Machine Learning-Based Classification of Rock Bursts in an Active Coal Mine Dominated by Non-Destructive Tremors
Abstract
:1. Introduction
1.1. Current Use of Machine Learning Algorithms for Rock Burst Prediction
1.2. Current State of Research for Hard Coal Mines
2. Materials and Methods
2.1. Characteristics of the Database
2.1.1. GEO Index
2.1.2. Seismic Energy and PPV
2.1.3. Mining Parameters
2.1.4. Technological Parameters
2.1.5. Feature Correlation
2.2. Machine Learning Algorithms
2.2.1. The Multilayer Perceptron Classifier
2.2.2. Adaptive and Gradient Boosting Classifiers
2.2.3. k-Nearest Neighbors Classifier
2.2.4. Gaussian Naïve Bayes Classifier
2.2.5. Ensemble Classifier
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubiński, J.; Konopko, W. Rock Bursts. Assessment, Forecasting, Combating; Central Mining Institute: Katowice, Poland, 2000. (In Polish) [Google Scholar]
- Barański, A.; Drzewiecki, J.; Dubiński, J.; Kabiesz, J.; Konopko, W.; Kornowski, J.; Kurzeja, J.; Lurka, A.; Makówka, J.; Mutke, G.; et al. Principles of Using the Complex Method and Detailed Methods for Assessing the State of Rock Burst Hazard in Hard Coal Mines; Central Mining Institute: Katowice, Poland, 2012. (In Polish) [Google Scholar]
- Biliński, A. Rock burst in the light of mechanics of destressed rock mass. AGH Sci. J. 1985, 2, 275–291. (In Polish) [Google Scholar]
- Drzęźla, B.; Białek, J.; Jaworski, A. Prediction method of stress distribution in areas of completed mining. Publ. Inst. Geophys. Pol. Acad. Sci. 1998, 10, 49–57. [Google Scholar]
- Bańka, P. Determination of potential level of rock burst hazard based on the result of analytical predictions of stress distributions and the level of induced seismicity. Acta Geodyn. Geomater. 2004, 1, 19–26. [Google Scholar]
- Kabiesz, J.; Makówka, J. Selected elements of rock burst state assessment in case studies from the Silesian hard coal mines. Min. Sci. Technol. 2009, 19, 660–667. [Google Scholar] [CrossRef]
- Małkowski, P.; Ostrowski, Ł. Convergence monitoring as a basis for numerical analysis of changes of rock-mass quality and Hoek-Brown failure criterion parameters due to longwall excavation. Arch. Min. Sci. 2019, 64, 93–118. [Google Scholar] [CrossRef]
- Masny, W. Powered support in dynamic load conditions—Numerical analysis. Arch. Min. Sci. 2020, 65, 453–468. [Google Scholar] [CrossRef]
- Patyńska, R.; Stec, K. Regional rock burst indicator for structural units of Upper Silesian Coal Basin. Stud. Geotechn. Mech. 2017, 39, 27–37. [Google Scholar] [CrossRef]
- Rudziński, Ł.; Mirek, K.; Mirek, J. Rapid ground deformation corresponding to a mining-induced seismic event followed by a massive collapse. Nat. Haz. 2019, 96, 461–471. [Google Scholar] [CrossRef]
- Chlebowski, D.; Burtan, Z. Geophysical and analytical determination of overstressed zones in exploited coal seam: A case study. Acta Geophys. 2021, 69, 701–710. [Google Scholar] [CrossRef]
- Krawiec, K. Dynamic elastic properties of the hard coal seam at a depth of around 1260 m. Min. Res. Manag. 2021, 37, 159–176. [Google Scholar] [CrossRef]
- Kabiesz, J. Effect of the form of data on the quality of mine tremors hazard forecasting using neural networks. Geotech. Geol. Eng. 2006, 24, 1131–1147. [Google Scholar] [CrossRef]
- Cichy, T.; Prusek, S.; Świątek, J.; Apel, D.B.; Pu, Y. Use of Neural Networks to Forecast Seismic Hazard Expressed by Number of Tremors Per Unit of Surface. Pure Appl. Geophys. 2020, 177, 5713–5722. [Google Scholar] [CrossRef]
- Wiszniowski, J.; Plesiewicz, B.; Lizurek, G. Machine learning applied to anthropogenic seismic events detection in Lai Chau reservoir area, Vietnam. Comput. Geosci. 2021, 146, 104628. [Google Scholar] [CrossRef]
- Nguyen, L.Q.; Le, T.T.T.; Nguyen, T.G.; Tran, D.T. Prediction of underground mining-induced subsidence: Artificial neural network based approach. Min. Miner. Dep. 2023, 17, 45–52. [Google Scholar] [CrossRef]
