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Abstract: The zero-shot image classification technique aims to explore the semantic information
shared between seen and unseen classes through visual features and auxiliary information and, based
on this semantic information, to complete the knowledge migration from seen to unseen classes in
order to complete the classification of unseen class images. Previous zero-shot work has either not
extracted enough features to express the relationship between the sample classes or has only used a
single feature mapping method, which cannot fully explore the information contained in the features
and the connection between the visual–semantic features. To address the above problems, this paper
proposes an embedded zero-shot image classification model based on bidirectional feature mapping
(BFM). It mainly contains a feature space mapping module, which is dominated by a bidirectional
feature mapping network and supplemented with a mapping network from visual to category label
semantic feature space. Attention mechanisms based on attribute guidance and visual guidance
are further introduced to weight the features to reduce the difference between visual and semantic
features to alleviate the modal difference problem, and then the category calibration loss is utilized to
assign a larger weight to the unseen class to alleviate the seen class bias problem. The BFM model
proposed in this paper has been experimented on three public datasets CUB, SUN, and AWA2, and
has achieved 71.9%, 62.8%, and 69.3% and 61.6%, 33.2%, and 66.6% accuracies under traditional and
generalized zero-sample image classification settings, respectively. The experimental results verify
the superiority of the BFM model in the field of zero-shot image classification.

Keywords: zero-shot image classification; knowledge transfer; auxiliary information; attention
mechanism; bidirectional feature mapping

1. Introduction

Image classification [1] is a basic and critical task in image processing, aiming at
recognizing and classifying different images. However, this image classification technique
requires a large amount of labeled data for training in order to accomplish the image
classification task and can only classify trained categories. In order to classify untrained
categories, scholars, inspired by the human cognitive processing of fresh things, proposed
the idea of zero-shot learning. The learning logic of zero-shot learning is to mimic the logic
of human cognition regarding new things, so that the model can reason on the basis of the
knowledge learned on the seen class, so as to achieve the goal of classifying the samples
of the unseen class. The difference between zero-shot image classification and traditional
image classification is whether the training set contains the category samples from the test
set, as shown in Figure 1.

Appl. Sci. 2024, 14, 5230. https://doi.org/10.3390/app14125230 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14125230
https://doi.org/10.3390/app14125230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4407-1209
https://orcid.org/0009-0007-0821-8089
https://doi.org/10.3390/app14125230
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14125230?type=check_update&version=1


Appl. Sci. 2024, 14, 5230 2 of 19Appl. Sci. 2024, 14, x FOR PEER REVIEW 2 of 20 
 

 
Figure 1. Difference between traditional image classification and zero-shot image classification. 
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Through an example of human cognition regarding new things the learning logic of 
zero-shot image classification can be understood: a child who has never seen a panda, 
according to the “panda looks like a bear, the color is like a zebra is black and white” 
paragraph description, can successfully find the panda in a zoo. This example combines 
the description of the panda with known things to form the appearance of the panda, 
which is the transfer of knowledge from the seen class to the unseen class in zero-shot 
learning. Through the above description, it can be learned that the information about the 
description of the panda is a bridge between the seen class and the unseen class. Therefore, 
in order to enable the trained model to reason on the basis of the knowledge learned on 
the seen class for the purpose of classifying the samples of the unseen class, it is necessary 
to add the descriptive information for each class in the zero-shot image classification, 
which is called auxiliary information here to communicate the seen class and the unseen 
class, as shown in Figure 2. 

Zero-shot image classification accomplishes knowledge transfer from seen to unseen 
classes through partial semantic information shared between the seen and unseen classes. 
Auxiliary information is usually characterized by relevant common-sense information or 
prior knowledge and is used to enhance the model’s ability to learn shared partial seman-
tic information. In early zero-shot studies, manually defined attributes (e.g., “wing color”, 
“beak shape”, etc.) were often used as auxiliary information. With the development of 
technology, word embeddings [10] of category labels, text embeddings [11] of linguistic 
descriptions of images, knowledge graphs [12], etc., can be used as auxiliary information. 
All of these types of auxiliary information can characterize the semantic information of 
the categories and the similarity between different categories; so they can be used as aux-
iliary information to help the model realize the knowledge migration from the seen to the 
unseen classes to complete the zero-shot image classification task. In zero-shot image clas-
sification, the quality of auxiliary information is closely related to the effectiveness of 
knowledge migration and the final model classification result. 
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Since its development, the idea of zero-shot learning has attracted much attention and
has been introduced into various tasks, such as zero-shot image retrieval [2,3] and zero-shot
video classification [4] tasks in the field of computer vision, zero-shot sketch retrieval [5]
tasks in the cross-modal field, zero-shot semantic segmentation [6,7] and zero-shot text
classification [8] tasks in the field of natural language processing, and zero-shot visual
quizzing [9] tasks in the multimodal field. The research object of this paper is the zero-shot
image classification task, i.e., the zero-shot learning idea is applied to the task of image
classification.

