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Featured Application: Machine learning in forensic science and the use of MATLAB for identifi-
cation and classification of petrol source.

Abstract: Petrol is considered the most common fire accelerant. However, the identification and
classification of petrol sources through the years has proven to be a challenging field in the inves-
tigation of fire debris analysis. This research explored the possibility of identifying petrol sources
by high-field NMR methods accompanied by ML (machine learning). The automated identification
and classification of petrol brands were achieved for first time based on the ML classification model
developed in this research. A hierarchical classification model was constructed using local classifiers
to categorize neat or weathered petrol into its sources.

Keywords: machine learning; petrol; fire investigation; NMR; MATLAB

1. Introduction

Fire investigation is considered one of the most challenging forensic science disciplines.
Current gas chromatographic and spectroscopic analytical methods in fire investigation
cannot discriminate or individualize petrol sources based on class compounds within the
petrol samples from the fire scene to give an indication of the country of origin, refinery
(source), natural weathering/age or fire exposure. As petrol is considered one of the most
common petroleum products (PPs) used as an ignitable liquids (ILs) in fire investigation, it
was the primary concern of this study [1]. The characterization and identification of petrol
samples is a crucial challenge in the scientific investigation of fire as the current reference
data relating to petrol do not highlight the broad range of different petrol compositions [2].
Identifying individual compounds in the petrol contributes to understanding complex
petrol chemical compositions and their additive and blending agents as the refineries
do not reveal the exact composition of their petrol. Those compounds have not been
previously identified due to their volatility and trace amounts in the petrol mixture. Gas
Chromatography (GC)–Mass Spectroscopy (MS) analysis of ILs using chemometric analysis
for comparisons of unevaporated, evaporated and “on substrate” petrol samples from
stations across the UK displayed very similar chromatographic patterns regardless of
the petrol grade or type; hence, discrimination by grade, type, or brand could be very
challenging [3]. The authors used Principal Component Analysis (PCA) analysis to target
C2–C4 alkyl benzenes; the PCA achieved a grouping of petrol brands based on their grade
(premium and regular). A Hierarchical Cluster Analysis (HCA) was applied to the data
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and no substantial clustering based on petrol type or brand was revealed. However,
the HCA dendrogram demonstrated a linkage of the samples according to their degree
of evaporation [3].

A method based on Gas Chromatography (GC)–Flame Ionization Detector (FID)
analysis combined with an ANN (artificial neural network) algorithm was explored for
the discrimination of petrol brands from five petrol stations in Spain based on the entire
chromatogram [2]. It was concluded that despite there not being significant variations in the
chromatogram, mathematically, the different petrol samples could be classified according
to their brand. The authors suggested that the potential difference that contributed to the
discrimination was the content of oxygenate and hydrocarbon groups such as aromatics and
olefins. In that experiment, native petrol samples were only considered for identification
purposes and no identification of specific compounds was made [2].

Research by Monfreda and Gregori [4] offered promising results where unevaporated
samples from different petrol sources were correctly grouped based on aromatic com-
pounds. In addition, Barrett et al. [5] used Direct Analysis Real-Time Mass Spectroscopy
(DART-MS) combined with the Partial Least Squares Discriminant Analysis (PLS-DA)
model to classify petrol sources on different substrates; however, the petrol samples were
grouped by the already identified class rather than unknown classes.

Even though many spectroscopic and chromatography techniques have been con-
sidered, it can be concluded that the identity of the source of ILs recovered from a fire
scene is still a challenging and ongoing research area. Therefore, there is a need for the
individualization and classification of petrol sources to enhance ILs’ evidential value.

Nuclear Magnetic Resonance (NMR) is a non-destructive spectroscopic technique
that studies the nuclei of atoms within a molecule and their chemical environment. NMR
spectroscopy is sufficient to completely determine the structure of an unknown molecule
and to differentiate between isomers or related compounds which can be difficult using
GC-MS. Various NMR pulse sequences allow complex spectra to be dissected by focusing on
individual small spectral regions and extracting the spectra of the coupled spin systems that
have a resonance within that region, even when their spectra severely overlap. Therefore,
NMR spectroscopy has the capability to extract the sub-spectra of an individual component
without prior separation from highly complex spectra [6].

A simple 1H NMR method has been successful in the determination of petrol composi-
tion and some individual compounds with rapid and accurate results. Further investigation
of NMR applications in the petroleum industry displayed the capabilities of 1H NMR cou-
pled with PCA, k-NN (k-Nearest Neighbors), HCA and SIMCA (Soft Independent Modeling
of Class Analogy), which proved to be a useful tool for categorizing petrol samples with
adulteration (solvents), fuel additives and blends, petroleum mixtures (kerosene and diesel
mixtures) and petrol samples with different octane numbers; NMR is a proven analytical
tool for the identification and quantification of low-molecular-weight components [7–11].
The primary application of high-field NMR spectroscopy in the petroleum industry is in
the quality control of hydrocarbon classes in a sample rather than individual compounds of
the overly crowded complex spectra. 1H NMR methods coupled with clustering and multi-
variate classification techniques were used for the successful identification of adulteration
in two types of samples. The potential of NMR spectroscopy for the structural elucidation
of petrol components in a sample has been established.

Considering the application of NMR in various scientific fields, forensic NMR is still
in the early stages of development with a particular focus on the chemical compositions of
single compounds. A 1H NMR method was combined with statistical analysis to identify
the chemical “fingerprint” of cocaine samples and to link cocaine samples based on this
information. It was concluded that the NMR method could establish a link between seized
samples obtained at different locations or in possession of different individuals. The
relative ratios of the minor components in coca leaves are closely associated with plant
varietal, cultivar and agronomic differences that can be exploited for the assignment of
geographical origin, at least when suitable authentic databases are available [12]. One of the
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disadvantages of 1H NMR is that it is generally used for nonselective analysis compared
to the selectivity of MS. Peak overlaps from multiple detected compounds pose major
challenges in the complex 1H NMR spectrum of petrol. Therefore, band-selective sequences
including selective (sel) TOCSY and pure shifts that use tailored pulses, which narrow the
excitation bandwidth to the region of interest in a signal measurement to obtain information
for a single spin system, are recommended.

