)
IoU = ﬁ (10)

Mean BFScore = Tot{:lrrelir(;fbglfl (e)zlla’fxels (1)
Dice = 2 x 1P (12)

2 x TP +FP + FN

Among them, TP, FP, TN, and FN represent ‘True Positive’, ‘False Positive’, “True
Negative’, and ‘False Negative’, respectively. N denotes the number of categories. In
Equation (11), the “overlap region” represents the overlap between the predicted segmenta-
tion and the ground truth, and the “total number of pixels” represents the number of pixels
present in the image.

These formulas can be used for quantitative evaluation of the performance of deep
learning image reconstruction and segmentation models.

3.3. Brain Tumor Dataset

The Br35H dataset is a medical imaging dataset for the detection of brain tumors.
The dataset contains brain MRI tumor images and non-tumor brain MRI images. The
Br35H dataset was used to define an initial photoacoustic stressor in k-waves to create
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simulated PAT images. In total, 801 of these MRI images with annotated brain tumors were
selected. The medium was assumed to be homogeneous, with a sound velocity of 1500 m/s
and an attenuation coefficient of 0.75 dB/(MHz-cm), similar to human soft tissues. The
sensor array has 64, 128, and 256 equally spaced detectors on a circle with a radius of
100 pixels to receive the photoacoustic waves. The reconstructed acoustic field images were
post-processed with filtering, denoising, and interpolation operations to create a simulated
PAT image dataset for deep learning reconstruction of photoacoustic images.

During the experiment, the dataset is divided into a training set of 500 images, a
validation set of 201 images, and a test set of 100 images. All the results are tested on the
test set. The YOLOVS8 network is trained to localize and classify the sources and artifacts
of photoacoustic images and remove the artifacts outside the sources. Then, the artifacts
overlapping the signal sources are removed using the Pix2Pix algorithm. Finally, the
artifact-removed image is used to segment the brain tumor using the YOLOvS8 network to
obtain an optoacoustic image that is artifact-free and accurately segments the brain tumor.

3.3.1. The Experimental Results and Analysis of the Removal of Artifacts

In the experiment, the traditional Gaussian filter and deep learning models (including
CycleGAN, YOLOVS, and Pix2Pix and their combinations) were compared to remove
artifacts in photoacoustic images. PSNR and SSIM are used as quantitative indicators of
image reconstruction quality.

Figure 4 demonstrates the effectiveness of ground truth images with various methods
for removing artifacts in photoacoustic images. In the comparison experiments, the effec-
tiveness of different methods in removing artifacts in photoacoustic images was observed
and evaluated in detail. Through the comparison of the image effect graphs, it is found
that the various methods present different characteristics in dealing with artifacts. It is
noticed that the photoacoustic images directly reconstructed by the traditional TR method
suffer from obvious blurring and information loss, and the artifacts are significantly present
at the internal and external boundaries of the images. In addition, the artifact-removal
effect of Gaussian filter is worse, which indicates that it is not suitable to be applied for
photoacoustic image de-artifacting. The CycleGAN algorithm performs well in removing
internal artifacts with improved clarity of the internal structure, but there are still chal-
lenges in removing artifacts at the external and brain boundaries. The YOLOVS algorithm
performs better in dealing with the external artifacts; however, the internal image is still
subject to blurring and lack of information, and the artifacts are more noticeable. The
Pix2Pix algorithm improves the internal information with the Pix2Pix algorithm, which has
achieved some success, but the handling of external artifacts still needs to be improved. The
method of combining the YOLOVS algorithm with CycleGAN can more effectively remove
internal and external artifacts, but there are limitations in artifact removal at the brain
boundary. However, the method combining the YOLOvVS algorithm with Pix2Pix shows
much better results, by not only effectively removing internal and external artifacts, but also
better preserving the detailed structure and texture of the image. In addition to the visual
observation of the image effect, the evaluation metrics, including PSNR and SSIM, indicate
that the artifact-removal performance of the YOLOvVS-Pix2Pix method is superior to other
methods, achieving the highest values. Comprehensive experimental results show that the
method combining the YOLOVS algorithm and Pix2Pix exhibits significant advantages in
both the artifact-removal effect and image quality evaluation, providing a feasible deep
learning solution for photoacoustic image processing.