- Bo, H.; Lu, G.; Li, H.; Guo, G.; Li, Y. Development of a Dynamic Prediction Model for Underground Coal-Mining-Induced Ground Subsidence Based on the Hook Function. Remote Sens. 2024, 16, 377. [Google Scholar] [CrossRef]
- Pu, Y.; Apel, D.B.; Szmigiel, A.; Chen, J. Image Recognition of Coal and Coal Gangue Using a Convolutional Neural Network and Transfer Learning. Energies 2019, 12, 1735. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Huang, J.; Liu, S.; Xu, S.; Zhou, K. Prediction of geology condition for slurry pressure balanced shield tunnel with super-large diameter by machine learning algorithms. Tunn. Undergr. Space Technol. 2023, 131, 104852. [Google Scholar] [CrossRef]
- Bai, M.; Wang, L.; Xu, Z. Study on a neutral network model and its application in predicting the risk of rock burst. China Saf. Sci. J. 2002, 12, 65–69. [Google Scholar]
- Chen, H.J.; Li, N.H.; Ni, D.X.; Shang, Y.Q. Prediction of rockburst by artificial neural network. Chin. J. Rock. Mech. Eng. 2003, 22, 762–768. [Google Scholar]
- Ge, Q.F.; Feng, X.T. Classification and prediction of rockburst using AdaBoost combination learning method. Rock Soil Mech. 2008, 29, 943–948. [Google Scholar]
- Su, G.S.; Zhang, X.F.; Yan, L.B. Rockburst prediction method based on case reasoning pattern recognition. J. Min. Saf. Eng. 2008, 25, 63–67. [Google Scholar]
- Su, G.S.; Zhang, K.S.; Chen, Z. Rock burst prediction using Gaussian process machine learning. In Proceedings of the International Conference on Computational Intelligence and Software Engineering, Wuhan, China, 11–13 December 2009. [Google Scholar]
- Gong, F.; Li, X.; Zhang, W. Rockburst prediction of underground engineering based on Bayes discriminant analysis method. Rock Soil Mech. 2010, 31, 370–378. [Google Scholar]
- Zhou, J.; Li, X.; Shi, X. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Saf. Sci. 2012, 50, 629–644. [Google Scholar] [CrossRef]
- Jia, Y.; Lu, Q.; Shang, Y. Rockburst prediction using particle swarm optimization algorithm and general regression neural network. Chin. J. Rock Mech. Eng. 2013, 32, 343–348. [Google Scholar]
- Adoko, A.C.; Gokceoglu, C.; Wu, L.; Zuo, Q.J. Knowledge-based and data-driven fuzzy modeling for rockburst prediction. Int. J. Rock Mech. Min. Sci. 2013, 61, 86–95. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Mitri, H.S. Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods. J. Comput. Civ. Eng. 2016, 30, 04016003. [Google Scholar] [CrossRef]
- Li, N.; Jimenez, R.; Feng, X. The influence of Bayesian Networks structure on rock burst hazard prediction with incomplete data. Proc. Eng. 2017, 191, 206–214. [Google Scholar] [CrossRef]
- Shirani Faradonbeh, R.; Taheri, A. Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques. Eng. Comput. 2018, 35, 659–675. [Google Scholar] [CrossRef]
- Li, N.; Jimenez, R. A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat. Hazards 2018, 90, 197–215. [Google Scholar] [CrossRef]
- Pu, Y.; Apel, D.B.; Lingga, B. Rock burst prediction in kimberlite using decision tree with incomplete data. J. Sustain. Min. 2018, 17, 158–165. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhong, H.; Fang, Y.; Zhang, W.; Liu, K.; Fang, J. Rockburst prediction model based on entropy weight integrated with grey relational BP neural network. Adv. Civil Eng. 2019, 2019, 3453614. [Google Scholar] [CrossRef]
- Ghasemi, E.; Gholizadeh, H.; Adoko, A.C. Evaluation of rockburst occurrence and intensity in underground structures using decision tree approach. Eng. Comput. 2020, 36, 213–225. [Google Scholar] [CrossRef]
- Ke, B.; Khandelwal, M.; Asteris, P.G.; Skentou, A.D.; Mamou, A.; Armaghani, D.J. Rock-burst occurrence prediction based on optimized naïve bayes models. IEEE Access 2021, 9, 91347–91360. [Google Scholar] [CrossRef]
