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Abstract: Time series dynamic prediction of surface deformation in mining areas can provide
reference data for coal mine safety and production, which has important impacts. The combination
of interferometric synthetic aperture radar (InSAR) technology and the probability integral method
(PIM) is commonly used for predicting deformation. However, most surface subsidence prediction
in mining areas is based on the static PIM parameters, failing to achieve the three-dimensional (3D)
dynamic deformation prediction. This paper proposed a 3D deformation dynamic prediction model
(InSAR-3D-CTPIM) between InSAR deformation observations and dynamic coordinate-time PIM
(CTPIM) parameters, which can realize the prediction of east–west, north–south, and vertical series
deformation caused by mining. The method has been validated by simulation experiments and real
experiments in the mining area of Jiansheng Coal Mine in Baisha Reservoir, Henan Province, China.
The results showed that the modeling accuracy was improved by 34.3% compared to the traditional
multi-rate model, and the accuracy was improved by 28.5% compared to the vertical deformation
obtained by the traditional static PIM method. The InSAR-3D-CTPIM model can be used to predict
the evolutionary history of basin-wide surface deformation dynamics in coal mining areas, and
provide a reference for the early warning and prediction of geological hazards in coal mining areas.

Keywords: InSAR; coal mining area; coordinate-time function; land subsidence; 3D deformation
prediction

1. Introduction

China is rich in coal resources, with proven coal reserves of 207.885 billion tons,
ranking fourth in the world [1]. The coal mines around the Baisha Reservoir in the Henan
region are densely distributed, and mining activities are frequent. Due to the proximity of
the reservoir and the abundance of underground water, long-term coal mining activities
tend to disrupt the stress balance of the rocks near the coal body, causing the collapse of the
mining area and even the occurrence of mine water intrusion accidents, seriously affecting
the safety of people’s lives and property around the mining area [2]. Therefore, long-term
dynamic three-dimensional (3D) deformation prediction for the mining basin in the coal
mining area in this region is of great significance for the production safety of the mining
area and the prevention of mining-related geological disasters.

The traditional methods of deformation prediction in coal mining areas can be divided
into two categories [3]: the empirical prediction method [4] and the influence function
method [5], both of which require a large number of accurate surface deformation measure-
ment samples to construct a reliable prediction model and then carry out displacement
orthotropic predictions. For the acquisition of surface deformations, traditional geode-
tic methods, such as levelling and global positioning system (GPS) measurements and
other techniques, have low point density, limited monitoring range and poor spatial and
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time series resolution, making it difficult to use these techniques to obtain sparse point
measurements to characterize the dynamic evolution of the entire subsidence cone. It is
difficult to use these techniques to obtain sparse point measurements to describe the dy-
namic evolution of the whole sedimentation funnel, and they require significant manpower,
material and financial resources [6]. The interferometric synthetic aperture radar (InSAR)
technique can be used to obtain a large amount of surface deformation observation data in
mining areas under all-weather, non-contact conditions [7,8], so it has been widely used
to monitor surface deformation in coal mining areas [9–13]. The basic idea is to use the
radar line-of-sight (LOS) time series deformation obtained by InSAR as the input value
of the time series prediction model, estimate the prediction model parameters, and then
realize the prediction of surface deformation in the mining subsidence area. For example,
Fan et al. [14] and Plattner et al. [15] projected the LOS deformation generated by InSAR
in the vertical direction and then used the resulting vertical displacement as an input
value to estimate the parameters of the probability integral method (PIM) to predict the
vertical deformation of the surface caused by mining. However, the PIM method is a static
model that cannot predict the dynamic changes in mine subsidence over time. If the SAR
image is missing, the deformation results for the time period outside the image cannot be
obtained. Therefore, Zhang et al. [16] proposed the InSAR deformation model based on
the coordinate-time PIM (CT-PIM) [17] and realized the prediction of the vertical deforma-
tion of a mine caused by drilling and water-soluble mining in Xinhua, Hunan Province,
China. However, the above study neglected the effect of horizontal movement and could
only provide a one-dimensional prediction of mine subsidence, but could not realize the
prediction of 3D surface displacement caused by mining activities. To address this problem,
Yang et al. comprehensively considered the influence of horizontal displacement and
proposed combining the probabilistic integral method (PIM) with the Knothe time function
to realize the prediction of three-dimensional displacement induced by full-scale mining
in the vertical, east–west, and north–south directions [18,19]. However, the prediction of
vertical displacement uses a static PIM model, which is used to multiply the Knothe time
function to obtain a dynamic prediction along the vertical direction. Vertical displacement
is the main indicator of 3D displacement in a mining area, and the Knothe time function is
an empirical function fitted along the time series; the physical meaning is not clear enough,
the model effect is not ideal, and the accuracy of predicting the vertical displacement is
still debatable.

