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Abstract: To enhance the safety of grid operations, this paper proposes a high-precision short-term
photovoltaic (PV) power forecasting method that integrates information from surrounding PV stations
and deep learning prediction models. The proposed method utilizes numerical weather prediction
(NWP) data of the target PV station and highly correlated features from nearby stations as inputs.
This study first analyzes the correlation between irradiance and power sequences and calculates
a comprehensive similarity index based on distance factors. Stations with high-similarity indices
are selected as data sources. Subsequently, Bayesian optimization is employed to determine the
optimal data fusion ratio. The selected data are then used to model power predictions through
the convolutional long short-term memory with attention (Conv-LSTM-ATT) deep neural network.
Experimental results show that the proposed model significantly outperforms three classical models
in terms of forecasting accuracy. The data fusion strategy determined by Bayesian optimization
reduces the root mean square error (RMSE) of the test set by 20.04%, 28.24%, and 30.94% under sunny,
cloudy, and rainy conditions, respectively.

Keywords: photovoltaic power forecasting; deep learning prediction models; surrounding PV
stations; Conv-LSTM-ATT neural network

1. Introduction

Solar energy, as a renewable energy source that is inexhaustible and sustainable, holds
a significant position in long-term energy strategies due to its ample cleanliness, relative
abundance, low maintenance requirements, resource abundance, and potential economic
benefits [1,2]. Among various solar energy generation methods, photovoltaic power has
garnered widespread attention in recent years [3]. With the increasing installed capacity
and share, the stochastic and fluctuating characteristics of distributed photovoltaic systems
have become impossible to overlook in terms of their impact on grid security dispatch and
field operation management [4]. An accurate prediction of photovoltaic power generation
can provide conventional power plants with sufficient time to start up and maintain proper
reserves [5], thereby ensuring the safe and stable operation of the power grid and reducing
operational costs.

Related Work on PV Generation Forecasting

Photovoltaic power prediction has been a hot topic in recent years. Many researchers
have conducted extensive work in this area. Forecast periods in photovoltaic power
prediction are categorized into four distinct time windows: ultra-short, short, medium, and
long [6]. In these windows, ultra-short-term forecasts encompass predictions within an
hour, crucial for immediate operational adjustments. Short-term forecasts, ranging from
one hour to a full day, cater to daily management and responsiveness. The medium-term
window, extending from a day up to several weeks or months, is vital for scheduling
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maintenance and preparatory operations. Long-term forecasts, projecting several months
to years ahead, are pivotal for strategic planning and participating in energy markets [7].

As to prediction techniques, the forecast methods can be broadly categorized into
three types: physics-based methods, statistical methods, and hybrid methods. Physics-
based methods [8] rely on meteorological data, geographical information, and detailed
photovoltaic cell physical model information to simulate the power generation process. By
studying the model’s power generation process, they predict solar radiation intensity, and
the power generation can be obtained from the predicted solar radiation intensity. This
type of method typically does not require historical data. However, due to the challenge
of obtaining accurate photovoltaic cell physical model data and the limited resolution of
geographical information data, the accuracy of physics-based prediction methods may
not be ideal. Statistical methods [9–11] work by analyzing a large amount of historical
data and establishing inherent mapping relationships to directly predict photovoltaic
power. However, due to the stochastic and fluctuating nature of photovoltaic power, the
generalization ability of statistical methods may be reduced. Hybrid methods [12,13]
combine both physics-based and statistical approaches to leverage the strengths of each
and address their weaknesses. These methods aim to improve prediction accuracy and
robustness by integrating physical understanding with data-driven insights.

Recently, deep learning [14–16] has attracted a great deal of attention. A study [17]
proposed an RNN (recurrent neural network) model for solving complex nonlinear map-
ping problem. However, RNN often struggles with long-term data dependencies due to
vanishing gradients. Another research study [18] employed a long short-term memory
network (LSTM), successfully addressing these gradient issues inherent in traditional RNN.
Despite its effectiveness, LSTM has its own set of limitations [9,19]. A combination of a
bi-directional long short-term memory (BiLSTM) network and a copula sampling method
has been utilized to create representative scenarios for photovoltaic (PV) power production,
as noted in references [20,21]. Earlier, in [22], a generative adversarial network (GAN) was
initially used for the generation of these PV power scenarios. To enhance the understand-
ing of the temporal correlation in renewable energy, the GAN’s generator incorporated
LSTM units [23]. Numerous articles [24–29] have focused on predicting renewable energy,
highlighting the benefits of Big Data analysis and sophisticated feature extraction. Methods
based on deep learning techniques are particularly effective in exploring the attributes of
higher dimensional data, bypassing the need for complex pre-existing knowledge. How-
ever, the above methods predict PV power scenarios based only on the historical PV
power data of the target PV station, and the coupling relationship between target site and
neighboring sites is ignored, which may miss valid representative scenarios of PV power.

To address the aforementioned issue, this paper proposes a data-driven framework
that considers spatial and temporal information from a large number of neighboring
sites to develop a short-term photovoltaic power prediction model for the target site. By
introducing the convolutional long short-term memory with attention (Conv-LSTM-ATT)
model algorithm, which combines the convolutional long short-term memory (Conv-LSTM)
module with the attention mechanism, the model adaptively allocates different levels of
attention to the photovoltaic power time series at different time points, allowing it to focus
on crucial time series and improve prediction accuracy. The main contributions of this
paper are listed below.

(1) High-Precision Short-Term Photovoltaic Power Prediction Method: This method
integrates numerical weather prediction (NWP) data from the target photovoltaic
station and highly correlated features from surrounding photovoltaic stations using a
deep learning model, significantly enhancing the safety of grid operations.

(2) Calculation and Application of Composite Similarity Index: This study first analyzes
the correlation between irradiance and power sequences and their relationship with
distance factors, calculates a composite similarity index between the target site and
other regional photovoltaic stations, and selects data sources based on similarity,
providing more precise data input for model training.
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(3) Application of Bayesian Optimization Techniques: Optimal data fusion ratios are de-
termined through Bayesian optimization techniques, effectively balancing exploration
and exploitation, enhancing the model’s predictive accuracy and stability.

(4) Development and Application of the Conv-LSTM-ATT Model: A hybrid deep learning
model combining convolutional long short-term memory (Conv-LSTM) with the
attention mechanism (ATT) is developed, which better handles the spatiotemporal
features in time series data, improving the accuracy of crucial time series predictions.

(5) Experimental Validation: Tests on real-world datasets validate the superiority of
the proposed model over three other classical models in short-term photovoltaic
power prediction.

The structure of this paper is outlined as follows. In Section 1, we provide an overview
of the related work in the field. In Section 2, we present the problem formulations. Our
novel deep learning approach for PV power prediction is introduced in Section 3. A real-
world dataset is used for conducting experiments in Section 4, where we compare the
prediction performance with several existing methods. Finally, in Section 5, we conclude
the paper.