Machine learning has been proven to be beneficial in forensic science in its various
fields such as public safety, image and video analysis, image recognition, gunshot detection,
firearms identification, 3D crime scene reconstruction, huge digital data analysis, building
statistical evidence, handwriting identification, time since death estimation, dental age
estimation and personal identification through dental findings [13], sex determination
of skeletal remains, 3D facial reconstruction from an unidentified skull, cybercrimes and
digital evidence detection [14], bloodstain pattern analysis [15] and pattern recognition,
which involves pattern evidence such as bite marks, lip prints, bullet marks, tool marks,
shoe prints and fingerprint comparison and identification with more accuracy and ulti-
mately higher speeds than human experts [16,17]. NMR provides rapid and accurate data
collection in high output forensic laboratories. The objective of this work, using high-field
(600 Hz) NMR spectroscopy that delivers automated sample changing, was to uniquely
individualize and discriminate aliquot petrol sources based on (1) source (origin of the
crude oil); (2) refinery processes and procedures (blending agents); and (3) brand (additive
package). Within forensic science, the identification and classification of petrol sources
could help police forces in the investigation of various fuel offenses, including arson, motor
vehicle incidents, environment spillage, fuel smuggling and petrol bomb-related incidents.
Therefore, the objective of the study also included individualization and discrimination of
evaporated and Ignitable Liquid Residue (ILR) samples (fire debris residues) to characterize
the petrol sample collected at a fire scene. Petrol samples that are not hermetically sealed or
are exposed to high temperatures undergo evaporation losses, which is called weathering.
Therefore, evaporated samples and fire simulated debris samples are considered weathered.
Several NMR pulse sequences were evaluated for this research. The one-dimensional (1D)
1H selTOCSY (Selective Total Correlation Spectroscopy) method (also known as selective
HOHAHA (Homonuclear Hartmann–Hahn)) was established as the most suitable pulse se-
quence for the evaluation of petrol sources, establishing 1H connectivity through J-coupling,
which allows for selective proton nuclei excitation by a shaped pulse to enable a response
within the entire spin system [18]. In a mixture, an excitation of a range of similar signals
and a specific chemical shift occurs depending on the shape of the selective pulse, which
is calculated based on the width of the integral region. 1H selTOCSY creates a correlation
between all protons in a spin system. A 1H selTOCSY experiment is an indispensable tool
for unravelling the spectra of complicated molecules. This is achieved by the multistep
transfer of magnetization over many spins. Increasing the isotropic mixing time causes
the net magnetic polarization to spread through an increasing number of bonds [19]. For
fire debris samples, a 1H NMR NOESY (Nuclear Overhauser Effect) method with solvent
suppression was used to improve digitization without compromising the solute as the
sample contained a diluted extracted of ILs in protonated solvent which gave an intense
signal; this was then followed by 1H selTOCSY. The solvent suppression method is mainly
used to attenuate multiplets by employing shaped pulses, which have a broader excitation
profile. The merits of this technique include its easy application, easy implementation
within most NMR experiments and possibility of multiple pre-saturation. However, its
application may lead to the absence of 2D cross peaks due to the saturation of peaks with
resonances close to the solvent frequency. This technique sometimes leads to the transfer of
saturation to slowly exchanging protons, which could be detected without saturation [20].

This study developed an automated classification model to individualize and classify
unknown native and fire debris petrol samples based on class characteristics of their source
by using machine learning.
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An automated hierarchical model for classification using local classifiers for each leaf
used for the predication of the petrol source is described in this paper and the experimental
results and limitations of this model are discussed. The key contributions of this study
are as follows: (1) an automated classification model was developed that can successfully
classify petrol sources; (2) the machine learning and statistical analysis results can support
opinion-based decision making when identifying petrol samples in fire debris analysis; and
(3) a new dataset of different petrol sources from UK and Ireland was created.

2. Materials and Methods

The main steps of this study’s methodology included the NMR analysis of petrol,
data acquisition, feature selection, design, training, optimization and evaluation of the
classification model.

2.1. Materials

This study used 58 petrol samples that represented British Petroleum (mainland (M)
and Scotland (S)), Jet, Esso, Texaco and Shell sources across petrol stations in the UK and
Ireland. To address the issues associated with evaporation and matrix interference, the
experimental protocol was followed to analyze (1) evaporated petrol samples (as per the
laboratory protocol described below) and (2) simulated fire debris petrol samples burned
to 50% of the original weight. For each petrol brand collected, a set of three evaporated
samples was generated. In a dry bath at approximately 25 ◦C (room temperature), 10 mL
of neat petrol samples from various petrol sources in triplicate were pipetted into 15 mL
plastic tubes and placed under a nitrogen stream until the evaporation percentages were
approximately 25%, 50%, 75% and 90% corresponding to volume reductions of 2.5 mL,
5.0 mL, 7.5 mL and 9.0 mL, respectively. During the evaporation process, 100 microliters
of the petrol samples was collected at each stage of the volume reduction. The samples
were prepared for analysis by diluting them in non-deuterated cyclohexane. Finally, petrol
sources (2 mL) were burned up to 50% of their original weight on their own and on a
3 cm × 3 cm substrate (flooring material, carpets, fabrics and paper materials) and sub-
sequently extracted by immersing the substrate with 10 mL cyclohexane. Cyclohexane
is a solvent with good miscibility properties. It represents a single resonance peak in the
aliphatic area, which does not interfere with the area of interest using the solvent suppres-
sion pulse sequence (NOESY). The resolution of the trace amount peaks in the olefin area
and the chemical shift variance met the acceptance criteria. The cyclohexane resulted in
a minimum chemical shift variance of <0.01 ppm, and showed consistency in different
solute strengths (10%, 50% and 90%) with 16 scans. Based on the consistent chemical
shift, peak resolution and minimal coupling overlap, it was concluded that non-deuterated
cyclohexane was the most appropriate solvent. In addition, non-deuterated cyclohexane
proved to be suitable for the direct solvent substrate extraction of fire debris required for
this study compared with the deuterated cyclohexane with its low volume availability and
high cost.