Based on this, a 3D deformation dynamic prediction model (InSAR-3D-CTPIM) be-
tween InSAR deformation observations and coordinate-time PIM (CT-PIM) parameters has
been proposed in this paper. Based on the literature [19], this model replaces the union of
the static PIM and the Knothe function with a more theoretical coordinate-time function
that can directly solve the PIM parameters by using the InSAR phase observations and fully
reflect the mining geological conditions in the prediction of vertically oriented deformation,
with higher modeling accuracy. Based on the literature [16], the one-dimensional vertical
deformation prediction was extended to 3D deformation prediction, which can realize the
deformation prediction in the three directions of vertical, east–west and north–south. Then,
the historical deformation of the Jiansheng Coal Mining Area, which may have collapsed
southwest of the Baisha Reservoir of Henan Province during the period of 2015–2017, was
reconstructed. The research results can more comprehensively decipher the developmental
history of basin-wide deformation dynamics of the surface in this mining area, providing a
reference for the subsequent early warning and prediction of geological hazards in this area.

2. Methods
2.1. SBAS-Based Estimation of Line-of-Sight Deformation

Firstly, the small baseline subset (SBAS) technique was used to obtain the LOS defor-
mation of the mine surface. This technique is used to invert the LOS deformation of the
area by solving the deformation of a large number of dense, high-coherence points in the
area. Assuming that N + 1 SAR images of the study area are acquired and M differential
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interferograms are generated [20,21], the phase of the i-th pixel on the m-th (1 ≤ m < M)
differential interferogram can be expressed as follows [22]:

δφi
m = δφi

de f + δφi
topo + δφi

orbit + δφi
atm + δφi

noise + δφi
Non

≈ 4π
λ ∆di + 4πBi

λR sin θ ∆Hi + δφi
res

(1)

where δφi
de f denotes the deformation phase, λ denotes the radar wavelength, ∆d(i) is the

deformation component of the m-th differential interferogram, which is called the Low Pass
(LP) deformation component, δφi

topo denotes the terrain phase δφi
topo = (4πBi/λR sin θ)∆Hi,

where Bi denotes the length of the vertical baseline, R is the distance between the target
and the radar satellite location, θ denotes the radar incidence angle, and ∆Hi denotes the
elevation correction value, which is regarded as an unknown parameter, δφi

orbit denotes
the orbital error phase, and δφi

res denotes the residual phase, including atmospheric delay
phase δφi

atm, noise phase δφi
noise, and High Pass (HP) deformation component δφi

Non, where
∆di = d(ti

B)− d(ti
A), d(ti

B) and d(ti
A) denote the deformation (tB > tA) components of the

point relative to the start time t0 (i.e., d (t0) = 0) at the image acquisition moments tB and tA,
respectively, which can be expressed as below [23–25]:

∆di =
ti
B

∑
ti

A+1

vk(tk − tk−1) (2)

where vk is the linear deformation rate at each interference epoch, k is the number of
interference pairs, and Equation (1) can be written as follows:

δφi
m = Bvk (3)

The process of solving (3) is a least squares problem, where N linear velocities v and
elevation corrections ∆Hi need to be estimated according to Equations (1) and (2). Since the
matrix B is a rank-loss matrix, the singular value decomposition algorithm [26] can solve the
minimum van solution for the unknown parameters vk and ∆Hi in Equation (1), and then
the deformation rate is integrated over each period, and the low-frequency deformation
sequence can be calculated by substituting into Equation (3) [27]. The atmospheric delay
phase component is a high-frequency signal in the time dimension and a low-frequency
signal in the spatial dimension, and the nonlinear deformation is a low-frequency signal
in the time dimension. Therefore, the time-dimensional high-pass filtering and spatial-
dimensional low-pass filtering are used to obtain the high-frequency nonlinear deformation
(HP) component, which is then accumulated with the low-frequency linear deformation
(LP) component, and the total deformation volume of the point can be estimated. The
principle of the SBAS-InSAR technique is shown in Figure 1.

2.2. Three-Dimensional CTPIM Modeling Based on Coordinate-Time Functions

A three-dimensional deformation prediction model (3D-CTPIM) between dynamic
surface subsidence and horizontal displacement with probabilistic integral parameters is
constructed as follows [28]:

W(x, y, ti) =
W0(x, ti)W0(y, ti)

w0
(4)

U(x, y, γ, ti) =
U0(x, ti)W0(y, ti) cos γ

w0
+

U0(y, ti)W0(x, ti) sin γ

w0
(5)

where W(x, y, ti) and U(x, y, γ, ti) are the subsidence and horizontal displacement of any
point on the surface of the mining area at the moment of workface advancement ti, w0 is the
maximum settlement under mining conditions, w0 = mqcosα, where m indicates the mining
thickness, q indicates the subsidence coefficient, and α indicates the inclination angle of
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the mining area; γ indicates the angle between the advancing direction of the workface
and a given direction, and the north–south displacement UN can be obtained when the
input value of the angle γ is γN in Equation (5), and the east–west displacement UE (see
Figure 2a) can be obtained when the input value of γ is γE. W0(x, ti), W0(y, ti) and U0(x, ti),
U0(y, ti) can be expressed as follows under different mining conditions:

1. When the mining tendency of the mine is fully mined and the strike is not fully mined,
the W0(x, ti) in Equation (4) can be expressed as follows [16]:

W0(x, ti) =


= w(x)