2. Problem Formulation

Actual observational data indicate that photovoltaic (PV) power outputs from geo-
graphically close locations exhibit high similarity due to similar random factors, such as
solar radiation intensity and weather variations. Therefore, the spatial correlation of PV
power generation can be described using output spatial correlation. Specifically, output
spatial correlation refers to the degree of similarity between PV power output sequences
in different geographical regions. These similarities decrease as the distance between two
locations increases. In the latitude direction, as latitude increases, solar radiation intensity
gradually decreases, leading to higher output spatial correlation between neighboring
regions. In the longitude direction, the phase difference between PV power output se-
quences in two locations increases with the time difference, thereby affecting the output
spatial correlation.

In this paper, we propose a data-driven framework aimed at leveraging spatiotemporal
correlations and periodic characteristics for short-term photovoltaic (PV) power prediction.
This framework, considering the information from neighboring sites, is depicted in Figure 1
and primarily consists of the following steps:

(1) Distributed PV power data are collected to form a spatiotemporal dataset.
(2) PV power time series are detrended to exclude the impacts of the diurnal cycle.
(3) Detrended solar data from multiple sites are fused to form the input for data-driven

forecasting models.
(4) Data-driven forecasting models are developed based on the fused data.

This framework illustrates how spatiotemporal datasets are fused using historical
data from neighboring power stations. The historical PV power of station p at time t can
be represented as f p

t . The historical data of station p from time t − n to t are described

as Xp
t =

[
f p
t−n, f p

t−(n−1), · · · , f p
t

]T
. Then, we combine the historical PV power from its

neighboring stations to construct a spatiotemporal PV power matrix, as follows:

Xs
t =


Xs

t−n
Xs

t−(n−1)
...
Xs

t


T

=


f 1
t−n f 1

t−(n−1) · · · f 1
t

f 2
t−n f 2

t−(n−1) · · · f 2
t

...
...

. . .
...

f m
t−n f m

t−(n−1) · · · f m
t

 (1)

The overall timeline is defined as the union of historical Th and future timesteps Tf ,

and Th ∪ Th = {t1, t2, · · · , th} ∪
{

th+1, th+ f

}
.
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The objective is to forecast the PV generation ˆYP
Tf

based on the provided numerical
weather prediction (NWP) XNWP and fused data Xs

t . This task can be framed as an opti-
mization problem, where the aim is to determine the sequence conditional on the future
f timesteps.

F(XNWP; Xs
t) → ˆYP

Tf

where → represents the complex nonlinear mapping.

3. Materials and Methods
3.1. Overview of the Proposed Model

This section proposes a novel hybrid deep architecture for short-term photovoltaic (PV)
power forecasting. The proposed model consists of a Conv-LSTM module and two Bi-LSTM
modules. Figure 2 illustrates the overall architecture of the proposed model. The Conv-
LSTM module comprises a convolutional neural network (CNN) and an LSTM network,
where the CNN is utilized to extract spatial features of PV power, which are then connected
to the LSTM network to capture short-term temporal features of PV power. Simultaneously,
the Bi-LSTM modules are employed to extract auxiliary information features, such as global
irradiation, direct irradiation, temperature, and humidity. The spatiotemporal features
and auxiliary information features are fused into a feature vector through the Feature
Fusion (FF) layer. Finally, two fully connected layers (FC layers) are applied as regression
layers for prediction. Additionally, an attention mechanism is incorporated into the Conv-
LSTM module to automatically explore varying levels of time series importance at different
time points. In the subsequent subsections, a detailed description of each module will
be provided.
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3.2. Selection of Similar Neighboring PV Plants Based on Composite Similarity Index

To enhance the accuracy of photovoltaic (PV) power output forecasts, it is vital to inte-
grate information from adjacent PV plants as input features. This integration is predicated
on the premise that these neighboring plants must exhibit a significant similarity with the
target PV plant. A sophisticated approach involves constructing a composite correlation
index that encapsulates both the irradiance and power sequence correlations across various
PV plants, reflecting the degree of similarity in PV plant data over different time scales.
The mathematical formulation used to calculate this composite correlation is given by:

ϕi = ϕ2
Rgi

+ϕ2
Rdi

+ϕ2
Pi

(2)

where dRgi, dRdi, and dPi represent the correlations of the historical global irradiance Rg
component, the diffuse irradiance Rd component, and the power sequence between the i th
neighboring PV plant and the target plant, respectively. ϕi denotes the overall composite
correlation for the i th neighboring PV plant relative to the target plant.

To ensure comprehensive similarity, it is also critical to evaluate the amplitude of
irradiance and power output. Thus, a composite distance metric is employed:

di = d2
Rgi

+ d2
Rdi

+ d2
Pi

(3)

In this formula, dRgi, dRdi, and dPi quantify the distances pertaining to the global
irradiance component Rg, diffuse irradiance component Rd, and power sequence between
the i th neighboring PV plant and the target plant, respectively. di represents the composite
distance for the i th plant, with smaller values indicating a closer match in irradiance and
power profiles.

From these metrics, a composite similarity index Ψi is calculated as follows:

Ψi =
ϕi
di

(4)

This index measures the relative similarity between each neighboring PV plant and
the target plant. After determining Ψi for all neighbors, they are ranked in descending
order of similarity. The top k plants are then selected to create a set of neighboring PV
plants with the highest degrees of similarity to the target plant.

This structured methodology not only systematizes the selection of relevant input
features from similar PV plants but also substantiates the inclusion of such features in
enhancing the precision of PV power forecasts.
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3.3. K-Means++ Approach

The K-means++ algorithm [30] is an improvement over the K-means algorithm, specif-
ically addressing the issue of the dependency on the initial centroids. The process of the
K-means++ algorithm is as follows:

(1) From the given dataset samples S =
{

s1, s2, ..., sp
}

, randomly select one sample as the
initial cluster center c1.

(2) Calculate the Euclidean distance between each sample si(i = 1, 2, · · · , p) in the dataset
and the initialized cluster centers. Select the shortest distance and denote it as D(si).

(3) To calculate the probability P(si) of each sample si(i = 1, 2, · · · , p) being selected as
the next cluster center and choose the sample with the highest probability as the new
cluster center, use the expression given by Equation (5). Repeat the process until
K clusters are determined, and their corresponding cluster centers are denoted as
C = {C1, C2, · · · , Ck}.

P(si) =
D2(si)

∑si∈S D2(si)
(5)

where D2(si) represents the Euclidean distance between the sample si and the current
cluster center C.

(4) Compute the Euclidean distance between each sample si in the dataset and the K
cluster centers, and then assign each sample si to the cluster corresponding to the
closest cluster center.

(5) For each cluster Ci, recompute the cluster center ci (i.e., the centroid of all samples
belonging to that cluster) using the following formula (Equation (3)):

ci =
1

|Ci|∑s∈Ci
s (6)

where |Ci| represents the total number of samples in cluster Ci, s represents the
samples in cluster Ci.

(6) Repeat steps (4) and (5) until the positions of the cluster centers no longer change.