To impartially compare the NMR method for the discrimination of neat, weathered
and burnt petrol samples to the current laboratory method using Automated Thermal
Desorption (ATD)–Gas Chromatography–Mass Spectroscopy (GCMS) (in-house developed
method used by Eurofins Forensic Services) in the analysis of ILs and their residues for
the interpretation of volatile compounds and ignitable liquids, a set of neat, evaporated,
burnt and fire debris samples was created. Different petrol samples were prepared by an
independent laboratory examiner/analyst; the samples prepared included different brands
of neat petrol samples, evaporated petrol samples, petrol samples burned on their own,
and petrol samples burned on different substrates. The corresponding burned on substrate
samples were collected and packed into a control nylon bag for further extraction (Table 1).
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Table 1. Summary table of the blind sets of (1) neat petrol samples and (2) combinations of evaporated,
burnt and fire debris petrol samples.

(1) Summary table of the neat petrol samples used for the double-blind study.

Blind Sample Name Class

BLIND A Jet

BLIND B Esso I (from regions) different

BLIND C Esso II

BLIND D Esso III

BLIND E Texaco I

BLIND F Texaco II

BLIND G Shell I

BLIND H BP M

BLIND I Shell II

BLIND J BP S

(2) Summary table of the evaporated, burnt, and burned on substrate petrol samples used for double-blind study.

Blind Exhibit Name CLASS Weathered Status

BLIND EXHIBIT A BPM Evaporated 50%

BLIND EXHIBIT B BPM Cardboard Substrate

BLIND EXHIBIT C JET Burnt

BLIND EXHIBIT D JET Evaporated 25%

BLIND EXHIBIT E ESSO Evaporated 25%

BLIND EXHIBIT F SHELL Cardboard Substrate

BLIND EXHIBIT G SHELL Burnt

BLIND EXHIBIT H TEXACO Burnt

BLIND EXHIBIT I TEXACO Evaporated 25%

2.2. Data Acquisition

The data in this study was acquired using a Bruker high-field 600 MHz NMR
spectrometer (Bruker, London, UK) with a 5 mm broadband inverse diameter probe. The
Icon NMR software (Version 3.0) was used to set the NMR experiments and control the
data acquisition. The NMR experiment was a simple single-pulse sequence (zg30 from the
Bruker library) for (1) neat petrol, and (2) a second dataset was acquired in cyclohexane
with a solvent suppression pulse sequence (NOESY) for the evaporated (due to limited
volume) and burnt petrol samples. A pulse sequence program (seldigpzs from the Bruker
library) was used for the acquisition of 1H sel (selective) TOCSY. Data were collected
with 64 k points as the size of the free induction decay (fid), with a spectral width of
20.0 ppm, a mixing time of 0.06 s, an acquisition time of 2.7 s, a pre-scan delay of 6.5 s
and a minimum of 16 scans for the neat petrol samples. The acquisition parameters were
based on the default pulse sequences in the Bruker library. 1H selTOCSY was performed on
the following bands of chemical shifts: 4.65–4.72 ppm (olefin set 1), 4.73–4.85 ppm (olefin
set 2), 4.95–5.10 ppm (olefin set 3) and 5.10–5.35 ppm (olefin set 4). The couplings were
resolved and used for the assignment of the chemical species. The four discriminative sets
of olefins were identified as 3-methyl-1-butene by irradiating the signal at 4.64–4.72 ppm,
a mixture of 3-methyl-1-butene and 1-pentene by irradiating the signal at 4.73–4.85 ppm,
2-methyl-2-butene by irradiating the signal at 4.95–5.10 ppm and a mixture of cis- and
trans-2-pentene by irradiating the signal at 5.10–5.35 ppm. For the double-blind study, the
exhibits were analyzed using headspace-ATD-GC-MS using a Tenax TA sorbent sampling
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tube. A 1 mL headspace was taken from within the packaging after a period of incubation
at around 100 ◦C. The interpretation of the results was based on pattern recognition and
comparing the chromatography results obtained from evidential items with the standard
references. Where possible, comparison against a reference of the relevant liquid was prefer-
able, but if not possible, the sample was compared to the laboratory reference database or
the published literature.

2.3. Data Pre-Treatment and Pre-Processing

The 1H NMR spectrum of petrol is a complex mixture consisting of multiple detectable
and overlapping peaks. The position, intensity and width of the peaks of interest significantly
impact the quality of the NMR spectrum and its subsequent interpretation. The acquired
1H NMR and 1H TOCSY data were processed with Mestre Nova (version 10.1.0 LITE-SE)
software, where different processing parameters were applied to achieve the most efficient
dataset. The processing included (1) chemical referencing, (2) phasing, (3) baseline correction,
(4) sub-spectral selection and filtering, (5) normalization and (6) binning (Figure 1). The detailed
methodology is included in Supplementary Materials.
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Figure 1. A summary of spectra processing and data pre-processing steps required for optimizing
the NMR data of petrol for further machine learning classification.

2.4. Feature Selection

The datasets underwent unsupervised machine learning by applying PCA and a super-
vised analysis by applying PLS-DA in MetaboAnalyst. PCA was chosen as the explorative
tool of the pre-processed data to display any natural groupings. The score plots were
a visual representation of the clustering between groups. A loading plot displays how
strongly each characteristic influences a principal component. Therefore, PLS-DA was
then used for the classification and feature selection of the variables, using cross-validation
to select an optimal number of components for classification. The bins that contained
important variable information for classification were identified by PLS-DA through the
Variation Importance Projection (VIP) score. The VIP score is a measure of a variable’s
importance in the PLS-DA model [21]. It summarizes the contribution a variable makes to
the model. The VIP score of a variable is calculated as a weighted sum of the squared corre-
lations between the PLS-DA components and the original variable. A statistical analysis
was performed exploiting the real-time interactive web-based application MetaboAnalyst.
Firstly, the non-targeting approach, considering all the spectral information, was explored
for classification purposes, and then the targeting approach was used, where the four sets
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of olefins were evaluated to achieve better clustering. The dataset from the 1H selTOCSY
spectral data was used, which edited out many NMR peaks by filtering out all signals that
did not have a component of their spin system in the selective excitation.