Table 3 shows the average numerical results of the reconstruction of each method on
the test set. The TR method is the most primitive direct reconstruction method with a PSNR
of 28.918 dB and an SSIM of 0.566. The Gaussian filter performs poorly, which may be
due to the fact that its simple filtering method fails to remove the artifacts efficiently. The
YOLOVS algorithm may be more concerned with the removal of artifacts by focusing more
on the noise elimination, but neglected the preservation of image details and structures,
resulting in the lowest SSIM. Among the comparison algorithms, YOLOv8-Pix2Pix shows
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the best effect with a PSNR of 31.459 dB and an SSIM of 0.650, which indicates that this
method can significantly improve the reconstruction quality while maintaining the image
details, and proves that it is an effective photoacoustic image artifact-removal method.

TR Gaussian filter Cyclegan
PSNR=28.844 PSNR=28.831 PSNR=29.898
Ground Truth SSIM=0.546 SSIM=0.537 SSIM=0.56

YOLOv8 Pix2Pix YOLOv8-Cyclegan YOLOvV8-Pix2Pix
PSNR=29.191 PSNR=30.696 PSNR=29.585 PSNR=32.21
SSIM=0.489 SSIM=0.608 SSIM=0.504 SSIM=0.756

Figure 4. Removal of artifacts in photoacoustic images using different methods.

Table 3. Mean PSNR and SSIM for different reconstruction methods.

TR Gaussian Filter Cyclegan Pix2Pix YOLOv8  YOLOvV8-Cyclegan YOLOVS8-Pix2Pix
PSNR 28.918 28.821 29.998 30.421 29.113 29.568 31.459
SSIM 0.566 0.526 0.571 0.612 0.491 0.513 0.650

Figure 5 shows the results of artifact removal for Pix2Pix and YOLOv8-Pix2Pix at
different detectors. As expected, reducing the number of detectors used to sample the
sound pressure leads to more severe artifacts as well as lower average PSNR and SSIM.
Compared to Pix2Pix, YOLOv8-Pix2Pix has a higher average PSNR and SSIM at all sample
sparsity levels tested. Both algorithms effectively remove internal and external artifacts
from the reconstructed images when using 256 detectors, but the Pix2Pix algorithm suffers
from some external artifacts. At the sampling level using 128 detectors, YOLOv8-Pix2Pix
recovered images of higher quality than Pix2Pix. Artifacts are indicated by the red boxes in
Figure 5. Blurring is present in Pix2Pix but can be clearly removed in the YOLOv8-Pix2Pix
reconstruction. Neither algorithm was able to reliably reconstruct the internal information
of the photoacoustic image at the sparse level using 64 detectors.
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Ground Truth Input Pix2Pix YOLOVS-Pix2Pix
PSNR=28.779 PSNR=30).166 PSNR=30.243
SSIM=0.477 SSIM=0.451 SSIM=0.62

PSNR=28.8§33
SSIM=0.517

PSNR=31.9
SSIM=0.531

PSNR=28.841 PSNR=30.696 PSNR=32.21
SIM=0.54 SSIM=0.608 SSIM=0.756

Figure 5. Removal of artifact images using (a) 64, (b) 128 and (c) 256 sensors in different algorithms.
The red box is used to focus the artifact removal effect.

The time required to process a single brain tumor image using YOLOv8-Pix2Pix is as
follows: the preprocessing time was 0.5 ms, inference time was 11.7 ms, loss calculation
time was 0.0 ms, and post-processing time was 1.8 ms. These metrics show the efficiency of
the model in all processing stages.

3.3.2. Photoacoustic Image Segmentation Experimental Results and Analysis

The segmentation effects of removing artifacts” photoacoustic images and photoacous-
tic images using YOLOvV8n under the same training set are compared in photoacoustic
image segmentation experiments. The predicted segmentation labels are compared with
ground truth images using pixel accuracy, intersection and union ratios, and Dice coeffi-
cients as quantitative metrics of image segmentation quality.
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Figure 6 demonstrates the segmentation effect of the original image MRI, photoacoustic
image and the photoacoustic image with artifacts removed on a single image. Evaluating the
segmentation results, it can be observed that the segmentation effect of the artifact-removed
image is significantly better than that of the photoacoustic image with no artifacts removed.
The segmentation labels of the artifact-removed image are highly consistent with the
original image labels, with clear morphological edges, presenting excellent segmentation
accuracy and precision. On the contrary, the segmentation labels of the image without
artifact removal showed missing information and blurred edges, which could not correctly
capture the subtle features in the image.

origin Artifact Image Artifact-free Image

Figure 6. Segmentation results of the original image, photoacoustic image and removal of artifacts.