3.4. CNN

CNN [31], as a widely used neural network in the field of deep learning, can be
applied to learn local trends in time series data. The CNN network consists of an input
layer, convolutional layers, pooling layers, fully connected layers, and an output layer. The
input layer reads the data, and the convolutional layers perform convolutional operations
on the multi-dimensional feature grid data using local connections and parameter sharing
techniques, mapping local features to global features. The pooling layer’s role is to perform
dimensionality reduction and sampling by calculating the maximum and average values
of the window matrix through a sliding window, progressively compressing data and
parameters, while enhancing the robustness of the extracted features. The fully connected
layers connect all the neurons and produce the output through the hidden layer. The
structure of the CNN network is shown in Figure 3.
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3.5. LSTM

Photovoltaic (PV) power data are a set of time series data with the characteristic
that later data points are related to previous ones. In comparison to traditional recurrent
neural networks (RNNs), LSTM neural networks [32] offer specific advantages. The gated
mechanism in LSTM allows for controlled information flow, enabling the selective trans-
mission and forgetting of information across different time steps. This helps to overcome
the vanishing gradient problem and enables the network to better learn and retain long-
term memories. Additionally, LSTM’s memory cell state allows for long-term information
retention, reducing the issue of information loss and facilitating the capture of important
features within sequences. The structure of an LSTM network is depicted in Figure 4.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 24 
 

3.5. LSTM 

Photovoltaic (PV) power data are a set of time series data with the characteristic that 
later data points are related to previous ones. In comparison to traditional recurrent neural 
networks (RNNs), LSTM neural networks [32] offer specific advantages. The gated mech-
anism in LSTM allows for controlled information flow, enabling the selective transmission 
and forgetting of information across different time steps. This helps to overcome the van-
ishing gradient problem and enables the network to better learn and retain long-term 
memories. Additionally, LSTM’s memory cell state allows for long-term information re-
tention, reducing the issue of information loss and facilitating the capture of important 
features within sequences. The structure of an LSTM network is depicted in Figure 4. 

ℎ𝑡−1 
𝜎 𝜎 𝜎 𝑡𝑎𝑛ℎ 

𝑡𝑎𝑛ℎ 
× × × 

+ 

𝑋𝑡  

𝐶𝑡−1 

ℎ𝑡  

𝐶𝑡  

ℎ𝑡  

 
Figure 4. The LSTM neuron structure. 

f୲ = σ(W୤ ⋅ ሾh୲ିଵ, x୲ሿ + b୤) (7)i୲ = σ(W୧ ⋅ ሾh୲ିଵ, x୲ሿ + b୧) (8)o୲ = σ(W୭ ⋅ ሾh୲ିଵ, x୲ሿ + b୭) (9)c෤୲ = tanh(Wୡ ⋅ ሾh୲ିଵ, x୲ሿ + bୡ) (10) c୲ = f୲ ∗ c୲ିଵ + i୲ ∗ c෤୲ (11)h୲ = o୲ ∗ tanh(c୲) (12)

In the above equations, f୲ represents the forget gate, i୲ represents the input gate, o୲ 
represents the output gate, c୲ represents the cell state, c෤୲ represents the cell state candi-
date value, and h୲ represents the hidden state value. W and b are the weight and bias 
parameters, respectively. σ denotes the sigmoid activation function. After obtaining the 
outputs of the three gates using Equations (7)–(9), the cell state c୲ and the final output h୲ 
of the cell can be further computed using Equations (10) and (11). 

3.6. Conv-LSTM 
In this paper, the Conv-LSTM module [33] serves as the main component of our pro-

posed model, aiming to extract spatiotemporal features from PV power generation data. 
This module is a fusion of a convolutional neural network (CNN) and an LSTM network, 
as depicted in Figure 5. The CNN part comprises two convolutional layers, while the 
LSTM part consists of two LSTM layers. 

The Conv-LSTM model combines the respective strengths of CNN and LSTM, allow-
ing it to effectively handle spatiotemporal sequence data, extract multi-layer features, 
model long-term dependencies, and capture spatial relationships. As a result of these ad-
vantages, the Conv-LSTM model demonstrates superior performance in various tasks, in-
cluding image prediction, video analysis, PV power forecasting, and traffic flow predic-
tion. 

Figure 4. The LSTM neuron structure.

ft = σ(Wf · [ht−1, xt] + bf) (7)

it = σ(Wi · [ht−1, xt] + bi) (8)

ot = σ(Wo · [ht−1, xt] + bo) (9)
∼
c t = tanh(Wc · [ht−1, xt] + bc) (10)

ct = ft ∗ ct−1 + it ∗
∼
c t (11)

ht = ot ∗ tanh(ct) (12)

In the above equations, ft represents the forget gate, it represents the input gate,
ot represents the output gate, ct represents the cell state,

∼
c t represents the cell state can-

didate value, and ht represents the hidden state value. W and b are the weight and bias
parameters, respectively. σ denotes the sigmoid activation function. After obtaining the
outputs of the three gates using Equations (7)–(9), the cell state ct and the final output ht of
the cell can be further computed using Equations (10) and (11).

3.6. Conv-LSTM

In this paper, the Conv-LSTM module [33] serves as the main component of our
proposed model, aiming to extract spatiotemporal features from PV power generation data.
This module is a fusion of a convolutional neural network (CNN) and an LSTM network,
as depicted in Figure 5. The CNN part comprises two convolutional layers, while the LSTM
part consists of two LSTM layers.
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The Conv-LSTM model combines the respective strengths of CNN and LSTM, allowing
it to effectively handle spatiotemporal sequence data, extract multi-layer features, model
long-term dependencies, and capture spatial relationships. As a result of these advantages,
the Conv-LSTM model demonstrates superior performance in various tasks, including
image prediction, video analysis, PV power forecasting, and traffic flow prediction.

The Conv-LSTM module receives as input a spatiotemporal matrix, denoted Xs
t , as

elucidated in Equation (1). This matrix embodies the historical PV power at the forecast
target location and its proximate areas. The extraction of spatial features is facilitated
through the execution of a one-dimensional convolution operation across the flow data
Xs

t at each time step t. A one-dimensional convolution kernel filter maneuvers across the
data, capturing the local perceptual domain. The operational mechanism of the convolution
kernel filter can be expressed mathematically as:

Ys
t = σ(Ws ∗ Xs

t + bs) (13)

In this expression, Ws represents the filter’s weights, bs signifies the bias, Xs
t indicates

the PV power input at temporal position t, symbol ∗ denotes the convolution operation, σ
is the activation function, and Ys

t is the output of the convolutional layer. This methodology
adeptly facilitates the extraction of spatial features from adjacent observation points.

The pooling layer is not applied after the convolutional layer in our model since the
dimension of the spatial feature is not large. Gs

t is denoted as the output of convolutional
layer 2. After the spatial information is processed by the two convolutional layers, the
output is connected to an LSTM network.

3.7. Attention Mechanism

The attention mechanism [34,35] simulates how the human brain processes informa-
tion, thereby enhancing the ability of neural networks to handle information. It has been
widely applied in machine translation, speech recognition, image processing, and other re-
lated fields. Applying the attention mechanism to deep neural networks allows the network
to adaptively focus on input features that are more relevant to the current output while
reducing interference from other features. Using the LSTM hidden layer output vectors
H = {h1, h2, . . . , ht} as the input to the attention mechanism, the attention mechanism
seeks attention weights αi for each hi, which can be obtained using Equations (14) and (15).