2.5. Classification Model

For the first time, this study used machine learning techniques to automatically
individualize and classify the petrol sources of native, evaporated, and fire debris samples.
They were implemented in MATLAB (R2019b) using the Classification Learner app. The
evaluation of the model was performed using selected datasets, which are essential in
experimental model development.

The classification model research design is outlined as follows:
Step 1—data collection. The datasets evaluated in this research were as follows:

(1) entire 1H NMR spectrum of neat petrol samples; (2) 1H selTOCSY spectrum of the
four olefins of neat petrol samples; (3) 1H selTOCSY spectrum of the four olefins of neat
and evaporated petrol samples; (4) 1H selTOCSY spectrum of the four olefins of neat,
evaporated, and fire debris residue samples.

The datasets were divided into (i) training data, comprising non-targeting (contained
all the NMR spectrum information) and targeting (1H selTOCSY spectrum that consisted of
selected features that were recognized as an important feature for discrimination purposes)
datasets and (ii) a blind study testing dataset (for the practical validation of the model
by comparing to a real-world dataset). The training and testing datasets were used to
determine the best classifier model for the classification of petrol brands based on the
NMR spectrum.

Step 2—reduction of data dimensionality by selecting only a subset of measured
features (predictor variables) to create a cluster model through PCA or for the feature
selection function (using the featured chemical bins from the PLS-DA VIP scores). The
PCA function was enabled with a component reduction criterion of 80% of the explained
variance as this represents a sufficient information variance; typically, the first few PCs
correspond to cumulative eigenvalues accounting for 80% or above of the variation within
a dataset and are sufficient to describe or explain most of the variability in the given dataset,
thus reducing the dimensionality [3]. For optimal results, the study aimed to choose a
classifier model with a minimum of 60% accuracy (validation).

Step 3—dataset optimization. The effect of the pre-processed parameters on the
classification training model for the discrimination of petrol samples was tested.
Two different parameter pre-processing methods were investigated in this study: filtering
of the redundant spectral bins and the normalization parameter. Data filtering was applied
to set any spectral bin value less than 1 to 0. For normalization, (i) single peaks were
normalized (to the highest peak of the spectrum) and (ii) normalized with the total area
sum (LOG function).

Step 4—dataset splitting. The datasets were split into training and testing datasets
using the cross-validation function with K-folds. The cross-validation method with 5 and
10 folds was investigated.

Step 5—evaluating different classifier models such as Decision Trees, Discriminant
Analysis (DA), Support Vector Machines (SVMs), Logistic Regression, k-Nearest Neighbor
(k-NN), Naïve Bayes, Ensembles, and Artificial Neural Networks (ANNs).

Step 6—after training multiple models, their performances were compared, and then
the most robust and effective classification model was chosen. The Classification Learner
app displayed the results of the validated model. Performance measures, such as model
accuracy, and visual representation plots, such as the confusion matrix chart, reflect the
validated model results. The confusion matrix table displayed six petrol brands as true
classes in the rows and predicted classes in the columns.

The goal of the classification model method was to investigate different datasets of
native, evaporated and fire debris petrol samples with different pre-treatment techniques
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including data filtering and normalization to identify the most desirable classifier which
provides the highest classification accuracy.

3. Results
3.1. NMR Results

The typical 1H NMR spectrum of the petrol samples contained signals in the chemical
shift region of 0 ppm to 8 ppm (Figure 2). The 1H-NMR chemical shifts can be grouped
into several broadly defined regions: alkylates have a chemical shift range of 0.5–1.5 ppm;
normal and branched iso-paraffins (alkanes) and oxygenates have a chemical shift range of
2.0–4.0 ppm for alcohols, chemical shift range of 2.0–2.2 ppm for (HCOO-CR) esters and for
benzylic compounds (Ar-CH), chemical shift range of 3.7–4.1 ppm for esters (RCOO-CH),
and chemical shift range of 3.3–4.0 ppm for ethers; olefins have a chemical shift range of
4.0–6.0 ppm; and aromatics have a chemical shift range of 6.5–7.5 ppm (benzene, toluene,
ethylbenzene and o-, m- and p-xylene). The 1H NMR profiling of various chemical shift
(∂) regions clearly showed that each petrol source had a diagnostic “fingerprint” with
specific chemical markers that could be potentially used for identification, classification and
ultimately linking an unknown sample to its source. The primary region of interest in the
1H NMR spectrum was the area that represented the additives and blending agents added
to the base petrol like olefins and oxygenates produced during the refinery procedure with
chemical shifts (∂) of 4.00–6.00 ppm (Figure 3).
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Figure 3. Representation of the olefin region of the 1H NMR spectra of neat petrol from different
sources: (i) British Petroleum Scotland, (ii) British Petroleum UK, (iii) Jet (Concord), (iv) Texaco,
(v) Esso and (vi) Shell.