- Shukla, R.; Khandelwal, M.; Kankar, P.K. Prediction and Assessment of Rock Burst Using Various Meta-heuristic Approaches. Min. Metal. Explor. 2021, 38, 1375–1381. [Google Scholar] [CrossRef]
- Ullah, B.; Kamran, M.; Rui, Y. Predictive Modeling of Short-Term Rockburst for the Stability of Subsurface Structures Using Machine Learning Approaches: T-SNE, K-Means Clustering and XGBoost. Mathematics 2022, 10, 449. [Google Scholar] [CrossRef]
- Li, J.; Fu, H.; Hu, K.; Chen, W. Data Preprocessing and Machine Learning Modeling for Rockburst Assessment. Sustainability 2023, 15, 13282. [Google Scholar] [CrossRef]
- Sun, J.; Wang, L.; Zhang, H.; Shen, Y. Application of fuzzy neural network in predicting the risk of rock burst. In Proceedings of the 6th International Conference on Mining Science & Technology, Xuzhou, China, 18–20 October 2009; pp. 536–543. [Google Scholar]
- Shi, Y.; Li, P.; Wang, Y.; Zhang, J. Classification and prediction of rock burst based on BP neural network. Electron. J. Geotech. Eng. 2015, 20, 5839–5848. [Google Scholar]
- Wojtecki, Ł.; Iwaszenko, S.; Apel, D.B.; Cichy, T. An attempt to use machine learning algorithms to estimate the rock burst hazard in underground excavations of an active hard coal mine. Energies 2021, 14, 6928. [Google Scholar] [CrossRef]
- Wojtecki, Ł.; Iwaszenko, S.; Apel, D.B.; Bukowska, M.; Makówka, J. Use of machine learning algorithms to assess the state of rock burst hazard in underground coal mine openings. J. Rock Mech. Geotech. Eng. 2022, 14, 703–713. [Google Scholar] [CrossRef]
- Miao, D.; Yao, K.; Wang, W.; Liu, L.; Sui, X. Risk prediction of coal mine rock burst based on machine learning and feature selection algorithm. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2024, 1–14. [Google Scholar] [CrossRef]
- Dubiński, J.; Konopko, W. Directions of increasing the effectiveness of rock burst prevention. Pol. Min. Rev. 1995, 4, 21–27. (In Polish) [Google Scholar]
- Bukowska, M. Rock Mass Proneness to Rock Burst—Geological and Geomechanical Research Methods; Central Mining Institute: Katowice, Poland, 2012. (In Polish) [Google Scholar]
- Szecówka, Z. Change in Some Mechanical Properties of Coal Due to Irrigation in the Aspect of Combating Coal Bumps; Statement No. 568, Central Mining Institute: Katowice, Poland, 1972. (In Polish) [Google Scholar]
- Konopko, W. Experimental Basis for Qualifying Mining Workings in Hard Coal Mines to the Degree of Rock Burst Hazard; Scientific Works of the Central Mining Institute No. 795: Katowice, Poland, 1994. (In Polish) [Google Scholar]
- Bukowska, M. The rock bursts in the Upper Silesian Coal Basin in Poland. J. Min. Sci. 2012, 48, 445–456. [Google Scholar] [CrossRef]
- Kidybiński, A.; Smołka, J. Influence of the strength and dynamics of rock breakdown on the rock mass tendency to burst. Sci. J. Silesian Univ. Technol. Ser. Min. 1988, 960, 341–350. (In Polish) [Google Scholar]
- Bukowska, M. Post-peak failure modulus in problems of mining geo-mechanics. J. Min. Sci. 2013, 49, 731–740. [Google Scholar] [CrossRef]
- Dubiński, J.; Mutke, G. Application of PPV method for the assessment of stability hazard of underground excavations subjected to rock mass tremors. AGH J. Min. Geoeng. 2012, 36, 125–132. [Google Scholar]
- Mutke, G.; Dubiński, J.; Lurka, A. New criteria to assess seismic and rock burst hazard in coal mines. Arch. Min. Sci. 2015, 60, 743–760. [Google Scholar] [CrossRef]
- Mutke, G.; Masny, W.; Prusek, S. Peak particle velocity as an indicator of the dynamic load exerted on the support of underground workings. Acta Geodyn. Geomater. 2016, 13, 367–378. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, UK, 2018. [Google Scholar]
- Project Jupyter. Available online: https://jupyter.org/ (accessed on 15 March 2023).