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (14)

αi =
exp(ei)

∑t
i=1 exp(ei)

, ∑t
i=1 αi = 1 (15)

where Wh is the weight matrix for hi, and bh is the bias term. The values of Wh and bh will
change during the model training process. The attention vector H′ =

{
h′

1, h′
2, . . . h′

t
}

can be
obtained using Equation (16).

h′
i = αi·hi (16)
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Figure 6 illustrates how the attention mechanism is applied to the Conv-LSTM module.
As shown in Figure 6, the output of the Conv-LSTM at each time step t is computed as the
weighted sum of the LSTM network output Hs

t . The specific calculation is as follows:

Ha
t = ∑n+1

k=1 βkHs
t−(k−1) (17)

where n+ 1 is the sequence length, and βk represents the attention value at time t− (k − 1).
The attention βk can be calculated as follows:

βk =
exp(sk)

∑n+1
k=1 sk

(18)

The vector s = (s1, s2, · · · , s1,)T represents the importance of each component in the
power time series and can be obtained as follows:

st = VT
s tanh(WhsGs

t + WlsHs
t ) (19)

where VT
s , Wxs, and Whs are learnable parameters, and Hs

t represents the hidden output
from the Conv-LSTM network.

From Equations (18) and (19), it can be observed that the attention value β at time
t depends on the current time step t and its previous n time steps of inputs Gs

t and hidden
variables Hs

t . The attention value β can also be seen as the activation of the power selection
gate, where a set of gates controls the amount of information flowing into the LSTM network
at each time step. A higher activation value indicates that the power’s contribution to the
final prediction result is more significant.
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3.8. Applying Bayesian Optimization to Optimize Data Fusion Ratios in Photovoltaic
Power Forecasting

This study aims to determine the optimal data fusion ratio by minimizing the root
mean square error (RMSE) of photovoltaic power prediction. To achieve this goal, Bayesian
optimization, an advanced optimization method suitable for handling high-cost evalua-
tion problems, was employed. In the photovoltaic power prediction model, this study
specifically focuses on optimizing the data fusion ratio. The optimization process involves
constructing a Gaussian process (GP) model of the objective function, which not only
predicts the values of the objective function but also provides a measure of the uncertainty
of these predictions, thereby helping to effectively balance the exploration and exploitation
of the parameter space under the guidance of uncertainty.
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To accommodate the data fusion needs under different weather conditions, the defini-
tion of the objective function f(θ) has been adjusted to a more general form. The specific
expression of the function is:

f(θ) =
1
n ∑n

i=1(yi − ∑j∈J rSj·fSj(Xi,Sj))
2 (20)

where θ =
{

rSj | j ∈ J
}

represents the proportion of data from each station in the selected
set of stations J under specific weather conditions. This form of the objective function
allows the model to adjust the number and proportion of integrated stations according to
specific environmental conditions, optimizing prediction performance. Each component of
the objective function is explained in detail as follows:

θ =
{

rSj | j ∈ J
}

are the model parameters, representing the fusion ratio of data from
each station in the selected station set J under given weather conditions. These fusion ratio
coefficients rSj need to be optimized to minimize the overall prediction error.

n is the total number of data points, used to calculate the overall prediction error.
yi is the actual observed value at the ith data point.
fSj
(
Xi,Sj

)
is the predictive function output based on the input data Xi,Sj from station J.

The summation part ∑j∈J rSj · fSj
(
Xi,Sj

)
calculates the weighted sum of the predictive

outputs from all selected stations, where the weights are their respective fusion ratios rSj,
reflecting each station’s contribution to the final prediction. The goal is to adjust these
fusion ratios to find the parameter configuration that minimizes the overall prediction error.

Through the Bayesian optimization framework, this study effectively explores the
optimal settings of these fusion ratio parameters. The Gaussian process (GP) model pro-
vides a method to quantify the uncertainty of the objective function predictions, while the
acquisition function, such as expected improvement (EI), guides the search of the parameter
space, prioritizing the exploration of parameter combinations that are likely to significantly
enhance model performance. This approach not only improves the accuracy and reliability
of the model under various environmental conditions but also ensures that the optimal
data fusion ratio is achieved under different weather conditions, effectively enhancing the
performance of the photovoltaic power prediction model.

4. Results
4.1. Data Source

The photovoltaic dataset used in this study was provided by the Desert Knowledge
Australia Solar Centre (DKASC). This region hosts numerous photovoltaic power stations,
each with its unique set of data records. The selected dataset collects measured data on
power and various meteorological factors from January 2020 to December 2020, including
global radiation, rainfall, humidity, ambient temperature, and wind direction. These data
are crucial for deeply understanding the relationship between photovoltaic power output
and meteorological conditions. Specifically, the global radiation data reflect solar radiation,
which is one of the primary factors influencing photovoltaic power generation. During the
experiment, the dataset was divided into training, validation, and test sets at a ratio of 8:1:1.
As photovoltaic components significantly reduce power output during early morning and
late afternoon, with most of the time having zero or near-zero power, the original data
had a resolution of 5 min. Therefore, the prediction time was chosen to be from 7:00 a.m.
to 6:00 p.m. each day, with a total of 133 sampling points as experimental samples. The
annual distribution of output power data for selected PV station is shown in Figure 7.

In this study, the K-means++ algorithm was employed to partition the historical
photovoltaic dataset. To enhance the effectiveness of data partitioning, each day was
treated as a sample, and for each sample, the standard deviation σ of the global radiation,
relative humidity, and temperature, which are three meteorological features, were calcu-
lated. Additionally, the skewness coefficient kur and the mean value x were computed.
These computed values were then used to form a feature vector for clustering purposes.
The historical photovoltaic data were categorized into three classes: sunny, cloudy, and
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rainy/snowy weather conditions. The results of the data partitioning using the K-means++
algorithm are presented in Figure 8. This chart clearly displays the data distribution under
different weather conditions, providing intuitive visual support for our analysis. Among
these, there are 136 days of sunny weather, 133 days of cloudy weather, and 93 days of
rainy/snowy weather.
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4.2. Photovoltaic Power Influencing Factors and Correlation Analysis

The Pearson correlation coefficient (PCC) analysis method is employed to calculate
the correlation coefficients between each factor and PV power output. The results indicate
that global radiation has the highest correlation coefficient, while direct radiation, humidity,
and temperature have relatively lower correlation coefficients, and wind speed has the
smallest correlation coefficient.

rx,y =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(21)

where x and y are the average values of the elements in x and y, respectively. After
computing all the data samples through Equation (21), we can get the variable correlation
table, where Rg, Rd, H, T, W, and Wd represent global radiation, direct radiation, humidity,
temperature, wind speed, and wind direction.

Table 1 depicts the PCC values of variables. The larger the absolute value of PCC, the
stronger the association. In this paper, meteorological variables with PCC values greater
than 0.4 with load are screened as input variables for CNN to reduce the redundancy of
inputs and to lay the foundation for improving prediction accuracy.
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Table 1. Correlation analysis.

Factors Rg Rd H T W Wd

Correlation 0.98 0.8 −0.46 0.42 0.32 0.08

From this table, it can be seen that there are four elements (global irradiation, direct ir-
radiation, humidity, and temperature) that have a strong correlation with power. Therefore,
the dimension of the input sequence is 4.