2

[
er f (

√
π) + er f

(√
π vmti−nH−r

r

)]
, x ≤ nH

w(x)
2

{
er f
[√

π

(
er f (

√
π) +

vmti−r−x+ H
a+bx −

H(a+bx)
3

r

)]}
, nH ≤ x ≤ 1.3r

= w0
2

[
er f
(√

π
r

)
+ er f

(√
π vmti+H/ tan ω−2x

r

)]
, 1.3r ≤ x

(6)

where x denotes the horizontal coordinate of any high-coherence point in the mining area,
w(x) is the static subsidence, which can be expressed as w(x) = w0

2
[
er f
(√

π x
r
)
+ 1
]
; erf is the

probability integral function, which can be expressed as er f
(√

π

r
x
)
=

2√
π

∫ √π

r
x

0 e−u2
du,

where u is the integral parameter; r = H
tan β is the main influence radius, where H is the

mining depth, and tanβ is the tangent value of the main influence angle; nH is the start-up
distance, n is the start-up coefficient, ω is the overshooting static influence angle, vm is
the constant speed under uniform mining conditions, and the coefficients a and b can
be expressed as a = 117r−ωnH

1.3r+nH , b = ω−90
◦

1.3r+nH , respectively.U0(x, ti) in Equation (5) can be
expressed as follows:

U0(x, ti) =
i

∑
0
{σ(ti − tk)

[
U1

(
x −

k

∑
j=0

(vj·tj)

)
−U1

(
x −

k+1

∑
j=1

(vj·tj)

)]}
(7)

σ(tj) = 1 − exp(−ctj) (8)

where U1(x) = d w0 exp
(
−π x2

r2

)
, d is the horizontal displacement constant, tj is the

mining time, and vj is the average propulsion velocity. The σ(tj) in Equation (8) is the time
function, where c is a time parameter that characterizes the change in horizontal movement
with time.

2. When the mining strike is fully mined and the tendency is not fully mined, W0(y, ti)
in Equation (4) and U0(y, ti) in Equation (5) can be expressed as follows:

W0(y, ti) =
w0

2

[
er f
(√

π
y
r1

)
− er f

(√
π

y − L
r2

)]
(9)

U0(y, ti) = U1(y)− U1(y − L) + W0(y, ti) cot θ0 (10)

where y indicates the longitudinal coordinates of any high-coherence point in the mining
area, r1 = H1

tan β1 , r2 = H2
tan β2 respectively, for the upper and lower radius of influence;

H1, and H2, respectively, for the mining depth of the upper and lower mountain, which
can be calculated according to the formula H1 = H − D1

2 sin α, and H2 = H + D1
2 sin α;

L = (D1 − S1 − S2)
sin(θ0−α)

sin θ0 for the length of the inclined working face, D1 for the inclined
slanting length of the working face, S1, S2 for the offset distance of the lower and upper
inflexion points, respectively, and θ0 for the angle of propagation of the mining influence.
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Figure 1. SBAS-InSAR technique to acquire one-dimensional time series deformation principle in
coal mine area.

Figure 2. (a) Spatial coordinate system of 3D-CTPIM model; (b) mine strike limited mining; (c) mine
inclination limited mining.

2.3. InSAR-3D-CTPIM

Based on Section 2.2, the time series function model between the InSAR LOS-oriented
deformation and the 3D coordinate-time function 3D-CTPIM is constructed, and the InSAR
LOS-oriented deformation can be expressed as follows [29]:

∆d(ti) = d(tB)− d(tA) (11)

d(ti) = W cos θ − sin θ[UN cos(αh − 3π/2) + UE sin(αh − 3π/2)] (12)

In Equation (11), d(tB) and d(tA) are the LOS-direction deformation components at
moments tB and tA, respectively, and the LOS-direction deformation component at ti
moments can be expressed as Equation (12), where θ is the radar incidence angle, and αh is
the satellite heading angle, and it is known from Equations (4) and (5) that W, UE and UN
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denote the vertical, east–west and north–south direction deformation components. At this
time, the surface three-dimensional displacement can be expressed as follows:

W(x, y, ti) = fW
U(x, y, γN, ti) = fUn
U(x, y, γE, ti) = fUe

(13)

where fW , fUn, and fUe denote the mapping functions of vertical and horizontal dis-
placements containing unknown parameters, respectively. According to the geometric
relationship of the mining area, γN and γE, respectively, are the counterclockwise angles
between the underground mining direction and the north direction and the east direction,
which can be obtained by bringing into Equations (14) and (15):

fw =
W0(x, ti)W0(y, ti)

w0
(14)

fUn =
U0(x, ti)W0(y, ti) cos γN

w0
+

U0(y, ti)W0(x, ti) sin γN
w0

(15)

fUe =
U0(x, ti)W0(y, ti) cos γE

w0
+

U0(y, ti)W0(x, ti) sin γE
w0

(16)

Substituting Equation (13) into Equation (12) to construct the functional relationship
between the InSAR LOS deformation and the parameters of the probabilistic integral model,
the LOS deformation component at the moment ti can be expressed as follows:

d(ti) =

 cos θ
− sin θ cos(αh − 3π/2)
− sin θ sin(αh − 3π/2)

T fW
fUn
fUe

 (17)

Substituting Equation (17) into Equation (1), the function between the InSAR differen-
tial interferometric phase and the PIM parameters can be expressed as below:

δφm(x, r) = δφB(x, r)− δφA(x, r) ≈ 4π

λ
[d(tB)− d(tA)] +

4πB̂
λR sin θ

∆H(x, r) + δφm
res(x, r) (18)

The above equation describes the time series functional relationship between the In-
SAR temporal phase and the 3D-CTPIM predicted parameters, incorporating the temporal
parameters, which can be used directly to estimate the model predicted parameters using
the InSAR phase values. Among them, the mine geological parameters G1 = [m, H1, H2, α, ω,
D1, D3, vm] can be determined based on the information of the mine geological conditions,
which are considered as known parameters. The PIM parameters G2 = [q, tanβ, d, θ0, S1, S2,
n] and the time parameter c. The dynamic prediction of the three-dimensional movement
of the mine surface can be realized by substituting the obtained unknown parameters into
Equations (4) and (5).

2.4. InSAR-3D-CTPIM Parameter Estimation by GA-SM

In this paper, a genetic algorithm (GA) is used to estimate the unknown parameters
G2 and c of the model in parallel with the simplex method (SM). For each high-coherence
point (x, y) on the generated M differential interferograms, M equations can be listed, and
the number of InSAR observations of more than eight views can be obtained from the
unknown parameters. And the InSAR phase observations are used as inputs to estimate
the model parameters [30]. The fitness function of the genetic algorithm can be expressed
as follows:

f = min∥ δφ − δφm ∥ (19)

where δφ denotes the differential interferometric phase obtained from InSAR measurements;
δφm is the differential interferometric phase calculated from the unknown parameters
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obtained by the GA algorithm according to Equation (18). When using the GA search, the
geological parameters G1 = [m, H1, H2, α, ω, D1, D3, vm ] can be determined according to
the geological data of the mine area [31], which are regarded as known parameters, and the
range of values of the model parameters G2 are shown in Table 1.

Table 1. Range of model parameter values.

Parameters Range of Values

q 0–1
d 0.1–0.5

tanβ 1–3.8
θ0 80–90

S1 (m) 5–30
S2 (m) 5–30

n 1/7–1/2
c 6–17

The search for unknown parameters using the GA method is more dependent on the
initial range of the population, and the optimal evaluation of the unknown parameters
obtained may not reach the optimal value within a limited number of iterations, which
may therefore lead to poor accuracy or even an incorrect output solution. The accuracy
of model parameter estimation can be improved by using SM for secondary search [32].
The flow of the GA-SM algorithm is (1) GA search to obtain the initial solution of unknown
parameters as the initial value of SM and construct an initial simplex form with nine
solutions; (2) Calculate the value of the fitness function to determine the worst, second
worst, and optimal solutions; and (3) Expand, compress, and worst-compress operations
using the reflection point until the search for a solution better than the worst solution stops;
perform multiple superpositions to find the optimal solution as the final evaluation of
G2. The process of 3D-CTPIM to predict the three-dimensional deformation of the mine is
shown in Figure 3.

Figure 3. Flow of 3D deformation prediction based on InSAR-3D-CTPIM.



Appl. Sci. 2024, 14, 5199 8 of 21

3. Simulation Experiment

A simulation experiment was carried out in this paper to verify the feasibility and
reliability of the method. The satellite parameters used in the simulation experiment are
set based on the Sentinel-1A satellite SAR image parameters in the real experiment (see
Section 4), with the geological parameter G1 = [2 m, 612 m, 588 m, 7◦, 82◦, 200 m, 500 m,
0.52 m/d], the PIM parameter-simulated value G2 = [0.711, 1.251, 0.326, 83.29, 7.71 m,
11.22 m, 0.167] and the time function model parameter c of 8.261; the 3D deformation field
is generated as the real deformation according to Equations (4) and (5), respectively, as
shown in Figure 4, from which 300-pixel points of 3D deformation values are extracted to be
analyzed in quantitative comparison with the 3D deformation-calculated values generated
by InSAR-3D-CTPIM.

Figure 4. Partially simulated three-dimensional time-ordered deformation field.

Figure 5 shows the comparison between the simulated and predicted vertical defor-
mation values of pixels for four time periods; as can be seen from the figure, the simulated
actual values and the predicted values of deformation are in good agreement, and statis-
tically, the pixels with the error values distributed between [–2, 2] mm account for 100%,
99%, 94.67%, and 91% of the total number of pixels, respectively, where the maximum
errors are 0.8 mm, 1.2 mm, 3.2 mm, 4.8 mm, respectively. Meanwhile, the root mean
square errors (RMSE) of the model parameters were calculated to quantitatively verify the
simulated and actual values of the model parameters. As shown in Table 2, the relative
errors of the eight model parameters are less than 7%; the RMSE between the simulated
actual values of vertical deformation and the predicted values of deformation generated by
the InSAR-3D-CTPIM model is 2.2 mm, which confirms the reliability of the model and
parameter estimation methods in this paper.
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Figure 5. Comparison between the true value of deformation and the value predicted by the InSAR-
3D-CTPIM model.

Table 2. Model parameter by InSAR-3D-CTPIM.