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter Notebooks—A publishing format for reproducible computational workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas; Loizides, F., Schmidt, B., Eds.; IOS Press: Amsterdam, The Netherlands, 2016; pp. 87–90. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Hebb, D. The Organization of Behavior; Wiley: New York, NY, USA, 1949. [Google Scholar]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef]
- Minsky, M.L.; Papert, S. Perceptrons: An Introduction to Computational Geometry; MIT Press: Cambridge, UK, 1969. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning internal representations by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition; Rumelhart, D.E., McClelland, J.L., PDP Research Group, Eds.; MIT Press: Cambridge, UK, 1986; Volume 1. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural Networks for Pattern Recognition; Clarendon Press: Oxford, UK, 1995. [Google Scholar]
- Fausett, L. Fundamentals of Neural Networks; Prentice Hall: New York, NY, USA, 1994. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Kearns, M.; Valiant, L. Cryptographic limitations on learning Boolean formulae and finite automata. In Proceedings of the Twenty-First Annual ACM symposium on Theory of Computing, Seattle, WA, USA, 14–17 May 1989; pp. 433–444. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the 13th Conference on Machine Learning, Bari, Italy, 3–6 July 1996; pp. 148–156. [Google Scholar]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J.L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties (Report); USAF School of Aviation Medicine: Randolph Field, TX, USA, 1951. [Google Scholar]
- Cover, T.M.; Hart, P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
Dataset | Training Dataset | Test Dataset | ||
---|---|---|---|---|
P | N | P | N | |
1 | 42 (462) | 459 | 11 | 115 |
2 | 38 (457) | 463 | 15 | 111 |
3 | 40 (465) | 461 | 13 | 113 |
4 | 43 (449) | 458 | 10 | 116 |
5 | 44 (465) | 457 | 9 | 117 |
6 | 44 (463) | 457 | 9 | 117 |
7 | 40 (462) | 461 | 13 | 113 |
8 | 43 (462) | 458 | 10 | 116 |
9 | 44 (468) | 457 | 9 | 117 |
10 | 39 (474) | 462 | 14 | 112 |
Dataset | TP | TN | FP | FN | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|---|---|---|---|
1 | 6 | 112 | 3 | 5 | 0.94 | 0.55 | 0.67 | 0.60 |
2 | 12 | 106 | 5 | 3 | 0.94 | 0.80 | 0.71 | 0.75 |
3 | 6 | 108 | 5 | 7 | 0.91 | 0.46 | 0.55 | 0.50 |
4 | 6 | 110 | 6 | 4 | 0.92 | 0.60 | 0.50 | 0.55 |
5 | 6 | 109 | 8 | 3 | 0.91 | 0.67 | 0.43 | 0.52 |
6 | 6 | 109 | 8 | 3 | 0.91 | 0.67 | 0.43 | 0.52 |
7 | 9 | 106 | 7 | 4 | 0.91 | 0.69 | 0.56 | 0.62 |
8 | 7 | 112 | 4 | 3 | 0.94 | 0.70 | 0.64 | 0.67 |
9 | 5 | 108 | 9 | 4 | 0.90 | 0.56 | 0.36 | 0.43 |
10 | 7 | 106 | 6 | 7 | 0.90 | 0.50 | 0.54 | 0.52 |