Because the input sequence contains the information of multiple moments before the
prediction point, the computing time and memory consumption will increase dramatically
if the length of input sequence is too long. Therefore, the length of the input sequence was
of great significance for this experiment. In this paper, we used the autocorrelation coeffi-
cient to determine the length of the input sequence. The formula for the autocorrelation
coefficient with delay h is as follows:

rh = ∑n−h
i=1

(xi − x)(xi+h − x)

∑n
i=1 (xi − x)2 (22)

In the formula, xi represents the historical power sequence, and xi+h represents the
power sequence with a time lag of h * 5 min.

According to Table 2, we can see that the correlation gradually decreases with the
increase in time delay h. Based on the previous analysis, the input sequence length of 12 is
suitable. Each input data point consists of 12 groups of four-dimensional data before the
power point to be predicted.

Table 2. Autocorrelation analysis.

Lag Time Correlation Lag Time Correlation

1 0.988 11 0.633
2 0.965 12 0.576
3 0.959 13 0.499
4 0.925 14 0.427
5 0.908 15 0.358
6 0.889 16 0.294
7 0.836 17 0.231
8 0.789 18 0.155
9 0.742 19 0.081
10 0.695 20 0.031

4.3. Model Evaluation Metrics

Four metrics were introduced to evaluate the model performance: root mean square
error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and
coefficient of determination (R2), as expressed in Equations (23)–(26). For RMSE, MAPE,
and MAE, a smaller value indicates better prediction results. On the other hand, for the
coefficient of determination R2, a higher value indicates better prediction results.

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (23)

MAPE =
100%

n ∑n
i=1

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣ (24)

R2 = 1 −
∑n

i=1

(
yi −

∼
yi

)2

∑n
i=1 (yi − ŷi)

2 (25)
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MAE =
100%

n ∑n
i=1|yi − ŷi| (26)

In the above formulas, yi and ŷi are the true and predicted values of PV power at time
i, respectively.

∼
yi represents the average of true PV power values, and n is the number of

test samples.

4.4. Training Configuration

During the training phase, a loss function was established to update the parameters
within the mode. This loss function encompassed mean squared error (MSE) loss, L1
weight regularization, and L2 weight regularization. By minimizing the loss function, the
model’s parameters were updated using the backpropagation algorithm and an optimizer,
gradually refining the model and enhancing its predictive performance. The loss function
is defined as follows:

Loss = MSE +
λ1

n
∥w∥1 +

λ2

n
∥w∥2 (27)

The MSE loss measures the average squared difference between the model’s predicted
values and the true values, serving as an indicator of the model’s fitting ability and pre-
dictive accuracy. The L1 and L2 weight regularization terms are employed to control the
complexity of the model and prevent overfitting. λ1 and λ2 are regularization parameters,
while w represents the weight coefficients, helping to balance the importance of different
components within the loss function.

MSE =
1
n∑n

i=1(yi − ŷi)
2 (28)

where yi represents the actual photovoltaic power data, ŷi denotes the predicted photo-
voltaic power data, and n represents the size of the dataset.

The objective of L1 regularization included in the loss function is to achieve a sparse
model and prevent overfitting through the utilization of the deep model. Moreover, L2
regularization in the loss function serves to prevent the occurrence of excessively large
parameter values within the model, thereby averting the dominance of a single feature over
the predictive performance of the model. L1 regularization and L2 regularization can be
defined as follows:

∥w∥1 = ∑n
i=1∥wi∥, ∥w∥2 = ∑n

i=1

√
W2

i (29)

Then, the loss function can be rewritten as follows:

Loss =
1
n

(
∑n

i=1 (yi − ŷi)
2+λ1∑n

i=1|Wi|+ λ2∑n
i=1

√
W2

i

)
(30)

In the proposed model, the Adam optimization algorithm [36], which adaptively
adjusts the learning rate, was utilized to optimize the model’s parameters.

4.5. Model Setting

In the experiments, the convolutional layer had 10 filters with the size of each filter
being 3. The stride of the sliding window for the input data was set to 1. The learning rate
was set to 0.01, the batch size was 128, and the number of training iterations was set to 100.
The rectified linear activation unit (ReLU) was adopted as the activation function.

All experimental platforms were built on a high-performance server equipped with
an Intel Core i7-8700 CPU (Intel Corporation, Santa Clara, California, USA) and one Nvidia
GeForce RTX 2080Ti Graphics card (Nvidia Corporation, Santa Clara, California, USA). The
programming language was Python 3.7.0 with PyTorch 1.7.1.

4.6. Selection Results of Neighboring Photovoltaic Stations

In this study, the composite similarity index (Ψi) was developed to effectively evaluate
and select neighboring PV plants. This index reflects the similarity between neighboring
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and target PV stations in terms of irradiance and power sequence correlations. Tables 3–5
below display the normalized composite similarity index for neighboring PV stations
numbered 2 to 7 under sunny, cloudy, and rainy weather.

Table 3. Composite similarity of neighboring PV stations under sunny weather.

Neighboring PV Station Number Normalized Composite Similarity Ψi

2 0.68
3 0.90
4 1.00
5 0.75
6 0.92
7 0.85

Table 4. Composite similarity of neighboring PV stations under cloudy weather.

Neighboring PV Station Number Normalized Composite Similarity Ψi

2 0.88
3 0.95
4 0.99
5 1.00
6 0.92
7 0.65

Table 5. Composite similarity of neighboring PV stations under rainy weather.

Neighboring PV Station Number Normalized Composite Similarity Ψi

2 0.77
3 0.90
4 0.93
5 0.73
6 1.00
7 0.82

To accurately determine the optimal integration parameter k value, this study em-
ployed a Conv-LSTM model, specifically focusing on the predictive performance for Station
No. 1. This paper systematically observed the 12 h average prediction errors under three
different meteorological conditions: sunny, cloudy, and snowy/rainy, detailed in Tables 6–8,
respectively. The analysis showed that the errors decreased and then increased as the
number of neighboring PV stations integrated increased in order of decreasing composite
similarity. Notably, when no neighboring PV stations were integrated (k = 0), the prediction
errors were higher since the model relied solely on data from a single station. Specifically,
under sunny conditions, the lowest prediction error occurred when k was 4 (see Table 6);
under cloudy conditions, the minimum error was achieved at k = 5 (see Table 7); and under
snowy/rainy conditions, the optimal performance was observed when k was 3 (see Table 8).
In this study, the data from neighboring PV stations were integrated in equal proportions
based on the number of stations, ensuring uniform contributions from each station to the
model. In summary, this study establishes that the best numbers of neighboring PV stations
to integrate under varying weather conditions are 4, 5, and 3, respectively.

Table 6. Impact of the number of neighboring PV stations on prediction accuracy for sunny weather.

Neighboring PV Stations (K) 0 1 2 3 4 5 6

RMSE/W 0.1636 0.1622 0.1611 0.1600 0.1583 0.1605 0.1629
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Table 7. Impact of the number of neighboring PV stations on prediction accuracy for cloudy weather.