Parameters Analog Value Real Value Inaccuracies Relative Error

q 0.711 0.722 0.011 1.5%
d 0.326 0.335 0.009 0.9%

tanβ 1.251 1.239 0.012 2.7%
θ0 83.29 81.14 2.15 2.5%

S1(m) 7.71 8.04 0.33 4.2%
S2(m) 11.22 11.85 0.63 5.6%

n 0.167 0.175 0.008 4.8%
c 8.261 8.443 0.182 2.2%

4. Real Experiments
4.1. Experimental Area and Experimental Data

Jiansheng Coal Mine is located southwest of Bisha Reservoir in Dengfeng City, Henan
Province, and its geographical location is shown in Figure 6b; the red box in Figure 6a is the
Sentinel-1A up-orbiting satellite image coverage, and the blue rectangular box in Figure 6c
is the study area of this paper, which covers an area of 16.4 km2. The distribution of mineral
resources around the study area is extremely dense, mainly dominated by coal mines; due to
the close proximity to the reservoir, the underground water content around the mining area
is relatively rich, coupled with long-term mining activities, resulting in exposed rock strata
and sparse vegetation in the area, and the long-term cumulative deformation has made the
area highly susceptible to accidents, such as surface cave-ins and mine water penetration.

In this paper, the SAR data are processed using the SBAS-InSAR technique, and
12 views of Sentinel-1A up-orbit SAR images covering the study area from 13 November
2015 to 19 November 2016 are processed with pre-differential interferometric processing as
observation data, and the cumulative deformations from 13 November 2015 to 1 December
2016, 18 January 2017, 23 February 2017, and 7 March 2017 are taken as the validation data
to verify the reliability of the proposed method. The basic information of the SAR image
is shown in Table 3. The spatio-temporal baseline distribution is shown in Figure 7; in



Appl. Sci. 2024, 14, 5199 10 of 21

addition, the geological parameters of the survey area are G1 = [0.66 m, 620 m, 580 m, 4.5◦,
84◦, 300 m, 750 m, and 2 m/d].

Figure 6. Map of the study area and SAR image coverage.

Table 3. SAR image parameters.

Serial
Number

Acquisition
Time

Orbital
Direction

Polarization
Mode

Absolute
Orbit

0 2015/11/13 Ascending VV 8585
1 2015/12/07 Ascending VV 8935
2 2015/12/31 Ascending VV 9285
3 2016/02/17 Ascending VV 9985
4 2016/03/12 Ascending VV 10,335
5 2016/04/05 Ascending VV 10,685
6 2016/04/29 Ascending VV 11,035
7 2016/05/23 Ascending VV 11,385
8 2016/10/02 Ascending VV 13,310
9 2016/10/14 Ascending VV 13,485
10 2016/10/26 Ascending VV 13,660
11 2016/11/07 Ascending VV 13,835
12 2016/11/19 Ascending VV 14,010
13 2016/12/01 Ascending VV 14,185
14 2017/01/18 Ascending VV 14,885
15 2017/02/23 Ascending VV 15,410
16 2017/03/07 Ascending VV 15,585



Appl. Sci. 2024, 14, 5199 11 of 21

Figure 7. Spatio-temporal baseline.

4.2. Time Series Deformation Monitoring Based on SBAS-InSAR Technique

In this paper, one-dimensional deformation monitoring was first carried out using
SBAS-InSAR technology, with spatiotemporal baseline thresholds set to 180 days and
140 m, respectively. Through baseline estimation, pre-differential interferometric processing,
phase unwrapping, deformation rate estimation in the LOS direction, and spatial-temporal
filtering, the interferograms with poor unwrapping effect were removed, and 25 unwrapped
differential interferograms were acquired, and the 12 LOS time series deformation results
were finally obtained for the period of 13 November 2015 to 19 November 2016; the time
series deformation results are shown in Figure 8. During the period from 31 December
2015 to 2 October 2016, the whole mine area was from blue to light yellow, with a general
trend of slow subsidence, and with the continuous advancement of mining, the mining
area was intensified from light yellow and gradually changed to red; as of 19 November
2016, the LOS direction time series maximum deformation value reached 147 mm.

Figure 8. LOS direction time series deformation (reference time: 13 November 2015).
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4.3. Analysis of 3D-CTPIM Deformation Prediction Results

According to the method described in Section 2.1, high-coherence points from 12 peri-
ods of time-series deformation monitoring results from 13 November 2015 to 19 November
2016 for the same settling funnel in the red rectangular box were used as the observations
data to solve the InSAR-3D-CTPIM prediction parameters, and the results were q = 0.74,
d = 0.43, tanβ = 1.08, θ0 =81.57

◦
, S1 = 15.68 m, S2 = 16.82 m, n = 0.21, and c = 7.36; after ob-

taining the unknown parameters of the InSAR-3D-CTPIM model, the vertical, east–west and
north–south deformation of the mine can be predicted according to Equations (4) and (5),
respectively. Figure 9 shows the four-phase 3D time-series deformation prediction results
on 23 May, 1 December 2016, 18 January, 7 March 2017, respectively (the prediction area
is shown in the red rectangular box in Figure 8). It can be seen from Figure 9 that the
cumulative deformation of the area shows a gradual increase over time to stabilization,
which is in line with the mining deformation evolution law of the mine; the maximum
displacements in the vertical direction, east–west direction and north–south direction are
181 mm, 46 mm and 40 mm, respectively. Figure 10a–d shows the InSAR deformation
monitoring results for the periods of 1 December 2016, 18 January, 23 February, and 7 March
2017, and 300 high-coherence points are selected for comparing the deformation predicted
by the InSAR-3D-CTPIM model with that monitored by SBAS-InSAR. The differences in
the predicted deformation of the InSAR-3D-CTPIM model and the SBAS-InSAR monitoring
results are compared, and the bars of the differences are shown in Figure 10e–h, which show
that most of the differences in the deformation are centered at [−20, 20] mm, and that the
predicted deformation is basically in agreement with that of the InSAR monitoring results.