mean | 0.92 | 0.62 | 0.54 | 0.57 |
Dataset | TP | TN | FP | FN | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|---|---|---|---|
1 | 7 | 110 | 5 | 4 | 0.93 | 0.64 | 0.58 | 0.61 |
2 | 8 | 101 | 10 | 7 | 0.87 | 0.53 | 0.44 | 0.48 |
3 | 8 | 101 | 12 | 5 | 0.87 | 0.62 | 0.40 | 0.48 |
4 | 3 | 109 | 7 | 7 | 0.89 | 0.30 | 0.30 | 0.30 |
5 | 5 | 103 | 14 | 4 | 0.86 | 0.56 | 0.26 | 0.36 |
6 | 6 | 106 | 11 | 3 | 0.89 | 0.67 | 0.35 | 0.46 |
7 | 6 | 103 | 10 | 7 | 0.87 | 0.46 | 0.38 | 0.41 |
8 | 7 | 108 | 8 | 3 | 0.91 | 0.70 | 0.47 | 0.56 |
9 | 6 | 97 | 20 | 3 | 0.82 | 0.67 | 0.23 | 0.34 |
10 | 6 | 100 | 12 | 8 | 0.84 | 0.43 | 0.33 | 0.38 |
mean | 0.87 | 0.56 | 0.37 | 0.44 |
Dataset | TP | TN | FP | FN | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|---|---|---|---|
1 | 6 | 110 | 5 | 5 | 0.92 | 0.55 | 0.55 | 0.55 |
2 | 7 | 104 | 7 | 8 | 0.88 | 0.47 | 0.50 | 0.48 |
3 | 9 | 106 | 7 | 4 | 0.91 | 0.69 | 0.56 | 0.62 |
4 | 6 | 108 | 8 | 4 | 0.90 | 0.60 | 0.43 | 0.50 |
5 | 7 | 107 | 10 | 2 | 0.90 | 0.78 | 0.41 | 0.54 |
6 | 7 | 109 | 8 | 2 | 0.92 | 0.78 | 0.47 | 0.58 |
7 | 8 | 103 | 10 | 5 | 0.88 | 0.62 | 0.44 | 0.52 |
8 | 8 | 110 | 6 | 2 | 0.94 | 0.80 | 0.57 | 0.67 |
9 | 7 | 104 | 13 | 2 | 0.88 | 0.78 | 0.35 | 0.48 |
10 | 4 | 107 | 5 | 10 | 0.88 | 0.29 | 0.44 | 0.35 |
mean | 0.90 | 0.63 | 0.47 | 0.53 |
Dataset | TP | TN | FP | FN | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|---|---|---|---|
1 | 3 | 104 | 11 | 8 | 0.85 | 0.27 | 0.21 | 0.24 |
2 | 12 | 99 | 12 | 3 | 0.88 | 0.80 | 0.50 | 0.62 |
3 | 10 | 91 | 22 | 3 | 0.80 | 0.77 | 0.31 | 0.44 |
4 | 5 | 105 | 11 | 5 | 0.87 | 0.50 | 0.31 | 0.38 |
5 | 6 | 106 | 11 | 3 | 0.89 | 0.67 | 0.35 | 0.46 |
6 | 6 | 96 | 21 | 3 | 0.81 | 0.67 | 0.22 | 0.33 |
7 | 11 | 99 | 14 | 2 | 0.87 | 0.85 | 0.44 | 0.58 |
8 | 5 | 108 | 8 | 5 | 0.90 | 0.50 | 0.38 | 0.43 |
9 | 5 | 100 | 17 | 4 | 0.83 | 0.56 | 0.23 | 0.32 |
10 | 6 | 100 | 12 | 8 | 0.84 | 0.43 | 0.33 | 0.38 |
mean | 0.85 | 0.60 | 0.33 | 0.42 |
Dataset | TP | TN | FP | FN | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|---|---|---|---|
1 | 7 | 82 | 33 | 4 | 0.71 | 0.64 | 0.18 | 0.27 |
2 | 12 | 87 | 24 | 3 | 0.79 | 0.80 | 0.33 | 0.47 |
3 | 9 | 78 | 35 | 4 | 0.69 | 0.69 | 0.20 | 0.32 |
4 | 5 | 96 | 20 | 5 | 0.80 | 0.50 | 0.20 | 0.29 |
5 | 6 | 85 | 32 | 3 | 0.72 | 0.67 | 0.16 | 0.26 |
6 | 8 | 86 | 31 | 1 | 0.75 | 0.89 | 0.21 | 0.33 |
7 | 9 | 87 | 26 | 4 | 0.76 | 0.69 | 0.26 | 0.38 |
8 | 7 | 100 | 16 | 3 | 0.85 | 0.70 | 0.30 | 0.42 |
9 | 6 | 88 | 29 | 3 | 0.75 | 0.67 | 0.17 | 0.27 |
10 | 7 | 99 | 13 | 7 | 0.84 | 0.50 | 0.35 | 0.41 |
mean | 0.77 | 0.67 | 0.24 | 0.34 |
Dataset | TP | TN | FP | FN | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|---|---|---|---|
1 | 7 | 109 | 6 | 4 | 0.92 | 0.64 | 0.54 | 0.58 |