3.2. 1H selTOSCY Results for Native Petrol Samples

The 1H selTOCSY NMR experiment allowed for more detailed structural and chem-
ical identification of the ‘source-related’ compounds in the olefin region of the spec-
tra. The 1H selTOCSY NMR experiments on these alkene signals removed most of the
non-alkene-related signals from the spectra, providing additional clarity in the previously
heavily overlapped regions of the 1H NMR spectrum. Therefore, selective 1H TOCSY
was used to elucidate the ‘target’ compounds of interest not only to identify them but
also to use the obtained 1H selTOCSY data for building a successful classification model.
Figure 4 illustrates spectral examples of the great potential of the 1D selTOCSY experiments
in revealing the whole spin system of a band-selective chemical shift. The couplings were
resolved and can be used to assign the chemical species. Four discriminative sets of olefins
were identified: (a) 3-methyl-1-butene by irradiating the signal at 4.64–4.72 ppm, (b) a
mixture of 3-methyl-1-butene and 1-pentene by irradiating the signal at 4.73–4.85 ppm,
(c) 2-methyl-2-butene by irradiating the signal at 4.95–5.10 ppm and (d) a mixture of cis
and trans-2-pentene by irradiating the signal at 5.10–5.35 ppm.
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Figure 4. An illustration of the 1H selTOCSY spectra of the distinctive olefins found in petrol source.
(a) 1H selTOCSY spectra displaying the coupling assignment of the irradiated signal at 4.65–4.72 ppm of
3-methyl-1-butene in Jet petrol source. (b) 1H selTOCSY spectra displaying the couplings assignment of the
irradiated signal at 4.73–4.85 ppm of the mixture of 3-methyl-1-butene and 1-pentene in Jet petrol source.
(c) 1H selTOCSY spectra displaying the couplings assignment of the irradiated signal at 4.95–5.10 ppm of
2-methyl-2-butene in Jet petrol source. (d) 1H selTOCSY spectra displaying the coupling assignment of the
irradiated signal at 5.10–5.35 ppm of the mixture of cis- and trans-2-pentene in Jet petrol source.
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It was concluded that petrol sources from BP in Scotland have a unique combination of
olefinic compounds that clearly distinguish them from the rest of the petrol sources. The BP
M and Jet exhibited similar patterns of the sets of olefins and could not be discriminated on
these alone. However, BP M and Jet have the potential to be discriminated from the other
three brands based on the couplings of 2-methyl-2-butene. Texaco, Esso and Shell could be
potentially discriminated from the other petrol brands based on 2-methyl-2-butene and the
mixture of cis- and trans-2-pentene.

The 1H selTOCSY method identified the presence/absence of four important sets of
olefins representing the minor differences in the signals (Table 2). The summary table
shows the combination of different sets of olefins in the petrol brands.

Table 2. Summary of the alkene compounds present (
√

) and absent (X) in the petrol brands.

Set 1 Set 2 Set 3 Set 4

Petrol Brand 3-methyl-1-butene Mixture of 1-pentene and
3-methyl-1-butene 2-methyl-2-butene Mixture of cis- and

trans-2-pentene

BP S
√

X X
√

BP M
√ √ √ √

Jet
√ √ √ √

Texaco
√ √

X X

Esso
√ √

X X

Shell
√ √

X X

3.3. selTOCSY Results for Evaporated Petrol Samples

The investigation of different petrol sources evaporated to 25%, 50%, 75% and 90%
of their original weight found distinctive couplings to discriminate between the petrol
sources based on 2-methyl-2-butene and the mixture of cis- and trans-2-pentene up to
50% evaporation, except for the BP S petrol source which displayed poor recovery for all
relevant olefins. It should be noted that 2-methyl-2-butene and the mixture of cis- and
trans-2-pentene were the main olefins contributing to the differentiation between petrol
sources. The 75% evaporation samples displayed poor peak resolution, changes in peak
intensity and low signal-to-noise ratios resulting in spectra which could not be used
for individualization and classification of the petrol sources. The 90% evaporated petrol
samples exhibited a complete loss of all the alkene signals that could be used to discriminate
between the petrol sources. The petrol samples evaporated to 25% and 50% of their original
weight were suitable for individualization and discrimination of petrol sources. The use of
1H selTOCSY dramatically improved the ability to identify the alkenes which subsequently
has the potential to link a petrol sample to its source (Table 3). The spectra are shown in
Supplementary Materials.

Table 3. A summary table of the aliphatic and olefinic couplings of the individual sets of olefins at
25%, 50% and 75% level of evaporation and their potential to be used for discrimination.

Distinctive Set of Olefins Aliphatic Couplings Olefinic Couplings Potential to Discriminate

1. 3-methyl-1-butene
loss of -CH3 methyl groups
and CH couplings at 25%
evaporation rate

decrease in relative intensity
of CH=CH2 couplings up to
complete loss for 50%
evaporation rate

X

2. mixture of 1-pentene and
3-methyl-1-butene

loss of all aliphatic couplings
at 50% evaporation rate

decrease in relative intensity
for all couplings up to 50%
evaporation rate, poor
resolution was observed for
75% evaporation rate

X
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Table 3. Cont.

Distinctive Set of Olefins Aliphatic Couplings Olefinic Couplings Potential to Discriminate

3. 2-methyl-2-butene

Preserved of all aliphatic
couplings up to 75%
evaporation with loss of
resolution

decrease in relative intensity
for all couplings up to 50%
evaporation rate, poor
resolution was observed for
75% evaporation rate

√

4. Mixture of cis- and
trans- 2-pentene

Preserved of all aliphatic
couplings up to 75%
evaporation with loss of
resolution

decrease in relative intensity
for all couplings up to 50%
evaporation rate, poor
resolution was observed for
75% evaporation rate

√

3.4. Identification of Target Olefin Sets in Petrol Samples Burned on Their Own and on Substrates

The next stage of this study was analyzing the 50% burnt petrol samples from different
sources. The aim was to identify the recovered distinctive olefins. The resulting 1H NMR
spectra of the burnt petrol samples displayed a preservation of the discriminative olefins
with changes in the peak intensity and resolution for all petrol sources except for the BP
S petrol source, where no olefins were recovered in the olefin area. The full and olefin
area of the 1H NMR spectra of the different petrol samples are shown in Supplementary
Materials. However, challenges were met when different petrol sources were spiked on
different substrates; Table 4 summarizes the ability to discriminate the petrol source from a
variety of different simulated fire debris.

Table 4. Summary table of petrol samples burned on substrates and their significance for
forensic investigations.

Type of Substrate Background Interference Application Potential to Discriminate

Wood (flooring):
Oak
Ash
White pine
Yellow pine
Hickory

Substrate background
interference from the
pyrolysis of the wood:
cellulose and levoglucosan
from oak; unidentified peaks
in ash, hickory and yellow
pine; 2-furalaldehyde and
m-xylene from white pine

Household fires X

Carpets
100% polyester with

Acton/Hessian (14 mm thickness)
100% polypropylene with

felt backing (12 mm thickness)
50% wool with

Action/Hessain (5 mm thickness)

Substrate background
interference from the backing
of substrate itself due to the
polymer styrene

Household/motor
vehicle fires X

Fabrics
100% cotton
100% linen
100% polyester fabric
Cotton and linen
Cotton and polyester
Viscose and linen

Partially recovery of
2-methyl-2-butene and a
mixture of cis- and
trans-2-pentene identified by
1H selTOCSY method but
inconsistent among petrol
sources

Household fires, petrol
bombs, fires set by humans X
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Table 4. Cont.