Through an example of human cognition regarding new things the learning logic of
zero-shot image classification can be understood: a child who has never seen a panda,
according to the “panda looks like a bear, the color is like a zebra is black and white”
paragraph description, can successfully find the panda in a zoo. This example combines the
description of the panda with known things to form the appearance of the panda, which
is the transfer of knowledge from the seen class to the unseen class in zero-shot learning.
Through the above description, it can be learned that the information about the description
of the panda is a bridge between the seen class and the unseen class. Therefore, in order to
enable the trained model to reason on the basis of the knowledge learned on the seen class
for the purpose of classifying the samples of the unseen class, it is necessary to add the
descriptive information for each class in the zero-shot image classification, which is called
auxiliary information here to communicate the seen class and the unseen class, as shown in
Figure 2.

Zero-shot image classification accomplishes knowledge transfer from seen to unseen
classes through partial semantic information shared between the seen and unseen classes.
Auxiliary information is usually characterized by relevant common-sense information or
prior knowledge and is used to enhance the model’s ability to learn shared partial semantic
information. In early zero-shot studies, manually defined attributes (e.g., “wing color”,
“beak shape”, etc.) were often used as auxiliary information. With the development of
technology, word embeddings [10] of category labels, text embeddings [11] of linguistic
descriptions of images, knowledge graphs [12], etc., can be used as auxiliary information.
All of these types of auxiliary information can characterize the semantic information of the
categories and the similarity between different categories; so they can be used as auxiliary
information to help the model realize the knowledge migration from the seen to the unseen
classes to complete the zero-shot image classification task. In zero-shot image classification,
the quality of auxiliary information is closely related to the effectiveness of knowledge
migration and the final model classification result.
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Figure 2. A learning paradigm for zero-shot image classification.

After the zero-shot image classification technique was proposed, a wide variety of
methods have emerged. However, it has been found that most of the current methods
can be categorized into two paradigms, one is the embedding-based zero-shot image
classification method and the other is the generative-based zero-shot image classification
method. Embedding-based methods map image features and semantic information into
some space and subsequently classify them according to strategies such as nearest neighbor
search. In generalized zero-shot image classification, embedded models usually suffer
from the problem of bias towards seen classes. Moreover, previous embedded models
usually adopt a single feature mapping approach, such as visual–semantic mapping or
semantic–visual mapping, and this single mapping approach cannot fully explore the
information embedded in the features and the connection between two features. Although
generative-based zero-shot image classification methods can solve the seen class bias
problem, they require a large amount of computational resources for training.

Based on the above observations, we propose a feature space mapping module
dominated by a bidirectional feature mapping network (BFM), which consists of an
attribute-to-visual mapping network and a visual-to-attribute mapping network, which
captures a more comprehensive relationship between visual and semantic features to make
full use of the information contained in both visual and semantic features. A visual-to-
category labeled semantic feature space mapping network is used as a supplement to
enable the model to learn richer semantic information. Attention mechanisms based on
attribute guidance and visual guidance are then used to weight the features to reduce the
discrepancy between visual and semantic features to mitigate the modal difference problem,
and then the category calibration loss is used to assign a larger weight to unseen classes
and a smaller weight to seen classes to mitigate the seen class bias problem. In addition to
this, we introduced the self-attention mechanism to dynamically focus on the sample visual
features and enhance the representation of visual features. The experimental results verify
the superiority of BFM. Our contributions are as follows: (1) We propose a novel feature
space mapping module, which can fully utilize the feature representation information to
capture a more comprehensive relationship between visual and semantic features. (2) We
introduce a category calibration loss that enables the model to assign a larger weight to
the unseen class to alleviate the seen class bias problem that exists in embedded models.
(3) We introduce a self-attention mechanism to dynamically focus on the visual features
extracted using the pre-trained deep network to extract key visual features and enhance
the representation of visual features.
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2. Related Work
2.1. Embedded Zero-Shot Image Classification

Embedded zero-shot image classification methods require learning a feature space
mapping function on the seen class in order to achieve knowledge migration from the seen
class to the unseen class and to classify the unseen class. Embedding-based methods map
image features and semantic information into a certain space and subsequently perform
classification based on strategies such as nearest neighbor search. In general, embedded
zero-shot image classification methods can be categorized into three types: visual–semantic
mapping, semantic–visual mapping, and mapping in a common space. The DeViSE model
proposed by Frome et al. [13] uses a pre-trained skip-gram model and a CNN to extract the
semantic and visual features of an image as inputs and chooses hinge loss as the model’s loss
function to construct a deep zero-shot classification model. Yu et al. [14] used a generalized
dictionary model to map the visual features and labels of an image into the common
space and then used a self-training strategy to incorporate reliable test samples into the
model learning process to make the model performance improve. Li et al. [15] proposed
a novel ecological supervision-based approach to learn classifier weights by applying
knowledge graphs and graph convolution to a comparative learning framework, which
accurately exploits the hierarchical structure between target species and explores potential
relationships between categories. Kong et al. [16] use visual and semantic information to
assist the model in mining inter-class relationships and leveraging learned knowledge,
and then use graph convolution to optimize the classifier. Wang et al. [17] design a spatial
attention mechanism to extract key visual features and propose a semantic fusion approach
to enrich semantic knowledge. Sun et al. [18] mitigate the modal heterogeneity and domain
drift problems by decoupling visual semantic features to complement different modal
information.