2 | 13 | 104 | 7 | 2 | 0.93 | 0.87 | 0.65 | 0.74 |
3 | 11 | 103 | 10 | 2 | 0.90 | 0.85 | 0.52 | 0.65 |
4 | 5 | 109 | 7 | 5 | 0.90 | 0.50 | 0.42 | 0.45 |
5 | 7 | 110 | 7 | 2 | 0.93 | 0.78 | 0.50 | 0.61 |
6 | 8 | 108 | 9 | 1 | 0.92 | 0.89 | 0.47 | 0.62 |
7 | 10 | 103 | 10 | 3 | 0.90 | 0.77 | 0.50 | 0.61 |
8 | 8 | 112 | 4 | 2 | 0.95 | 0.80 | 0.67 | 0.73 |
9 | 7 | 105 | 12 | 2 | 0.89 | 0.78 | 0.37 | 0.50 |
10 | 7 | 105 | 7 | 7 | 0.89 | 0.50 | 0.50 | 0.50 |
mean | 0.91 | 0.74 | 0.51 | 0.60 |
Dataset | MLP | AdaBoost | GB | KNN | GNB | Ensemble Classifier |
---|---|---|---|---|---|---|
1 | 0.76 | 0.80 | 0.75 | 0.59 | 0.67 | 0.79 |
2 | 0.88 | 0.72 | 0.70 | 0.85 | 0.79 | 0.90 |
3 | 0.71 | 0.75 | 0.81 | 0.79 | 0.69 | 0.88 |
4 | 0.77 | 0.62 | 0.77 | 0.70 | 0.66 | 0.72 |
5 | 0.80 | 0.72 | 0.85 | 0.79 | 0.70 | 0.86 |
6 | 0.80 | 0.79 | 0.86 | 0.74 | 0.81 | 0.91 |
7 | 0.82 | 0.69 | 0.76 | 0.86 | 0.73 | 0.84 |
8 | 0.83 | 0.82 | 0.87 | 0.72 | 0.78 | 0.88 |
9 | 0.74 | 0.75 | 0.83 | 0.71 | 0.71 | 0.84 |
10 | 0.72 | 0.66 | 0.62 | 0.66 | 0.69 | 0.72 |
mean | 0.78 | 0.73 | 0.78 | 0.74 | 0.72 | 0.83 |
Dataset | MLP | AdaBoost | GB | KNN | GNB | Ensemble Classifier |
---|---|---|---|---|---|---|
1 | 0.63 | 0.63 | 0.57 | 0.28 | 0.42 | 0.60 |
2 | 0.77 | 0.52 | 0.52 | 0.66 | 0.58 | 0.77 |
3 | 0.53 | 0.53 | 0.64 | 0.55 | 0.46 | 0.69 |
4 | 0.57 | 0.33 | 0.53 | 0.43 | 0.37 | 0.48 |
5 | 0.56 | 0.43 | 0.60 | 0.52 | 0.42 | 0.65 |
6 | 0.56 | 0.52 | 0.63 | 0.46 | 0.55 | 0.68 |
7 | 0.64 | 0.45 | 0.55 | 0.65 | 0.49 | 0.65 |
8 | 0.68 | 0.60 | 0.69 | 0.46 | 0.51 | 0.74 |
9 | 0.47 | 0.46 | 0.57 | 0.41 | 0.43 | 0.58 |
10 | 0.55 | 0.41 | 0.40 | 0.41 | 0.45 | 0.53 |
mean | 0.60 | 0.49 | 0.57 | 0.48 | 0.47 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtecki, Ł.; Bukowska, M.; Iwaszenko, S.; Apel, D.B. Machine Learning-Based Classification of Rock Bursts in an Active Coal Mine Dominated by Non-Destructive Tremors. Appl. Sci. 2024, 14, 5209. https://doi.org/10.3390/app14125209
Wojtecki Ł, Bukowska M, Iwaszenko S, Apel DB. Machine Learning-Based Classification of Rock Bursts in an Active Coal Mine Dominated by Non-Destructive Tremors. Applied Sciences. 2024; 14(12):5209. https://doi.org/10.3390/app14125209
Chicago/Turabian StyleWojtecki, Łukasz, Mirosława Bukowska, Sebastian Iwaszenko, and Derek B. Apel. 2024. "Machine Learning-Based Classification of Rock Bursts in an Active Coal Mine Dominated by Non-Destructive Tremors" Applied Sciences 14, no. 12: 5209. https://doi.org/10.3390/app14125209
APA StyleWojtecki, Ł., Bukowska, M., Iwaszenko, S., & Apel, D. B. (2024). Machine Learning-Based Classification of Rock Bursts in an Active Coal Mine Dominated by Non-Destructive Tremors. Applied Sciences, 14(12), 5209. https://doi.org/10.3390/app14125209