Neighboring PV Stations (K) 0 1 2 3 4 5 6

RMSE/W 0.2341 0.2229 0.2114 0.2083 0.2011 0.1996 0.2157

Table 8. Impact of the number of neighboring PV stations on prediction accuracy for rainy weather.

Neighboring PV Stations (K) 0 1 2 3 4 5 6

RMSE/W 0.2467 0.2400 0.2349 0.2269 0.2292 0.2307 0.2425

4.7. Comparison and Analysis of the Results

To validate the effectiveness of the Conv-LSTM-ATT model, this study selected one
day each of sunny, cloudy, and rainy weather from the three types of weather clustered
as the test set for prediction. At the same time, we introduced three deep learning models
(LSTM, Bi-LSTM, and Conv-LSTM) as benchmarks for comparison. The model proposed
in this study and several baseline models were compared in experiments under the same
dataset, that is, only the historical data of the target site were used, and then their prediction
results were analyzed and compared.

Figures 9–11 show the prediction results of four different models under different
weather conditions, and Tables 9–11 show the prediction errors of the centralized models
under different weather conditions. In comparing the data from the three tables, it is
evident that the model proposed in this article achieved the lowest RMSE values for sunny,
cloudy, and rainy weather conditions, which were 0.1636, 0.2358, and 0.2421, respectively,
when compared to other models. Table 9 shows that in sunny conditions, the photovoltaic
output power fluctuated slightly, and the power curve changed relatively smoothly. Several
models could predict the trend of photovoltaic output power. The evaluation indicators R2

of the LSTM, Bi-LSTM, and Conv-LSTM prediction models were 0.933, 0.942, and 0.951,
respectively, and the evaluation indicator R2 of the model proposed in this article was
0.973, which was higher than the other models, and the effect was the best. Table 10 shows
that in cloudy conditions, the continuous movement of clouds caused the solar radiation
intensity received by the photovoltaic components to change continuously, leading to large
fluctuations in the fitting curve of the predicted and actual values of photovoltaic output
power. Table 11 shows that in rainy and snowy weather, the RMSEs of the LSTM, Bi-LSTM,
and Conv-LSTM prediction models were 0.3226, 0.3218, and 0.2886, respectively, and the
RMSE of the model proposed in this article was 0.2421, which was lower than the other
three prediction models. The above analysis indicates that the model proposed in this
article has more outstanding prediction effects under three types of weather conditions.
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Table 11. Forecast errors of different forecasting models for rainy weather.

Indexes LSTM Bi-LSTM Conv-LSTM Conv-LSTM-ATT

R2 0.892 0.901 0.918 0.934
RMSE/W 0.3226 0.3218 0.2886 0.2421
MAE/W 0.2487 0.2363 0.2210 0.2076
MAPE/% 11.55 10.24 8.01 6.73

Time/s 556 628 699 785

Compared to the LSTM model, the model proposed in this paper reduced RMSE
by 18.28%, 27.99%, and 24.95% in sunny, cloudy, and rainy weather, respectively; MAPE
was reduced by 36.76%, 45.26%, and 41.73%, respectively, and MAE was reduced by
24.97%, 27.10%, and 16.53%, respectively. Compared to the Bi-LSTM model, the proposed
model reduced RMSE by 13.02%, 22.86%, and 24.76% in sunny, cloudy, and rainy weather,
respectively; MAPE was reduced by 20.86%, 33.62%, and 34.28%, respectively, and MAE
was reduced by 16.03%, 19.37%, and 12.14%, respectively. Compared to the Conv-LSTM
model, the proposed model reduced RMSE by 10.84%, 14.28%, and 16.11% in sunny,
cloudy, and rainy weather, respectively; MAPE was reduced by 8.76%, 7.23%, and 15.98%,
respectively, and MAE was reduced by 13.07%, 15.26%, and 6.06%, respectively. The
comparison results indicate that the model proposed in this paper effectively combined
the advantages of both CNN and LSTM methods, and used the attention mechanism to
compensate for the deficiency of the LSTM model in retaining key information when the
input sequence was long, thereby effectively improving prediction accuracy.

The processing time is crucial for real-time applications, where faster predictions are
often desirable. In our experiments, the Conv-LSTM-ATT model showed a slightly higher
processing time compared to the other models. This increment in time can be attributed to
the complexity of the model, especially due to the integration of the attention mechanism.
While it does add to the prediction time, the improvement in prediction accuracy (as shown
by the lower MAPE, MAE, and RMSE values) could justify this trade-off in contexts where
prediction accuracy is more critical than the speed of computation.

In this study, Bayesian optimization was applied to adjust the data fusion ratios in
a photovoltaic power prediction model. By setting 100 iterations, using the expected im-
provement (EI) acquisition function to balance exploration and exploitation, and setting
the data fusion ratio parameter space from 0% to 100%, the research team comprehen-
sively covered all configurations from no fusion to full fusion. The optimization results
revealed the optimal data fusion ratios under different weather conditions as follows: under
sunny conditions, 38.72%, 2.36%, 26.83%, and 14.50%; under cloudy conditions, 49.11%,
6.77%, 23.46%, 9.88%, and 17.68%; under snowy/rainy conditions, 30.18%, 12.05%, and
19.45%. These optimized fusion ratios were then applied to the training set data under
corresponding weather conditions, followed by evaluation using the Conv-LSTM-ATT
prediction model.

The experimental design involved comparing the impact of five different data fusion
strategies on prediction performance, including the following: “No Fusion”, using only
historical data from the target site; “Uniform Fusion”, evenly fusing data from all surround-
ing stations; “Similarity-Filtered Fusion”, evenly fusing data from nearby stations selected
based on similarity; “Bayesian-Optimized Similarity Fusion”, determining the optimal
fusion ratios for nearby stations based on similarity through Bayesian optimization; and
“Actual Values” as a reference for model prediction accuracy. The experimental results
showed that, compared to no fusion and uniform fusion strategies, the similarity-filtered fu-
sion and Bayesian-optimized similarity fusion strategies significantly improved prediction
accuracy, particularly the Bayesian-optimized similarity fusion, which performed better
than other strategies under all test conditions.

These findings indicate that appropriate data fusion strategies can significantly en-
hance the performance of photovoltaic power prediction models, and Bayesian optimization
serves as a powerful tool to effectively implement these strategies, especially in environ-
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ments requiring high data diversity and complexity. Figures 12–14 show the prediction
results of the proposed model at different integration ratios, and Tables 12–14 show the pre-
diction errors of the proposed model at different integration ratios. Through the experiment,
we can draw the following conclusions.

(1) Significant Reduction in Error Metrics: The introduction of more data from neighbor-
ing stations significantly reduced error metrics such as RMSE and MAE. By applying
Bayesian optimization to determine the optimal fusion ratios of data from nearby
stations based on similarity, RMSE decreased by 20.04%, 28.24%, and 30.94% under
sunny, cloudy, and rainy conditions, respectively, and MAPE decreased by 30.30%,
18.83%, and 29.27%. Similarly, MAE also decreased by 23.07%, 17.58%, and 31.36%
under these weather conditions. These reductions emphasize that the model’s abil-
ity to predict PV power output is enhanced when supported with more extensive
spatial data.