Table 4 demonstrates the segmentation effect of the brain and brain tumors in photoa-
coustic images with artifacts versus those with artifacts removed in the test dataset. The
results show that the segmentation of the photoacoustic image with artifacts removed is
significantly more effective compared to the image with artifacts. Specifically, the artifact-
removed image exhibited an overall precision of 0.955, a recall of 0.932, a pixel-level
accuracy of 0.986, an intersection and merger ratio of 0.946, an average boundary F1 score
of 0.972, and a Dice coefficient of 0.973. In comparison, the corresponding metrics for
the image with artifacts were 0.915, 0.852, 0.961, 0.773, 0.863, and 0. 864. In addition, the
segmentation assessment metrics for the brain and brain tumors are also broken down in
Table 1, and the results show that the photoacoustic images with artifacts removed have
improved overall precision, recall, and boundary F1 scores across all categories compared
to the images with artifacts.
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Table 4. Evaluation metrics for brain and brain tumor segmentation in photoacoustic images with
artifacts and with artifacts removed.

Precision Recall Accuracy IoU Mean BFScore Dice

All 0.915 0.852 0.961 0.773 0.863 0.864

Artifact Image Brain tumor 0.843 0.704 0.970 0.621 0.766 0.766
Brain 0.986 1 0.952 0.924 0.961 0.961

All 0.955 0.932 0.986 0.946 0.972 0.973

Artifact-free Image Brain tumor 0.918 0.864 0.994 0.928 0.963 0.963
Brain 0.992 1 0.978 0.964 0.982 0.982

3.4. Photoacoustic Detection Experiment

In previous experiments, open brain tumor MRI data were converted to photoacoustic
images where YOLOvVS8-Pix2Pix was used to effectively eliminate artifacts, achieving re-
markable results on a standardized dataset. To enhance the diversity of the dataset and
the practicality of the proposed algorithm, this experiment was designed as a photoacous-
tic detection experimental system, and its experimental verification of the photoacoustic
imaging-based artifact-removal system was carried out using YOLOvS8-Pix2Pix.

3.4.1. Data Acquisition

In the experiments, a homemade imaging platform shown in Figure 7 was used to
acquire photoacoustic signals. A pulsed laser (MC Inc. Real Light Technology Co. Ltd.,
Beijing, China) emitting a 532 nm laser and a multichannel ultrasound system (Vantage 256,
Verasonics, Kirkland, WA, USA) were used to send synchronized signals, while photoacous-
tic signals were acquired using an ultrasound array (L11-5, Verasonics). Subsequently, the
acquired photoacoustic images were used for the re-construction of PA imaging using both
a conventional and an optimized reconstruction procedure, respectively. The experimen-
tal dataset comprised 201 photoacoustic images with different numbers of photoacoustic
sources (PAS), and the image size was set to 500 x 500 pixels (Ny = 500, N, = 500). The
modeled light sources for photoacoustic data were included. Finally, the images after
artifact removal were compared with the original images by qualitative and quantita-
tive methods.

Multichannel ultrasound system

o il

Computer

! | <= Ultrasonic array

n*@54_0 <«

|
laser

Pulsed laser system

3D motional platform

Figure 7. The experiment setup of the PA imaging system.
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The experiment involves four mimetic models, each employing a different photoa-
coustic source configuration. Model I use a pencil core as the photoacoustic source due to
its good optical absorption properties. Model II uses a combination of copper and pencil
cores to achieve richer photoacoustic effects. Models III and IV use a copper core, a pencil
core, and a steel wire as photoacoustic sources, respectively. Figure 8 shows in detail the
configurations of Models I to IV and their photoacoustic sources.
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Figure 8. The schematics of the experiment samples. (a) Phantom I. (b) Phantom II. (¢) Phantom III.
(d) Phantom IV.