Figure 9. Three-dimensional deformation prediction results obtained from InSAR-3D-CTPIM model
(reference time: 13 November 2015).
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Figure 10. (a–d): SBAS-InSAR late image monitoring results; (e–h): difference between predicted
deformation and SBAS-InSAR monitoring deformation.

5. Accuracy Validation
5.1. Deformation Monitoring Accuracy

To verify the reliability of the predictions in this paper, external levelling data were
collected in the study area; the actual implementation times of the leveling survey were
13 November 2015, 23 May 2016, 26 October 2016, and 23 February 2017, and the locations
of the leveling points are shown as red triangles in Figure 11d [33]. The measured values
were obtained by leveling and the accuracy met the requirements of fourth-order leveling.
Figure 11a–c show the results of the comparison between the vertically oriented defor-
mations predicted and back extrapolated by the InSAR-3D-CTPIM model for the periods
of 13 November 2015 to 23 May 2016, 26 October 2016, and 23 February 2017, and the
level measurements.

Figure 11. Comparison of level positions and InSAR-3D-CTPIM predicted values with measured
values (reference time: 13 November 2015).
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As can be seen from the line graphs and difference bar graphs in Figure 11, the vertical
deformation results predicted by the InSAR-3D-CTPIM model are in good agreement with
the leveling data. The RMSEs of the vertical deformation predicted by the InSAR-3D-
CTPIM model and the leveling measurement results in these three periods were ±1.6 mm,
±4.3 mm, and ±4.5 mm, respectively, showing that the InSAR-3D-CTPIM model can
reasonably predict the dynamic three-dimensional deformation of the mine surface.

5.2. Deformation Modeling Accuracy

According to the literature [34], the magnitude of the residual phase can be used as an
effective indicator of the degree of fit between the InSAR modeling monitoring results and
the real deformation, which in turn reflects the modeling accuracy of the model. When the
residual phase in the interferometric pair is smaller, the modeling accuracy is higher. The
residual phase can be calculated from the difference between the differential interferometric
phase and the phase component of the low-pass deformation, as shown in Equation (18).
Here, the residual phases of the InSAR-3D-CTPIM model constructed in this paper and
the linear model in SBAS-InSAR were counted and compared, and Figure 11 shows the
corresponding residual phase values in the interferograms obtained by the two methods.
As can be seen from Figure 12, the residual phases of both models were less than 0.7 rad,
and the residual phases of InSAR-3D-CTPIM were less than 0.5 rad. By counting the STD
of the residual phases of the two models corresponding to the high-coherence points, it can
be concluded that the RMSE of the traditional linear model was 0.13 rad and that of the
STD of InSAR-3D-CTPIM was 0.08 rad. In comparison, the modeling accuracy of InSAR-
3D-CTPIM was improved by 34.3% compared with that of the traditional linear model,
which indicates that InSAR-3D-CTPIM has higher accuracy in modeling the deformation
process of the coal mine.

Figure 12. Comparison of residual phases in the Jiansheng coal mine area based on two different models.

5.3. Comparison of Accuracy with Static PIM Prediction Methods

In order to verify the advantages of the InSAR-3D-CTPIM method proposed in this
paper over the traditional methods, vertical deformation prediction experiments are carried
out here using the method of the literature [18], and the results were compared with the
results of the method in this paper, respectively, and a total of 300 high-coherence points
were extracted for the deformation prediction results of the four periods (from 31 December
2015 to 1 December 2016, 18 January 2017, 23 February 2017, and 7 March 2017, respec-
tively). Due to the small number of external level points, in order to comprehensively
analyze the comparison of the accuracy of the prediction results of the two methods, the
SBAS-InSAR monitoring results were used as the real values, and compared with the
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deformation prediction results generated by the two methods, respectively, to measure
the accuracy of the prediction results of the two methods. As shown in Figure 13e–h, the
deviation distribution of InSAR-3D-CTPIM was more concentrated, and the deviation of
the deformation prediction results was smaller than that of the static-PIM deformation
prediction results in all four statistical periods; from the statistical data (e.g., Figure 13a–d),
most of the deviation values of the deformation prediction results for InSAR-3D-CTPIM
were distributed between [−20, 20] mm, while most of the deviation values of the deforma-
tion prediction results for Static-PIM were distributed between [−30, 30] mm. The total
standard deviation (STD) of the InSAR-3D-CTPIM was calculated to be ±9.6 mm, while
the total STD of Static-PIM was calculated to be ±13.4 mm. The total standard deviation of
the deformation prediction results for the InSAR-3D-CTPIM model was calculated to be
±3.4 mm, and the total standard deviation of the InSAR-3D-CTPIM model was ±4.4 mm.
The prediction accuracy of the CTPIM model deformation prediction results, compared to
the traditional Static-PIM model deformation prediction results, increased by 28.5%, which
indicates that InSAR-3D-CTPIM using the CT-PIM model more accurately reflects the
mine in the vertical deformation time-sequence characteristics of the mine, the modeling
accuracy is higher, and the vertical deformation prediction is more accurate.