Since embedding-based methods are trained using only seen class samples in the
training phase, it leads to the problem that the model will be biased towards seen class
samples in the generalized zero-shot image classification task. For this problem, existing
methods generally mitigate the problem by designing the loss function or changing the
feature mapping approach of the model. Previous embedded models only use a single
feature mapping approach to learn the mapping function, which results in the model
not being able to fully utilize the information of feature representations and only learn a
limited number of feature relationships [13]. Therefore, it is important to deeply explore
the intrinsic feature connections between visual and semantic features for the embedded
zero-shot image classification task.

2.2. Attention Mechanism

The attention mechanism in deep learning originates from the human visual attention
mechanism. The human visual attention mechanism is that when people see a picture or an
object, they will first quickly scan the whole thing, and then focus on some key areas to
help them make a recognition judgment. The core of the visual attention mechanism is
to focus on the most useful information for judgment from a large amount of information
and then assign it a greater weight for judgment. Similarly, the core of the attention
mechanism is to select the information that is more effective for the target task from a large
amount of input information and assign it a larger weight to realize the goal of focusing on
important information. Based on the properties of the attention mechanism, some scholars
have introduced the attention mechanism into the zero-shot image classification task; for
example, Xie et al.’s [19] proposed attention mechanism focuses on the image local region
at the same time, but also through a kind of thresholding computer system to remove the
redundant attention local region. This method assists the zero-shot knowledge migration
task by mining the implicit information in the local regions. Huynh et al. [20] find the
image local region focused on each attribute through the attention mechanism to mine the
association between the attribute and the visual features of the image. Naeem et al. [21]
propose a cross-modal attention mechanism, through which semantic embeddings with
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visual discriminative properties can be obtained from large-scale documents, which helps
to mine the linkage between the visual features and the semantic features. Wang et al. [17]
design a spatial attention mechanism to extract key visual features and propose a semantic
fusion method to enrich semantic knowledge.

3. Model and Proposed Method
3.1. Motivation

Previous work has simply (1) used a pre-trained deep network to extract visual
features of an image, ignoring the fitness of that visual feature to a zero-shot classification
task [13], (2) employed only the singularity of manually labeled attribute information
as auxiliary information, ignoring the semantic information embedded in the category
labels [22], or (3) leveraged a single mapping approach that cannot adequately mine the
information embedded in the features and the link between the visual features and the
semantic links between visual features and semantic features. Based on these observations,
we hypothesize that the performance of the embedded zero-shot image classification model
is closely related to the expressiveness of visual and semantic features and the potential
semantic links between the two features, which provides a solid foundation for effective
knowledge transfer.

To enhance the representation of visual features, we introduce the self-attention
mechanism to attentively weight the visual features extracted with the pre-trained deep
network. The adaptability of the self-attention mechanism lies in its ability to process and
analyze each element in the input data (e.g., each pixel in an image or each region in a
feature map) and compute the interrelationships among them. This allows the model to
capture information on a global scale, not limited to local features. In order to improve
the singularity of auxiliary information, we add category labeled word vector information
together with manually labeled attribute information as auxiliary information to complete
the knowledge migration work. In order to fully explore the information embedded in the
features and the connection between visual features and semantic features, we propose a
feature space mapping network based on a bidirectional feature mapping approach. The
strategy of this network is to fully explore the information embedded in the features from
the bidirectional mapping process of visual–semantic and semantic–visual features and to
extract the intrinsic connection between the features through attribute-guided and visually
guided attention.

3.2. Embedded Zero-Shot Image Classification Based on Bidirectional Feature Mapping

As shown in Figure 3, our proposed embedded zero-shot image classification model
based on bidirectional feature mapping includes a feature extraction module and a feature
mapping module. The feature extraction module includes visual feature extraction and
word vector feature extraction. Visual features are extracted using a pre-trained ResNet101
network; word vectors are extracted using a pre-trained skip-gram language model. The
feature mapping module is dominated by a bidirectional feature mapping network with a
visual–semantic mapping network as a spoke. The bidirectional feature network learns the
intrinsic knowledge of visual attributes, and the visual–semantic mapping network aims
to learn richer semantic knowledge. The category calibration loss balances the weights of
seen and unseen classes. The overall block diagram of the model is shown in Figure 4.
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s)
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i ∈ Xs, yi
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∈ Ys
}

where xs
i ∈ Xs denotes the

seen class samples i, and yi
s
∈ Ys denotes their corresponding category labels. The test

set Du =
{
(xu

i , yi
u)
∣∣∣xu

i ∈ Xu, yi
u
∈ Yu
}

where xu
i ∈ Xu denotes the unseen class samples i,

and yi
u
∈ Yu denotes their corresponding category labels. zc = [zc

1, · · · , zc
A]