Type of Substrate Background Interference Application Potential to Discriminate

Paper materials

All sets of olefins were lost
due to absorbance and
retention capabilities of
paper materials

Household and office fires,
destruction of evidence X

Cardboard

Fully recovered
2-methyl-2-butene and a
mixture of cis- and
trans-2-pentene, which
were identified by
1H selTOCSY method

Household and office fires,
destruction of evidence

√

3.5. Classification of Neat Petrol Classes

The first stage of the classification experiment aimed to discriminate neat petrol
samples by their brand (source/origin). Different classifier models such as Decision
Trees, Discriminant Analysis (DA), Support Vector Machines (SVMs), Logistic Regression,
k-Nearest Neighbor (k-NN), Naïve Bayes and Ensemble techniques were used. The ac-
curacy of the best performing models is summarized in Table 1, where the training and
testing were conducted with 5- and 10-fold cross-validation. The classification model of the
entire 1H NMR spectral dataset of neat petrol samples that were filtered and normalized
by the sum of the total area displayed an advantage over the non-filtered single peak
normalized dataset, successfully classifying BP S and Texaco. The lower accuracy for BP
M, Jet, Esso and Shell could be explained by the overall chemical similarities in the whole
spectra; as previously stated, the potential discriminative features were the four olefinic
compounds/mixtures. Therefore, when feature selection was applied using the spectral
bins representing specific couplings, BP S, BP M, Texaco, and Jet were successfully classi-
fied previously. In addition, the high intensity of the aliphatic and aromatic region of the
1H NMR spectra could suppress the low-intensity olefin components, which contributed to
the model’s low accuracy when no feature selection was used. No significant difference
was observed when evaluating the dataset with 10 folds.

The classification model of the olefin datasets did not achieve a sufficient accuracy
on the classification of all the petrol brands when classifying using the feature selection
technique. This could be simply explained by the alkene couplings being spread across the
chemical shift range of 4.0–6.0 ppm (allylic carbons) and 1.6–2.6 ppm (aliphatic carbons)
rather than couplings only in the 4.0–6.0 ppm olefin region. Comparing the individual
olefins and the combination of all four sets of olefins for the training of the classification
model revealed that the classification model with the highest accuracy for discriminat-
ing between the native petrol samples based on their brand was the one that used the
combination of the four featured olefins. The Ensemble Classifier applied to the filtered
and normalized by sum of the total area data with 10-fold cross-validation was the most
satisfactory classification model that successfully classified all the petrol brands with an
overall accuracy of 81% (Table 5).

Table 5. Summary table of the classification models for neat petrol samples with the most successful
classifiers of different petrol sources with prediction rates >60% and <60% .

Dataset Classifier PCA Feature
Selection k-Folds BP S BP M Jet Esso Shell Texaco

Entire 1H NMR spectra Ensemble
√

5 92.3% 91.7%
Entire 1H NMR spectra SVM

√
10 100% 71.4% 83.3%

Olefin Region NN
√

5 76.9% 66.7%
Olefin Region NN

√
10 92.3% 75%

3-methyl-2-butene NN
√

10 100% 83.3% 88.9% 100%
3-methyl-2-butene Ensemble

√
5 91.7% 66.7% 62.5% 77.8% 90%
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Table 5. Cont.

Dataset Classifier PCA Feature
Selection k-Folds BP S BP M Jet Esso Shell Texaco

Mixture of 3-methyl-2-butene
and 1-pentene Ensemble

√
5 n/a 100% 100%

Mixture of 3-methyl-2-butene
and 1-pentene kNN

√
10 n/a 66.7% 76%

2-methyl-2-butene SVM
√

10 n/a 66.7% 85.7% 76%
2-methyl-2-butene Ensemble

√
5 n/a 71.4% 71.4% 66.7% 69.2%

Cis- and trans-2-pentene Linear
Discriminant

√
10 85.7% 71.4% 60% 60% 83.3%

Cis- and trans-2-pentene Ensemble
√

10 100% 71.4% 60% 60% 83.3%
Combined Olefins Ensemble

√
10 100% 77.8% 71.4% 71.4% 77.8% 76.9%

Combined Olefins Ensemble
√

10 100% 66.7% 71.4% 71.4% 88.9% 76.9%

3.6. Classification of Native, Evaporated, Burned on Its Own and Burned on Substrate Petrol Classes

The second stage of this research aimed to build a classification model suitable for
classifying evaporated, burnt, and burned on substrates petrol samples according to the
brand. The ability to link a sample that has undergone compositional changes (through
weathering) back to its unevaporated source was investigated. To build the most robust
classification model, different classification models were evaluated: (1) the dataset of
2-methyl-2-butene and the mixture of cis- and trans-2-pentene in the neat petrol samples,
(2) the evaporated petrol sample dataset, and (3) the combined dataset of neat and evapo-
rated petrol samples.

It was concluded that based on the above evaluated classification models, it was
not possible to compare the native and the weathered petrol samples directly. Table 6
summarizes the classification models for the neat, the evaporated, the combined neat and
evaporated and the combined evaporated, burnt and substrate sample datasets.

Table 6. A summary table of the classification models for neat, evaporated, burned on its own and on
variety of substrates samples petrol samples with the most successful prediction of different petrol
source with prediction rate >60% and <60% .