3.4.2. The Experimental Results and Analysis of the Removal of Artifacts

In the artifact-removal experiments, the processing results of the original photoacoustic
image were compared with the photoacoustic image processed using the YOLOv8-Pix2Pix
model across different numbers of photoacoustic sources. The reconstructed photoacoustic
images were compared with their standard maps using PSNR and SSIM as quantitative
indicators of image reconstruction quality.

Figure 9 illustrates the comparison of the original PAI image with the algorithmically
processed image and the validation map after fusion with ultrasound imaging from a single
photoacoustic source to a multi-photoacoustic source scenario, with the photoacoustic
sources labeled PAS1, PAS2, and PAS3 in Figure 9. The artifacts in the original PAI image
increase with the number of photoacoustic sources, which is especially significant in
Figure 9d. This increase in artifacts is mainly due to the boundary reflection signal (BRS)
interactions between multiple photoacoustic sources as well as due to the fact that a single
photoacoustic source cannot uniformly illuminate all the photoacoustic sources, which
leads to more artifacts and degradation of the imaging quality. The improved algorithm
showed significant results in removing these artifacts, as shown in the middle figure in
Figure 9d, clearly removing these complex artifacts. By fusing the PAI image with the US
image, it is verified that the improved algorithm is able to accurately identify and localize
the photoacoustic source even in the presence of multiple BRS reflections and irradiations.



Appl. Sci. 2024, 14, 5161 13 of 16
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Figure 9. Experimental imaging results using (a) 1, (b) 2, (c) 3, (d) 4 photoacoustic sources.

Table 5 demonstrates the evaluation metrics of the original photoacoustic image
compared with the photoacoustic image after artifact removal. Clearly, the PSNR and
SSIM of the mimic photoacoustic images processed using the YOLOv8-Pix2Pix model
are significantly improved compared with those before artifact removal. Even in the
Phantom IV with complex artifacts and low evaluation indexes, the use of this model can
still effectively recover the image information and improve the values of PSNR and SSIM.

Table 5. Evaluation metrics for de-artifacting in photoacoustic images with and without artifacts.

Phantom I Phantom II Phantom III Phantom IV

Artifact Image PSNR 74.089 78.531 71.162 54.164
& SSIM 0.993 0.995 0.985 0.646
PSNR 79.988 78.933 74.514 73.616

Artifact-free Image SSIM 0.998 0.997 0.996 0.992
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According to the experimental results, the time required to process a single image in a
photoacoustic detection experiment using YOLOv8-Pix2Pix is as follows: the preprocessing
time is 2.0 ms, inference time is 22.6 ms, loss computation time is 0.0 ms, and post-processing
time is 2.2 ms.

4. Discussion

In this paper, we propose a deep learning-based photoacoustic imaging artifact-
removal and segmentation algorithm to solve the problems of single means and poor
adaptability in the existing technology. The proposed YOLOv8-Pix2Pix model is able
to effectively remove artifacts outside and inside the signal source, and segmentation is
performed by YOLOVS for processing and analyzing the simulated photoacoustic data of
brain tumors and experimentally acquired photoacoustic data. The experimental results
show that the proposed algorithm exhibits significant advantages over other methods on
the brain tumor dataset, not only effectively removing the internal and external artifacts,
but also better preserving the detailed structure and texture of the image. In the segmenta-
tion experiments, the segmentation labels of the images after artifact removal are highly
consistent with the original image labels, and the morphological edges are clear, presenting
excellent segmentation precision and accuracy. In contrast, the image segmentation labels
without removing artifacts showed missing information and blurred edges, and could not
accurately capture the subtle features in the image. In order to verify the effectiveness
of the proposed algorithm and further explore its potential in practical applications, we
designed an experimental system for photoacoustic detection. The proposed algorithm
is able to maintain stable performance under complex backgrounds and artifacts, accu-
rately identify and localize photoacoustic sources, and clearly remove complex artifacts.
The deep learning-based artifact-removal and segmentation algorithm proposed in this
paper has a broad application prospect in the field of photoacoustic imaging, which can
provide more accurate and clearer image information for medical image processing and is
expected to play an important role in clinical diagnosis and treatment. Future research will
focus on optimizing the model and expanding the range of tests to verify its performance
under different conditions, thereby driving its broader application in the field of medical
image processing.
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