T denotes the
category attributes vector that characterizes the relationship between category labels and
attributes. Word vector representation for each attribute A = {a1, · · · , aK} and each category
label L = {l1, · · · lN} are learned using the skip-gram model.
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3.2.1. Feature Extraction Module

Extracting expressive visual features is important in embedded zero-shot image
classification. As the first module of our BFM model, we propose a predominantly
attentional mechanism, being designed to be able to compute and highlight the relative
importance of each image region, which in turn directs the network to focus more on those
features that are particularly important for distinguishing between different categories.
Based on these needs, the self-attention mechanism [23] is chosen in this section to be
introduced into the model of this paper. The self-attention mechanism is adapted in that it
is able to process and analyze each element in the input data (e.g., each pixel in the image
or each region in the feature map) and compute the interrelationships between them. This
allows the model to capture information on a global scale, not limited to local features. The
dot product form of the self-attention mechanism is shown in Equation (1).

attention(Q, K, V) = so f tmax(Q ∗KT) ∗V (1)

Assuming that the input is X = [x1, · · · , xN] ∈ RDx×N, the query matrix Q =
[q1, · · · , qN] ∈ RDk×N, the key matrix K = [k1, · · · , kN] ∈ RDk×N, and the value matrix
V = [v1, · · · , vN] ∈ RDv×N, and they are obtained after three linear mappings:

Q = WqX ∈ RDk×N

K = WkX ∈ RDk×N

V = WvX ∈ RDv×N
(2)

where Wq, Wk, and Wv are the learnable parameter matrices, respectively.
In this paper, the self-attention module is placed after the visual features have been

extracted using the deep neural network and before the input of the feature space mapping
module because, at this stage, it helps the model to better identify and focus on the features
that are critical to the classification task, which provides the model with a more flexible and
efficient way to understand and characterize the input data.

3.2.2. Feature Mapping Module

We propose a feature mapping module that is dominated by a bidirectional feature
mapping network and supplemented with a visual–semantic mapping network. This
module can fully utilize the feature intrinsic information and can learn more semantic
information and the intrinsic connection between visual and semantic features. In the
following section, each important module in the bidirectional feature mapping network
will be described in detail separately, mainly including the spatial mapping module, the
attention module, and the model optimization module.

The purpose of the attention module is mainly to weight the mapped and aligned
features so that the model focuses on the information that is more useful for the target
task and improves the performance and efficiency of the model. The visual-guided
and attribute-guided attention mechanisms are used on the visual attribute features and
attribute visual features after mapping alignment, respectively, to further enhance the visual
details and attribute semantic information to the aligned features while compensating
for possible missing information and to highlight the attribute semantics-related visual
regions and attribute-specific semantic information in the image. Schematic diagrams of
the visual-guided and attribute-guided attention mechanisms are shown in Figures 5 and 6,
respectively.

The corresponding mathematical formulas for the visual-guided and attribute-guided
attention-based mechanisms are shown in Equations (3) and (4), respectively:

τa
r =

exp( f rW3va)∑R
r=1 exp( f rW3va)

(3)
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βr
a =

exp(vaW4 f r)∑A
a=1 exp(vaW4 f r)

(4)

where va denotes the ath attribute semantic feature vector, and f r denotes the visual feature
of the rth local region of the image; W3 is a learnable matrix for measuring the similarity
between the attribute semantic feature and each local visual feature of the sample; and W4
is a learnable matrix for calculating the similarity between the local visual feature and each
attribute semantic feature.
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In this way, two sets of attentional weights
{
τa

r
}A
a=1 and

{
βr

a
}R
r=1 can be obtained. Then,

based on these two sets of attentional weights, attentional features can be obtained, i.e., the
obtained attentional weights

{
τa

r
}A
a=1 and

{
βr

a
}R
r=1 are subjected to a weighting operation with

visual attribute features and attribute visual features, respectively, which are computed as
shown in Equations (5) and (6):

Vr =
∑A

a=1
τa

rs( f , v) (5)

Fa =
∑R

r=1
βr

as(v, f ) (6)

where Vr and Fa denote the final obtained visual attribute features and attribute visual
features.