Figure 13. Comparison of InSAR-3D-CTPIM and Static-PIM vertical deformation results.

6. Discussion and Analysis
6.1. Analysis of the Causes of Deformation

Based on the time series results shown in Figure 8 and the deformation prediction
data in Figure 9, combined with the historical data of precipitation and climate change in
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Figure 14 [35], and the conclusions of previous studies, an in-depth causal analysis of the
temporal and spatial distribution characteristics of the deformation in the study area was
as follows:

(1) Long-term coal mining activities in the Jiansheng coal mine area have formed obvious
voids; due to the existence of these voids within the rock body, the overlying rock layer
has deformed after being subjected to its own gravity and the role of the overlying
rock layer. This deformation further affects the state of stress distribution in the
surrounding rock mass [36]. When the mining activity reaches a certain level, the
surface will show obvious signs of deformation, such as geological phenomena like
collapses and cracks.

(2) Considering that the Jiansheng coal mine is located on the southwest side of the Baisha
Reservoir, and that the underground aquifers in the area of the Henan Jiansheng coal
mine are relatively rich in water content, continuous coal mining activities have
damaged the original geological stability, resulting in a gradual lowering of the
groundwater level. As the groundwater level drops, the pressure on the rock and
soil layers gradually increases. Particularly in the hydrophobic area, the increase
in pressure has caused the overlying layers of rock and soil to subside, eventually
triggering the phenomenon of land subsidence.

(3) The study area is located at the northern end of the Qinling–Huaihe line in China,
with a typical temperate monsoon climate. The climate is cold and dry in winter, and
hot and rainy in summer. Especially during the hot and rainy season, the shallow
aquifer is effectively recharged, which is the main reason for the small rise in the
ground surface level between 2 October and 14 October 2016 [37].

(4) During the annual Spring Festival, a large number of miners choose to return home
due to the cold weather, resulting in a significant reduction in mining activity in the
coal mines. The reduction in mining activity also effectively slows down the rate of
deformation of the mine surface. This is also an important reason why the overall
deformation of the mine surface remained relatively stable during the period from
December 2015 to March 2016.

Figure 14. Baisha Reservoir Coal Mine area temperature and precipitation data (December 2015 to
March 2017).

6.2. Sensitivity Analysis of Model Parameters

According to existing studies, the accuracy of deformation prediction depends to some
extent on the estimation accuracy of model parameters, and sensitivity analysis refers to
the uncertainty analysis of the degree of influence on the final results when the relevant
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influencing factors are changed. In this paper, it was used to study the change in the
model parameters corresponding to the change in the size of the error of the deformation
prediction results: i.e., for the more-sensitive parameters, even a small change in the
parameter estimation value will lead to a large error in the deformation prediction results.
Conversely, if the parameter is not sensitive, the parameter estimate will have a limited
effect on the deformation prediction results [19]. Therefore, this paper investigated the
influence of InSAR-3D-CTPIM model parameters on deformation prediction results using
simulated data. Firstly, the simulated values of eight model parameters of a mining area
were assumed, as shown in Table 4, and they were used as input data substituted into
Equations (4) and (5) to obtain the vertical and horizontal deformation values as the initial
values to carry out the experiments. Table 4 lists the range corresponding to the error of
each parameter, and the parameter uncertainty of the model is defined according to the
equation [ UP2−UP1

UP1 100%].

Table 4. Uncertainty of InSAR-3D-CTPIM parameters.

Parameters Parameter Analog Values (UP 1) Tolerance Range (UP 2) Parametric Uncertainty

q 0.5 0.25~0.75 −50~50%
d 0.3 0.1~0.5 −67~67%

tanβ 1.5 1~2 −33~33%
θ0 85 80~90 −5.9~5.9%
S1 20 0~40 −100~100%
S2 20 0~40 −100~100%
n 0.35 0.2~0.5 −42~42%
c 11.5 6~17 −46~46%

Figure 15a,b show the errors in the vertical and horizontal deformations with respect
to the corresponding maximum value of the simulated deformations due to variations
in each model parameter, respectively. Taking the vertical deformation as an example, it
can be defined as W/w0, where w0 is the maximum vertical settlement. As can be seen
from Figure 15, for the prediction results of the vertical and horizontal deformation, the
subsidence coefficient q, the tangent of the main influence angle tanβ and the propagation
angle of mining influence θ0 are model parameters with higher sensitivity, in addition to
the higher sensitivity of the parameter of the horizontal displacement constant d, which has
a greater impact on the prediction results of the horizontal displacement. To summarize,
the model parameters have a greater effect on the deformation and are mainly focused
on q, tanβ, θ0 and d. Therefore, accurate estimation of the subsidence coefficient q, the
main influence angle tangent tanβ, the mining influence propagation angle θ0 and the
horizontal displacement constant d is the key to accurately predicting the three-dimensional
deformation of the coal mine area.