(2) Variability in Prediction Accuracy Across Weather Conditions: The improvement in
prediction accuracy varied across different weather conditions. Particularly during
rainy conditions, because more data from surrounding areas were integrated, com-
pensating for the lack of historical data at the target site, the reduction in prediction
error was the greatest, reaching 31.36%. This shows that the model especially benefits
from additional data where there is a deficiency, enhancing its accuracy.

(3) Improvement in R2 Value and the Trade-off with Time: As more data were integrated,
the model’s R2 value improved, indicating a stronger correlation between predicted
and actual values. However, this accuracy came at the cost of increased computa-
tional time, especially as the degree of data integration increased, leading to longer
prediction times.
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Table 12. Comparison of the prediction errors of sunny weather under different fusion ratios.

Indexes No Fusion Uniform Fusion Similarity-Filtered
Fusion

Bayesian-Optimized
Similarity Fusion

R2 0.973 0.983 0.991 0.996
RMSE/W 0.1636 0.1418 0.1345 0.1308
MAE/W 0.1283 0.1122 0.1063 0.0987
MAPE/% 4.06 3.82 3.25 2.83
Time/s 755 794 824 876

Table 13. Comparison of the prediction errors of cloudy weather under different fusion ratios.

Indexes No Fusion Uniform Fusion Similarity-Filtered
Fusion

Bayesian-Optimized
Similarity Fusion

R2 0.965 0.972 0.980 0.985
RMSE/W 0.2358 0.1939 0.1747 0.1692
MAE/W 0.1848 0.1702 0.1675 0.1523
MAPE/% 4.62 4.05 3.91 3.75
Time/s 739 783 836 853

Table 14. Comparison of the prediction errors of rainy weather under different fusion ratios.

Indexes No Fusion Uniform Fusion Similarity-Filtered
Fusion

Bayesian-Optimized
Similarity Fusion

R2 0.934 0.953 0.966 0.976
RMSE/W 0.2421 0.2179 0.1828 0.1672
MAE/W 0.2076 0.1813 0.1652 0.1425
MAPE/% 6.73 5.16 4.99 4.76
Time/s 785 798 863 898

In predicting photovoltaic power, the Conv-LSTM-ATT model that integrates spatial
data from surrounding stations exhibits excellent performance. This strategy effectively
utilizes diverse data sources, enhancing the model’s predictive accuracy across various
weather conditions, and proving its practical application potential in real-world PV power
forecasting scenarios.

5. Conclusions

This study employed the correlation analysis to identify and refine input variables,
aiming to reduce their dimensionality and simplify the computational process. A data-
driven framework was introduced, which integrated spatial and temporal information.
This framework effectively leveraged the advantages of both CNN and LSTM networks
by developing the Conv-LSTM module, thereby enhancing the model’s ability to learn
the long-term mapping relationship between photovoltaic power and meteorological data.
By integrating attention mechanisms into the Conv-LSTM model, distinct weights were
assigned to LSTM’s hidden layers, reducing the loss of historical information and intensify-
ing the impact of crucial data. Under the same dataset conditions, the experimental results
of the study indicated that compared to three classical models, the method proposed in
this paper exhibited superior performance in terms of prediction. Moreover, the utilization
of a fused dataset further amplified the model’s performance, showcasing its exceptional
predictive capabilities.

Nevertheless, the model’s scalability and generalization capability across different
geographical locations and varying environmental conditions need further investigation. It
is important to assess how well the model performs when applied to data from different
PV systems that were not part of the initial training dataset. To address this, future research
could focus on employing advanced techniques like transfer learning and domain adapta-
tion. This approach would enable the model to effectively adapt to diverse environmental
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variables and different geographic locations, ensuring robust performance across a variety
of PV systems. Additionally, enriching the training dataset with a broader spectrum of
climatic and geographical data could further enhance the model’s predictive accuracy and
reliability in new settings.
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Nomenclature of Variables and Abbreviations

Abbreviation Full Term
PV Photovoltaic
NWP Numerical Weather Prediction
RMSE Root Mean Square Error
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
Conv-LSTM Convolutional Long Short-Term Memory
MAPE Mean Absolute Percentage Error
MAE Mean Absolute Error
PCC Pearson Correlation Coefficient
FF Feature Fusion Layer
FC Fully Connected Layer
ReLU Rectified Linear Activation Unit
X Historical Power Data
ATT Attention

References
1. Moreira, M.O.; Balestrassi, P.P.; Paiva, A.P.; Ribeiro, P.F.; Bonatto, B.D. Design of experiments using artificial neural network

ensemble for pho-tovoltaic generation forecasting. Renew. Sustain. Energy Rev. 2021, 135, 110450. [CrossRef]
2. Agrawal, S.; Soni, R. Renewable energy: Sources, importance and prospects for sustainable future. In Energy: Crises, Challenges

and Solutions; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 131–150. [CrossRef]
3. Rajesh, R.; Mabel, M.C. A comprehensive review of photovoltaic systems. Renew. Sustain. Energy Rev. 2015, 51, 231–248.

[CrossRef]
4. Hernández-Callejo, L.; Gallardo-Saavedra, S.; Alonso-Gómez, V. A review of photovoltaic systems: Design, operation and

maintenance. Sol. Energy 2019, 188, 426–440. [CrossRef]
5. Yang, D.; Kleissl, J.; Gueymard, C.A.; Pedro, H.T.; Coimbra, C.F. History and trends in solar irradiance and PV power forecasting:

A preliminary assessment and review using text mining. Sol. Energy 2018, 168, 60–101. [CrossRef]
6. Li, P.; Zhou, K.; Lu, X.; Yang, S. A hybrid deep learning model for short-term PV power forecasting. Appl. Energy 2020, 259, 114216.

[CrossRef]
7. Han, S.; Qiao, Y.H.; Yan, J.; Liu, Y.Q.; Li, L.; Wang, Z. Mid-to-long term wind and photovoltaic power generation prediction based

on copula function and long short term memory network. Appl. Energy 2019, 239, 181–191. [CrossRef]
8. Kumler, A.; Xie, Y.; Zhang, Y. A Physics-based Smart Persistence model for Intra-hour forecasting of solar radiation (PSPI) using

GHI measurements and a cloud retrieval technique. Sol. Energy 2019, 177, 494–500. [CrossRef]
9. Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting:

Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [CrossRef]
10. De Giorgi, M.G.; Congedo, P.M.; Malvoni, M. Photovoltaic power forecasting using statistical methods: Impact of weather data.