The purpose of the spatial mapping module is mainly to learn the feature spatial
mapping function, so that the model can realize the knowledge migration from seen to
unseen classes more effectively. The main part of the module consists of two branches, i.e.,
a bidirectional feature mapping network, which includes mapping of attribute semantic
features to visual space and mapping of visual features to attribute semantic space. The
auxiliary part includes the mapping of visual features to the semantic space of category
labels, which is used to assist the learning of the main part so that the model learns more
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semantic knowledge. The structure of the feature space mapping module is shown in
Figure 7. In the feature space mapping module, V denotes the visual feature space, A
denotes the attribute semantic space, L denotes the category label semantic space, andZ
denotes the category semantic vector space. The circle, diamond, triangle, and rectangle
represent the visual features, attribute features, category label semantic features, and
category semantic vectors of the sample, respectively.
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The main computational process of the main part of the spatial mapping module is as
follows: first, the input features, i.e., sample visual features and attribute semantic features,
are prepared; second, the visual features and attribute semantic features are mapped to the
semantic space and the visual space, respectively, and the semantic features and the visual
features in the mapping space are aligned by learning a key matrix, with the formulas as
shown in Equations (7) and (8):

s( f , v) ≜ f W1v (7)

s(v, f ) ≜ vW2 f (8)

where Equation (7) represents the mapping of semantic features to visual space, v represents
attribute semantic features, f represents sample visual features, and W1 is a learnable
mapping matrix to compute the correlation between visual features and attribute semantic
features. Similarly, Equation (8) represents the mapping of visual features to attribute
semantic space, and W2 is a learnable mapping matrix to compute the correlation between
attribute semantic features and visual features.

The main computational process of the auxiliary part of the spatial mapping module
is as follows: mapping the visual features into the category label semantic space and then
aligning the visual features and the category label semantic features in the mapping space
by learning a feature mapping matrix as shown in Equation (9):

s( f ,𝓁) ≜ f W5𝓁 (9)

where 𝓁 denotes the category labeling semantic features.
After completing the feature mapping step described above, the two alignment

features obtained from the main part of the mapping module are subjected to the visual-
guided and attribute-guided attention-based mechanisms, respectively, to obtain the more
discriminative alignment features Vr and Fa, whose computational formulas are shown in
Equations (5) and (6), respectively.
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Then, the features aligned in the mapping space are subjected to a similarity measure
(KNN algorithm) with the category semantic vector zc to complete the classification
operation, which is computed as shown in Equations (10)–(12):

B1 = Vr × zc (10)

B2 = Fa × zc (11)

B3 = s( f ,𝓁) × zc (12)

where the category semantic vector zc represents the relationship matrix of categories and
semantic features.

The classification result B3 of the obtained auxiliary part is weighted and fused to the
two branches of the main body at the decision level, respectively, so that the model learns
more semantic information. The calculation process is shown in Equations (13) and (14):

B′1 = B1 + λ3B3 (13)

B′2 = B2 + λ3B3 (14)

where λ3 controls the weight of the category label semantic information fusion.
Subsequently, according to the different data environments, the two classification

results B′1 and B′2 are assigned corresponding weights to obtain the final classification
results, as shown in Equation (15).

B = λ1B′1 + λ2B′2 (15)

where λ1 and λ2 are the weights of the visual-to-semantic and semantic-to-visual branches,
respectively, and λ1 = 1− λ2.

In the network structure of the feature space mapping module shown in Figure 3, B′1
and B′2, which incorporate the category label information, are constrained by using the
cross-entropy loss on them with the aim of minimizing the error between the predicted and
true values. The cross-entropy loss function [4] LCE is shown in Equation (16):

LCE = −
1
n

n∑
i=1

log
exp((B′j)i

×Yc∑
ĉ∈Cs exp((B′j)i

×Yĉ
(16)

where Cs denotes the seen class, Yc denotes the label corresponding to the sample in the
form of a onehot vector, (B′j)i

denotes the value of the ith element in the B′1 or B′2 vector,
which denotes the category score of the ith image, j = 1, 2, and n denotes the number of
samples included in a training batch during the training process.

In embedded zero-shot image classification, the training set and the test set are not
intersected at all, so when the model is tested, the prediction results will be biased towards
the seen class, which leads to the model overfitting to the seen class, in order to alleviate the
problem of the model’s bias towards the seen class; in this section, the category calibration
loss LLC is introduced to reduce the model’s bias towards the seen class, and the formulas
are shown in Equation (17):

LLC = −
1
n

n∑
i=1

(
Cu∑

c′=1

log
exp((B′j)i

×Yc′ +ψ(c′ ∈ Cu))∑
c′′∈Cu exp((B′j)i

×Yc′′ +ψ(c′′ ∈ Cu))
) (17)

where Cu denotes the unseen class and n denotes the number of samples included in a
training batch during the training process. ψ(c) is an indicator function, ψ(c) = 1 when
c ∈ Cu, and ψ(c) = −1 otherwise. The indicator function is added to assign a large weight
to the unseen class and a small weight to the seen class as a way to suppress the model’s
bias towards the seen class.
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Ultimately, the overall loss function defining the feature space mapping module is
shown in Equation (18):

Lcll = LCE + λLCLLC (18)

where λLC is the weight of the control category calibration loss.