Figure 15. Results of sensitivity analysis of model parameters.
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6.3. Effect of Phase Error on Deformation Prediction Results

Although a number of operations such as filtering, multi-viewing, deleveling, etc.,
have been performed on the SAR images, there is still unavoidable residual noise when
the observed phase values are obtained by using the InSAR technique. In order to verify
the influence of the differential interferometric phase error on the prediction results of
the settlement deformation of the mining area, and to further analyze the error transfer
characteristics of the method in this paper, two groups of error transfer simulation exper-
iments were respectively carried out: (1) Using Equation (18) introduced in Section 2.3,
noise phases with 0.1~0.6 rad intervals of 0.1 rad are added to the differential interfero-
metric phases on the left side of the equal sign, and the GA-SM algorithm is used to solve
for each set of model parameters with different errors added to the differential interfero-
metric phases, and the corresponding vertical displacements are generated according to
Equation (4) and analyzed; (2) Using the differential interference phases with different
horizontal noise phases added to generate the corresponding time series deformation by
using the SBAS method to generate the corresponding time series deformation results, and
using the requested time series deformation results to solve the unknown parameters of
the static PIM, and analyzing the corresponding generated vertical deformation prediction
result errors. From the results of the parameter sensitivity analysis in Section 6.2, it can be
seen that the subsidence coefficient q, the tangent of the main influence angle tanβ and the
mining influence propagation angle θ0 are the parameters that have a greater influence on
the vertical displacement. Therefore, the experiments were conducted to explore the effects
of the initial errors of deformation on the deformation prediction results by adding different
levels of noise phases. Figure 16a,b show the RMSE of the vertically oriented predicted
deformations caused by q, tanβ, and θ0 errors obtained from the InSAR-3D-CTPIM model
and static-PIM, respectively, under the influence of the noise phases at different levels. As
can be seen from Figure 16, the deformation errors due to the parameters q, tanβ, and θ0 all
increase gradually with the increase in the noise phase, where the total vertical prediction
deformation errors of the InSAR-3D-CTPIM model are smaller than those of the static
probability integral model. At the added noise phase of 0.6 rad, the RMSEs of the real and
predicted deformations of the InSAR-3D-CTPIM model due to the errors of the unknown
parameters are less than 4.2 mm, while the static-PIM leads to a maximum RMSE of 3.9 mm
in the predicted deformation results with a small change (0.4 rad phase noise level), and
a maximum RMSE error of 6.1 mm in the deformation prediction results with the effect
of a 0.6 rad noise level, and all three parameter errors lead to a larger RMSE errors of
deformation prediction than the InSAR-3D-CTPIM.

Figure 16. Root-mean-square error of deformation prediction results for different noise levels.

The experimental results show that compared with the traditional static PIM pre-
diction method, the method in this paper directly uses the InSAR temporal differential
interferometric phase to estimate the prediction model parameters, and then calculates the
three-direction temporal deformation prediction results, which can effectively avoid the sec-
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ondary transmission of error under the influence of the same phase error, and significantly
improve the prediction accuracy of the deformation prediction.

7. Conclusions

In this paper, a three-dimensional time series deformation prediction method, InSAR-
3D-CTPIM, based on InSAR differential interferometric phasing, was proposed and applied
to the prediction of time series deformation on the surface of the Jiansheng coal mining
area southwest of the Baisha Reservoir in Henan Province, China. A combination of
simulation and real experiments was used to verify the reliability of the method. The
results of the simulation experiment showed that the RMSE of the model was ±2.2 mm
vertically upwards. In the real experiment, the InSAR-3D-CTPIM prediction parameters
were solved using the 13-scene images during the period from 13 November 2015 to 19
November 2016 as the observation, and then the prediction model was used to obtain
the prediction parameters of the mining area for the period from 1 December 2016 to 7
March 2017, in the vertical, east–west and north–south directions. The prediction results
of vertical, east–west and north–south deformations were obtained for the period from 1
December 2016 to 7 March 2017, using the prediction model. The predicted results showed
that the maximum subsidence in the vertical, east–west and north–south directions of the
mine area reached 181 mm, 46 mm and 40 mm, respectively. The deformation of the mine
area showed an overall non-linear subsidence trend in the time series, and the level data
were consistent with the values predicted by the method used in this study.

Moreover, compared with the traditional linear model and the traditional static prob-
ability integral model prediction method, the modeling accuracy of this method was
improved by 34.3%, and the deformation prediction accuracy was enhanced by 28.5%.
Under the influence of the high noise of 0.6 rad, the RMSE of deformations caused by
InSAR-3D-CTPIM was less than 4.2 mm, while the RSME caused by the traditional static
PIM method was 6.1 mm, indicating that the method in this paper can effectively avoid
the secondary transmission of errors and improve the deformation prediction accuracy.
However, this method does not take into account the spatial correlation of the highly
coherent points in the mining basin and the spatial correlation of different points in the
InSAR-three-dimensional time series modeling.
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