Dataset Classifier k-Folds BP S BP M Jet Esso Shell Texaco
Neat Combined Linear Discriminant 5 85.7% 88.9% 76.9%
Evaporated petrol samples NN 10 75% 60%
Neat and evaporated petrol samples NN 10 60% 69.2% 70.6%
Neat, evaporated, burnt and
burned on substrate petrol samples NN 5 100% 62.5%

3.7. Hierarchical Classification Model for Individualization of Petrol Source

Firstly, the petrol samples status native (unevaporated) or weathered (evaporated
and simulated fire debris) needed to be determined. The evaluation of the blind dataset
of native petrol brands showed that the classification model with the combination of all
four olefins correctly predicted 80% of the petrol brands. On the other hand, it was found
that classification model with the combination of 2-methyl-2-butene and the mixture of
cis- and trans-2-pentene was not successful in discriminating between petrol brands of
the native samples. The combined native and evaporated model displayed an accuracy
of 44.4% on the blind dataset. The evaporated and simulated fire debris classification
model displayed an accuracy rate of 33%. The multi-classifier classification models for the
evaporated and simulated fire debris samples were not satisfactory when evaluated on the
blind sets of samples. Therefore, a binary classifier for single sources of petrol vs. the rest of
the petrol brands was needed. The binary models were created based on the discriminative
potential of the minor compounds using 1H selTOCSY; the four sets of olefins displayed
minor differences in the NMR spectra, which could contribute to the distinction between
the petrol samples from different sources. The BP M and Jet samples displayed similar
NMR spectral fingerprints compared to the other petrol brands based on 2-methyl-2-butene
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and the mixture of cis- and trans-2-pentene. In addition, Texaco and Shell shared similar
NMR profiles; however, the 1H selTOCSY results for 2-methyl-2-butene and the mixture of
cis- and trans-2-pentene could potentially assist with distinguishing these two brands from
the rest of the petrol sources. For the weathered dataset, the combination of evaporated
petrol samples (25% and 50% of sample weight), petrol samples burned on their own and
petrol samples burned on a substrate (cardboard) was used for the training. Due to the
limitation of the results of the multi-class classification models, a hierarchical classification
model was created to build a more robust classification model.

For this study, a hierarchically structured local classifier model was constructed. Local
classifiers were used for each parent node. The first parent node was a binary classification
model between the types of petrol samples, native vs. weathered petrol, which produced
two child nodes. The binary classifier predicted the source of the petrol sample based
on its weathered status using a Linear Discriminant Classifier. Each child node had its
local classifier. If the sample was predicted to be native petrol, a multi-class classification
model was applied to individualize the native petrol sample based on its source. The
Ensemble Classifier used the combination of four olefins compounds to create a multi-class
classification model. The classification model for the weathered samples was more complex
than the classification model for the native petrol samples due to the complications in
the recovered spectra and background interference from the substrate. The weathered
samples contained recovered 2-methyl-2-butene and the mixture of cis- and trans-2-pentene.
Therefore, for the child node containing weathered samples, a local binary classifier was
used for each level. For each level of the second child node, a local binary classifier was
used to identify if a sample belonged to a petrol source; if it did not belong to the first petrol
source, the sample was input through to the next level and classified. The first leaf level of
the binary classification model used the k-NN classifier to determine if a petrol sample was
BP M vs. other petrol sources. If BP M was not identified as the source of the sample, the
second leaf level used a Logistic Regression Classifier to classify the sample as Jet vs. other
petrol sources. If a sample was not identified as BP M and Jet, the third leaf level used a
Neural Network Classifier to identify the petrol sample as Esso vs. other petrol sources.
The last leaf level was a binary classifier between Shell and Texaco using a Neural Network
Classifier (Figure 5).
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Figure 5. A representation of the hierarchy classification model for native, evaporated, and burnt
petrol, and petrol burned on a substrate.

3.8. Blind Study

The first blind dataset that represents native petrol samples was input into the clas-
sification model. All the samples were correctly identified as native petrol samples.
Table 4 represents the multi-class classification model’s output for the prediction of the
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petrol sources. The Jet sample was misclassified as Esso; however, this can be explained
by the low number of Jet petrol samples that were available for building the classification
model. Esso and Shell displayed strong similarities in the 1H selTOCSY results for the
four sets of olefins, which were minor compounds potentially contributing to the incorrect
classification. Overall, the success rate of classifying the blind dataset of the native petrol
samples was 80% compared to the currently used ATD-GC-MS method (30% classification)
which uses target compounds and visual interpretation for the comparison of ignitable
liquids (Table 7). The second blind dataset, which contained a combination of evaporated
petrol samples (25% and 50%), petrol samples burned on their own and petrol samples
burned on substrates (petrol samples extracted from cardboard substrate), was input into
the model. The goal was to identify and link the petrol samples despite their evaporation
status to their source (brand). Firstly, all the blind samples were correctly identified as
weathered through the binary model (native vs. weathered). Then, the blind weathered
dataset was input through the binary classifiers for each leaf. The NMR classification model
displayed an overall accuracy of 78%; one of the Shell and one of the Texaco petrol samples
was misclassified compared to the ATD-GC-MS method, which was not suitable for the
identification and differentiation of petrol source (Table 8). The local classifier between Shell
and Texaco had a 60% success rate, which could have contributed to the misclassification of
the Shell petrol sample as a Texaco petrol sample. In addition, both petrol brands displayed
similar 1H selTOCSY profiles for the four sets of olefinic compounds. The Esso petrol
samples displayed similarities in their 1H selTOCSY profiles for the four sets of olefin
compounds to the Shell and Texaco samples investigated.

Table 7. Summary table of the results of the blind dataset of native petrol sources with
>60% correct classifications and <60% incorrect classifications .

Sample N Class Native vs. Evaporated Predicted Class by NMR
Hierarchical Classifier ATD-GC-MS

BLIND A JET native ESSO Identified as unique petrol source

BLIND B ESSO native SHELL Identified as unique petrol source or similar to
J, E, F and H

BLIND C ESSO native ESSO Sample G identified as similar to Sample C
BLIND D ESSO native ESSO Sample D identified to be similar to Sample I
BLIND E TEXACO native TEXACO Sample E and F identified as same petrol source
BLIND F TEXACO native TEXACO Sample E and F identified as same petrol source
BLIND G SHELL native SHELL Sample G identified as similar to Sample C

BLIND H BP M native BP M Sample H and J were grouped with Texaco
petrol source

BLIND I SHELL native SHELL Sample I identified as similar to Sample D

BLIND J BP S native BP S Sample H and J were grouped with Texaco
petrol source

Table 8. Summary table of the results of the blind dataset of weathered petrol sources with
>60% correct classifications and <60% incorrect classifications .