4. Results and Analysis
4.1. Datasets

The experiments conducted in this paper use three benchmark datasets, CUB (Caltech-
UCSD-Birds) [24], SUN (SUN Attribute) [25], and AWA2 (Animals with Attributes2) [26].
The CUB dataset is a sample of 11,788 images with a total of 200 categories of bird species
in a fine-grained dataset. The SUN dataset is a fine-grained dataset of scene species with
14,340 image samples and a total of 717 categories. The AWA2 dataset is a coarse-grained
dataset of animals with 37,322 image samples and a total of 50 categories. In addition, in
order to be fair when the proposed method is compared with other methods, this paper
uses the standard dataset division defined by Xian et al. [26], including the division ratio of
the training, validation, and test sets, as well as the division ratio of the seen and unseen
classes, and the statistics of the dataset information are shown in Table 1.

Table 1. Basic information statistics of the datasets.

Datasets Attributes Seen
Classes

Unseen
Classes

Training
Samples Test Samples

Caltech-UCSD-Birds (CUB) 312 150 50 7057 4731
SUN Attribute (SUN) 102 645 72 10,320 4020

Animals with Attributes2
(AWA2) 85 40 10 23,527 13,795

4.2. Evaluation Protocols

In the CZSL setting, the unseen class is evaluated using top-1 precision, denoted as acc.
Under the GZSL setting, the seen class (denoted as S) and the unseen class (denoted as U)
are evaluated separately using top-1 precision. In addition, the overall performance of the
GZSL model was measured using the harmonic mean, denoted as H (H = 2× S×U

S+U ).

4.3. Implementation Details

We use the ResNet-101 network pre-trained on ImageNet-1K as the visual feature
extraction network and do not perform any fine-tuning operations. We optimized the
model using RMSProp optimizer with hyperparameters set to momentum = 0.9 and weight
decay = 0.0001. Based on the experimental setting and experience, we set the batch size
and learning rate to 50 and 0.0001, respectively.

4.4. Comparision

We first compare our BFM model with some classical and state-of-the-art methods
under the CZSL setting. The experimental results on different datasets under the CZSL
setting are provided in Table 2. The BFM model proposed in this paper achieves optimal
and sub-optimal accuracies of 71.9% and 62.8% on the CUB and SUN datasets, respectively,
which indicates that the model extracts the intrinsic representational information that is
effective in discriminating fine-grained image samples. Meanwhile, although the model
does not achieve the optimal classification results on the AWA2 dataset, the top-1 accuracy
is only 69.3. This is because AWA2 is a coarse-grained dataset, which covers a wider
range of knowledge, and our model is not good enough to learn them all in the limited
information, so the model does not achieve the optimal results on the AWA2 dataset.
However, compared with the best results, the gap is also within 3%, which can show that
the model is competitive to the existing models.



Appl. Sci. 2024, 14, 5230 12 of 19

Table 2. Comparison of image classification models under traditional zero-shot learning setting. Note
that in the table, bold fonts indicate the best performance in this metric, and underlined fonts indicate
the second best performance in this metric. "--" indicates that the method corresponds to the results
not given in the literature.

Methods Models
CUB SUN AWA2

acc (%) acc (%) acc (%)

Generative
Methods

f-CLSWGAN 57.3 60.8 68.2
f-VAEGAN-D2 61.0 64.7 71.1

Composer 69.4 62.6 71.5
cycle-

CLSWGAN 58.4 60.0 66.3

LisGAN 58.8 61.7 --

Embedding-
based Methods

TCN 59.5 61.5 71.2
DAZLE 66.0 59.4 67.9
LFGAA 67.6 61.5 68.1
SGMA 71.0 -- 68.8
DSAN 57.4 62.4 72.3

BFM (ours) 71.9 62.8 69.3

The experimental results on different datasets under the GZSL setting are provided in
Table 3. The BFM model proposed in this paper has the best classification results on the
CUB dataset, with a reconciled mean of 61.6%. The results on the AWA2 dataset are also
closer to those of the SOTA method, reaching 66.6%. However, BFM is less effective on the
SUN dataset because the SUN dataset has many categories and fewer samples per category,
and because it is a scenario class dataset, it is more difficult for the embedded-based model
to extract the effective information. The results in the table also show that generative based
models are more advantageous on the SUN dataset. In addition, for the evaluation index,
i.e., the classification accuracy of seen class samples, it can be seen that many models have
achieved very good results on this index, but many models are less effective on the index,
i.e., the model’s classification accuracy of unseen class samples is worse, which indicates
that some models do not compensate much for the seen class favoritism problem, resulting
in the model’s overfitting to the seen class. While the BFM model proposed in this paper
is not as effective as other models in some indicators, the BFM model is more effective in
addressing the problem of seen class favoritism, which effectively alleviates the seen class
favoritism problem.

Table 3. Comparison of image classification models in a generalized zero-shot learning setting. Note
that in the table, bold fonts indicate the best performance in this metric, and underlined fonts indicate
the second best performance in this metric. "--" indicates that the method corresponds to the results
not given in the literature.