IET Sci. Meas. Technol. 2014, 8, 90–97. [CrossRef]

https://doi.org/10.1016/j.rser.2020.110450
https://doi.org/10.1002/9781119741503.ch7
https://doi.org/10.1016/j.rser.2015.06.006
https://doi.org/10.1016/j.solener.2019.06.017
https://doi.org/10.1016/j.solener.2017.11.023
https://doi.org/10.1016/j.apenergy.2019.114216
https://doi.org/10.1016/j.apenergy.2019.01.193
https://doi.org/10.1016/j.solener.2018.11.046
https://doi.org/10.1016/j.rser.2020.109792
https://doi.org/10.1049/iet-smt.2013.0135


Appl. Sci. 2024, 14, 5189 22 of 22

11. Han, Y.; Wang, N.; Ma, M.; Zhou, H.; Dai, S.; Zhu, H. A PV power interval forecasting based on seasonal model and nonparametric
estimation algorithm. Sol. Energy 2019, 184, 515–526. [CrossRef]

12. Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers.
Manag. 2019, 198, 111799. [CrossRef]

13. Li, G.; Xie, S.; Wang, B.; Xin, J.; Li, Y.; Du, S. Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach. IEEE Access
2020, 8, 175871–175880. [CrossRef]

14. Zhen, Z.; Liu, J.; Zhang, Z.; Wang, F.; Chai, H.; Yu, Y.; Lu, X.; Wang, T.; Lin, Y. Deep Learning Based Surface Irradiance Mapping
Model for Solar PV Power Forecasting Using Sky Image. IEEE Trans. Ind. Appl. 2020, 56, 3385–3396. [CrossRef]

15. Mishra, M.; Dash, P.B.; Nayak, J.; Naik, B.; Swain, S.K. Deep learning and wavelet transform integrated approach for short-term
solar PV power prediction. Measurement 2020, 166, 108250. [CrossRef]

16. Munawar, U.; Wang, Z. A Framework of Using Machine Learning Approaches for Short-Term Solar Power Forecasting. J. Electr.
Eng. Technol. 2020, 15, 561–569. [CrossRef]

17. Park, M.K.; Lee, J.M.; Kang, W.H.; Choi, J.M.; Lee, K.H. Predictive model for PV power generation using RNN (LSTM). J. Mech.
Sci. Technol. 2021, 35, 795–803. [CrossRef]

18. Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl.
2019, 31, 2727–2740. [CrossRef]

19. Hong, T.; Pinson, P.; Wang, Y.; Weron, R.; Yang, D.; Zareipour, H. Energy forecasting: A review and outlook. IEEE Open Access J.
Power Energy 2020, 7, 376–388. [CrossRef]

20. Lin, W.; Zhang, B.; Li, H.; Lu, R. Multi-step prediction of photovoltaic power based on two-stage decomposition and BILSTM.
Neurocomputing 2022, 504, 56–67. [CrossRef]

21. Zhen, H.; Niu, D.; Wang, K.; Shi, Y.; Ji, Z.; Xu, X. Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid
without mete-orological information. Energy 2021, 231, 120908. [CrossRef]

22. Son, Y.; Zhang, X.; Yoon, Y.; Cho, J.; Choi, S. LSTM–GAN based cloud movement prediction in satellite images for PV forecast.
J. Ambient Intell. Humaniz. Comput. 2023, 14, 12373–12386. [CrossRef]

23. Li, Q.; Zhang, D.; Yan, K. A Solar Irradiance Forecasting Framework Based on the CEE-WGAN-LSTM Model. Sensors 2023,
23, 2799. [CrossRef] [PubMed]

24. Kumari, P.; Toshniwal, D. Extreme gradient boosting and deep neural network based ensemble learning approach to forecast
hourly solar irradiance. J. Clean. Prod. 2021, 279, 123285. [CrossRef]

25. Agga, A.; Abbou, A.; Labbadi, M.; El Houm, Y.; Ali, I.H.O. CNN-LSTM: An efficient hybrid deep learning architecture for
predicting short-term photovoltaic power production. Electr. Power Syst. Res. 2022, 208, 107908. [CrossRef]

26. Tang, Y.; Yang, K.; Zhang, S.; Zhang, Z. Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer
learning strategy. Renew. Sustain. Energy Rev. 2022, 162, 112473. [CrossRef]

27. Sanchez-Sutil, F.; Cano-Ortega, A.; Hernandez, J.C.; Rus-Casas, C. Development and calibration of an open source, low-cost
power smart meter prototype for PV house-hold-prosumers. Electronics 2019, 8, 878. [CrossRef]

28. Hernández, J.C.; Ruiz-Rodriguez, F.J.; Jurado, F. Modelling and assessment of the combined technical impact of electric vehicles
and photovoltaic generation in radial distribution systems. Energy 2017, 141, 316–332. [CrossRef]

29. Sanabria-Villamizar, M.; Bueno-López, M.; Hernández, J.C.; Vera, D. Characterization of household consumption load profiles in
the time and frequency domain. Int. J. Electr. Power Energy Syst. 2021, 37, 107756. [CrossRef]

30. Kapoor, A.; Singhal, A. A comparative study of K-Means, K-Means++ and Fuzzy C-Means clustering algorithms. In Proceedings
of the 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, India,
9–10 February 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

31. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. [CrossRef]

32. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput.
2019, 31, 1235–1270. [CrossRef] [PubMed]

33. Wang, Y.; Chen, Y.; Liu, H.; Ma, X.; Su, X.; Liu, Q. Day-ahead photovoltaic power forcasting using convolutional-LSTM networks.
In Proceedings of the 2021 3rd Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 26–29 March 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 917–921.

34. Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [CrossRef]
35. Zhou, H.; Zhang, Y.; Yang, L.; Liu, Q.; Yan, K.; Du, Y. Short-Term Photovoltaic Power Forecasting Based on Long Short Term

Memory Neural Network and Attention Mechanism. IEEE Access 2019, 7, 78063–78074. [CrossRef]
36. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.solener.2019.04.025
https://doi.org/10.1016/j.enconman.2019.111799
https://doi.org/10.1109/access.2020.3025860
https://doi.org/10.1109/tia.2020.2984617
https://doi.org/10.1016/j.measurement.2020.108250
https://doi.org/10.1007/s42835-020-00346-4
https://doi.org/10.1007/s12206-021-0140-0
https://doi.org/10.1007/s00521-017-3225-z
https://doi.org/10.1109/OAJPE.2020.3029979
https://doi.org/10.1016/j.neucom.2022.06.117
https://doi.org/10.1016/j.energy.2021.120908
https://doi.org/10.1007/s12652-022-04333-7
https://doi.org/10.3390/s23052799
https://www.ncbi.nlm.nih.gov/pubmed/36905005
https://doi.org/10.1016/j.jclepro.2020.123285
https://doi.org/10.1016/j.epsr.2022.107908
https://doi.org/10.1016/j.rser.2022.112473
https://doi.org/10.3390/electronics8080878
https://doi.org/10.1016/j.energy.2017.09.025
https://doi.org/10.1016/j.ijepes.2021.107756
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1162/neco_a_01199
https://www.ncbi.nlm.nih.gov/pubmed/31113301
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.1109/ACCESS.2019.2923006

	Introduction 
	Problem Formulation 
	Materials and Methods 
	Overview of the Proposed Model 
	Selection of Similar Neighboring PV Plants Based on Composite Similarity Index 
	K-Means++ Approach 
	CNN 
	LSTM 
	Conv-LSTM 
	Attention Mechanism 
	Applying Bayesian Optimization to Optimize Data Fusion Ratios in Photovoltaic Power Forecasting 

	Results 
	Data Source 
	Photovoltaic Power Influencing Factors and Correlation Analysis 
	Model Evaluation Metrics 
	Training Configuration 
	Model Setting 
	Selection Results of Neighboring Photovoltaic Stations 
	Comparison and Analysis of the Results 

	Conclusions 
	References