Sample N Class Native vs.
Weathered

BP M
Classifier

Jet
Classifier

Esso
Classifier

Shell/Texaco
Classifier

Predicted Class by
NMR Hierarchical
Classifier

ATD-GC-MS

BLIND A BP M 50%
evaporated Weathered BP M BP M No differentiation

achieved

BLIND B BP M on
cardboard Weathered BP M BP M

Differentiated as
different petrol
source

BLIND C JET burnt Weathered Other JET JET No differentiation
achieved
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Table 8. Cont.

Sample N Class Native vs.
Weathered

BP M
Classifier

Jet
Classifier

Esso
Classifier

Shell/Texaco
Classifier

Predicted Class by
NMR Hierarchical
Classifier

ATD-GC-MS

BLIND D JET 25%
evaporated Weathered Other JET JET No differentiation

achieved

BLIND E ESSO 25%
evaporated Weathered Other Other ESSO ESSO No differentiation

achieved

BLIND F SHELL on
cardboard Weathered Other Other Other SHELL SHELL No differentiation

achieved

BLIND G SHELL burnt Weathered Other Other Other TEXACO TEXACO No differentiation
achieved

BLIND H TEXACO
burnt Weathered Other Other Other TEXACO TEXACO No differentiation

achieved

BLIND I TEXACO 25%
evaporated Weathered Other Other ESSO ESSO No differentiate

achieved

In all cases, the native and weathered petrol samples were correctly classified into
their respective class regardless of their evaporation and substrate interference status with
more than 60% accuracy (Table 9). These results demonstrated that the development of
the hierarchical classification model objectively individualized and correctly discriminated
petrol brands under one classification model despite their evaporated products or in the
presence of interfering products from cardboard substrates.

Table 9. Summary of machine learning model performance output using different classifiers and
their accuracy in the classification of different petrol sources.

Classifier Overall Accuracy (%) Classification

Linear Discriminant 98.5 Native vs. weathered

Ensemble 80 BP S vs. BP M vs. Jet vs. Texaco vs. Shell vs. Esso

k-NN 84.4 BP M vs. other petrol brands

Logistic Regression 82.4 Jet vs. other petrol brands

ANN 82.1 Esso vs. other petrol brands

ANN 60 Texaco vs. Shell

The model performance was affected by the availability of the data (petrol samples
used for training the classification model were limited in number). A higher number of
samples would strengthen the model and result in greater accuracy. To compensate for
the lower number of data points, the cross-fold validation method was applied to the data
to avoid overfitting. In addition, we explored different types of classifiers such as the
Ensemble Classifier which combines weaker classifiers to build a more robust classifica-
tion. Moreover, the limitations that come from the properties of the additives and their
chemical alternation (the loss of 3-methyl-1-butene and the mixture of 3-methyl-1-butene
and 1-pentene during weathering (evaporation and burning)) impacted the classification
model by complicating the like-for-like comparison of native and evaporated/weathered
petrol samples.

4. Discussion and Conclusions

The NMR method combined with ML was successfully applied for the individualiza-
tion and classification of petrol samples from different sources. The NMR spectroscopy
method had not been previously evaluated for fire debris analysis. The use of 1H sel TOCSY
NMR spectroscopy is also a new approach for fire debris analysis to identify distinctive
compounds, background interference and its sources, and pyrolysis products in petrol
sources. In addition, the 1H selTOCSY method is innovative for the structural elucidation
of petrol samples. Our study proves it can be used for the identification of trace amounts of
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specific compounds from the complex spectra of petrol and can be combined with ML for
classification purposes.

A hierarchal classification model based on a multi-class classifier for native petrol
samples and a combination of binary classifiers for weathered petrol samples was con-
structed. The overall accuracy of the classification model was 80% for native petrol samples
and 78% for weathered petrol samples, significantly outperforming the alternative method
(ATD-GC-MS) that is currently used. The combination of 1H combined with the NOESY
NMR method and 1H selTOCSY displayed potential in individual identification of fire
debris samples and linking them to a source or suspect. The model has the potential to
identify an unknown petrol sample and linking it to its source regardless of its evaporation
rate (based on to 25% and 50% evaporated samples) and whether it was burned on a
cardboard substrate. In conclusion, an automated hierarchical classification model was
created for the successful discrimination and individualization of petrol samples based on
their source using a machine learning classifier. This paper describes the first ML model
that has the potential to be used for the classification of petrol sources of fire debris.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app14125177/s1, Figure S1: A comparison of 1H selTOCSY of
the mixture of 3-methyl-1-butene of (i) BP S (ii) Jet (iii) Esso (iv) Shell and (v) Texaco (vi) BP M
native petrol sources with 25% , 50% and 75% evaporation rate; Figure S2: A comparison of
1H selTOCSY of the mixture of 3-methyl-1-butene and 1-pentene of (i) Jet (ii) Esso (iii) Shell and
(iv) Texaco (v) BP M native petrol sources with 25% , 50% and 75% evaporation rate; Figure S3:
A comparison of 1H selTOCSY of the 2-methyl-2-butene of (i) Jet (ii) Esso (iii) Shell and (iv) Texaco
(v) BP M native petrol sources with 25% , 50% and 75% evaporation rate; Figure S4: A comparison
of 1H selTOCSY of the mixture of cis and trans-2-pentene of (i) BP S (ii) BP M (iii) Jet (iv) Esso (v) Shell
and (vi) Texaco native petrol sources with 25% , 50% and 75% evaporation rate; Figure S5: The
illustration of full and olefins area of 1H NMR spectra of burnt on its own petrol in (i) Jet (ii) Esso
(iii) Shell and (iv) Texaco (v) BP M; Figure S6: A representation comparison of 1H selTOCSY spectra
of (a) 2-methyl-2-butene and (b) the mixture of cis and trans-2-pentene in neat petrol vs in burnt
cardboard in (i) Jet, (ii) Esso, (iii) Shell and (iv) Texaco, (v) BP M.
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