Methods Models
CUB SUN AWA2

S (%) U (%) H (%) S (%) U (%) H (%) S (%) U (%) H (%)

Generative
Methods

f-CLSWGAN 57.7 43.7 49.7 36.6 42.6 39.4 61.4 57.9 59.6
f-VAEGAN-D2 60.1 48.4 53.6 38.0 45.1 41.3 70.6 57.6 63.5

Composer 63.8 56.4 59.9 22.0 55.1 31.4 77.3 62.1 68.8
cycle-CLSWGAN 61.0 45.7 52.3 33.6 49.4 40.0 64.0 56.9 60.2

LisGAN 57.9 46.5 51.6 37.8 42.9 40.2 -- -- --

Embedding-
based

Methods

TCN 52.0 52.6 52.3 37.3 31.2 34.0 65.8 61.2 63.4
DAZLE 59.6 56.7 58.1 24.3 52.3 33.2 75.7 60.3 67.1
LFGAA 80.9 36.2 50.0 40.0 18.5 25.3 93.4 27.0 41.9
SGMA 71.3 36.7 48.5 -- -- -- 87.1 37.6 52.5
DSAN 56.6 46.9 51.3 41.1 33.2 36.7 78.8 58.6 67.2

BFM (ours) 61.3 61.9 61.6 25.3 48.4 33.2 72.8 61.3 66.6
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Compared with the two generative models that perform better, our model has lower
complexity. The number of training parameters of the BFM model proposed in this paper
is about 4.56× 106. The number of training parameters of model f-VAEGAN-D2 is about
1.48× 107, and the number of training parameters of model com is about 5.81× 106. The
number of training parameters of the BFM model is 69.2% and 21.5% lower than that of the
other models, respectively. Under the same training environment, the training time of our
BFM model is about half that of model com.

4.5. Abaltion Studies

To further understand our BFM model, we performed ablation experiments on it to
evaluate the effectiveness of the model’s modules.

4.5.1. Visual Feature Extraction Network

Figure 8 shows the experimental comparison of several classical models among the
three commonly used deep feature extraction networks, through which the results reveal
that the ResNet-101 [27] network is the most suitable as a visual feature extraction network
for the zero-shot image classification task. This is because the VGG [28] model is deeper
and uses more parameters for the fully connected layer, which is computationally intensive;
it is prone to the problem of gradient vanishing, which leads to difficulties in training,
whereas ResNet101 employs a global average pooling layer at the end, which converts the
feature maps into fixed-length vectors, which helps to extract more representative features
and reduces the number of model parameters. Although GoogleNet [29] uses the Inception
module, and it effectively reduces the number of parameters, it may face problems such as
gradient vanishing while training deep networks.
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In contrast, ResNet101 uses a residual connection structure that overcomes the problem
of vanishing gradients and makes the network easier to train. This design helps to propagate
the gradient better, which improves the model performance and convergence speed. And,
compared to ResNet50, the ResNet101 network has a deeper network structure with a
residual connectivity module, which can better capture the high-level semantic information
of the image in the zero-shot learning task, which helps to improve the classification
performance. And the effective addition of the residual connection module helps to
solve the problems of gradient vanishing and gradient explosion and facilitates the flow of
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information. This design makes the model easier to train and also improves the performance
of the model.

4.5.2. Semantic Feature Extraction Network

Figure 9 shows the experimental comparison of the two semantic feature extraction
models; through the comparison results in the figure, it is found that the skip-gram [30]
language model is the most suitable for the semantic feature extraction work in the zero-shot
image classification task. This is because, in the zero-shot image classification task, most
of the words or phrases are short words or phrases, and there is no long text, and the
skip-gram language model performs well in dealing with short text and sparse data; and
the Bert [31] model is larger, and the dimensionality of the semantic features obtained is
also relatively high, which may reduce the training efficiency of the model. As a result,
in this paper, the skip-gram language model is chosen as the semantic feature extraction
network for the zero-shot image classification task.
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4.5.3. Model Component Ablation Experiments

In this section, model component ablation experiments are conducted as a way
to analyze the effectiveness of different modules in the BFM model for traditional and
generalized zero-shot image classification. The experiments explore the effect of removing
the attribute-to-visual branch A-V, visual-to-attribute branch V-A, category tag word vector
W2vL, visual self-attention feature Vatt, and category calibration loss LLC on the BFM
model on the CUB dataset. Note that here the attribute-to-visual branch A-V represents
the complete branch plus the visually guided attention-based mechanism; similarly, the
visual-to-attribute branch V-A represents the complete branch plus the attribute-guided
attention-based mechanism.

In this section, the components are added sequentially to the BFM, and the changes in
the results after the addition reflect the validity of the components in the model. Table 4
shows the results of the BFM model component ablation experiments. “✘” means that this
module is not present in the model. “✔” means that this module is present in the model.

Among them, the first row is the baseline model; based on the baseline model, the A-V
branch with the attention mechanism, the V-A branch, the category-labeled word vector
W2vL, the self-attention mechanism of visual features Vatt, and the LLC loss function are
added step by step, and, finally, the experimental results of the method model proposed
in this paper obtains a substantial improvement compared with the baseline model. For
example, in the conventional zero-shot image classification task, the top-1 accuracy (acczsl)
of the unseen class is improved by 45.4% compared to the baseline model; in the generalized
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zero-shot image classification task, the top-1 accuracy (S) of the seen class is improved by
23.7%, that of the unseen class is improved by 59.6%, and that of the harmonic mean (H) is
improved by 57.2%. The third row of the table gains a 32.4%/43% improvement in acc/H on
the basis of the second row, which is due to the fact that, at this point, the model possesses
the property of mining feature information in both directions, which enriches the feature
representations and promotes the knowledge migration from the seen to the unseen class.
Finally, the problem of bias towards seen classes during testing is mitigated by adding a
class calibration loss function, which is effective as can be seen from the results in the table,
where the difference between the seen class top-1 accuracy (S) and the unseen class top-1
accuracy (U) is only 0.6%.

Table 4. Results of BFM model component ablation experiments.

A-V V-A W2vL Vatt LLC
ZSL GZSL

acc (%) S (%) U (%) H (%)

✘ ✘ ✘ ✘ ✘ 26.4 37.6 2.3 4.4
✔ ✘ ✘ ✘ ✘ 35.7 32.8 4.3 7.7
✔ ✔ ✘ ✘ ✘ 68.1 49.6 51.8 50.7
✔ ✔ ✔ ✘ ✘ 69.6 69.6 18.7 29.5
✔ ✔ ✔ ✔ ✘ 71.8 70.2 18.3 29.1
✔ ✔ ✔ ✔ ✔ 71.9 61.3 61.9 61.6

4.6. Hyperparametric Analysis
4.6.1. Category Calibration Loss Weight Analysis

The weight settings of the category-calibrated loss function are analyzed here, and the
model performance with different weight coefficients is shown in Figure 10. Based on the
results in Figure 10, we set λLC for the CUB/AWA2 dataset to 0.1. This is because the seen
and unseen classes in the CUB and AWA2 datasets are animals, and there is more semantic
knowledge shared between the classes, i.e., the seen classes are more similar to the unseen
classes, which leads to a more serious bias of the model towards the seen classes, so the loss
weights need to be set larger. While the SUN dataset is a scene class dataset, the image
subject is more complex, and since the number of its seen classes is much larger than the
number of unseen classes, the model usually overfits the unseen classes on this dataset.
Therefore, we set the λLC of SUN to 0.001.
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Figure 10. Analysis of weighting factors for category calibration losses. (a) CUB dataset. (b) AWA2
dataset.

4.6.2. Combined Coefficient Analysis

Parameters λ1 and λ2 are the weighting coefficients of the visual-to-attribute branch
V-A and the attribute-to-visual branch A-V, respectively. Because λ1 + λ2 = 1, only λ1 is
used to represent the horizontal axis in the figure, i.e., λ1 denotes the proportion of branch
V-A, and λ2 = 1 − λ1 denotes the proportion of branch A-V. From Figure 11, it can be
seen that the model is not sensitive to the changes in the weighting coefficients of the two
branches. This is because the BFM model adopts a bidirectional parallel feature mapping
method, so that the knowledge learned from the two branches is complementary, and the
model learns more comprehensive and rich knowledge. The BFM achieves the best results
when the parameter λ1 is set to 0.6 and 0.3 on CUB and SUN, respectively.
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4.7. Attention Map Visualization Analysis

To visualize the effectiveness of our BFM in extracting the intrinsic connection between
visual features and semantic features, we visualize the attention graphs learned using the
bidirectional mapping networks, e.g., BFM (A-V) and BFM (V-A). As shown in Figure 12, the
A-V and V-A networks effectively learn visually guided and attribute-guided discriminative
attribute-based features and visual features, respectively. In addition, the two networks
learn the most important features separately and learn complementary feature knowledge
from each other, which is conducive to the model obtaining richer semantic knowledge
from the mutual learning of the two networks and better realizing the knowledge transfer
from the seen class to the unseen class. For example, in the sample alley, A can learn the
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feature “leaves” but not the feature “no horizon”; V can learn the feature “no horizon” but
not the feature “leaves”. Therefore, our complete BFM can learn richer semantic knowledge,
and the model achieves good performance in both seen and unseen classes.
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5. Conclusions

In this paper, we propose an embedded zero-shot image classification model based
on bidirectional feature mapping. The main part of the model is the feature mapping
module, which is dominated by a bidirectional feature mapping network, which mainly



Appl. Sci. 2024, 14, 5230 18 of 19

learns the intrinsic information of visual and attribute features and the intrinsic connection
between them. It is supplemented with a visual–semantic mapping network to provide
richer semantic knowledge for the model. To enhance the expressiveness of visual features,
we introduce a self-attention mechanism to dynamically focus on the features and extract
key visual features. To alleviate the seen class bias problem, we introduce the category
calibration loss to balance the weights of seen and unseen classes. As a result, the model is
able to capture richer and accurate intrinsic semantic representations for effective knowledge
transfer. Experiments on three commonly used datasets demonstrate the superiority of
BFM, and we hope that our work will contribute to the field of zero-shot image classification.
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