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Abstract: The virtual try-on technology based on 2D images aims to seamlessly transfer provided
garments onto target person images. Prior methods mainly concentrated on warping garments and
generating images, overlooking the influence of feature alignment on the try-on results. In this study,
we initially analyze the distortions present by existing methods and elucidate the critical role of
feature alignment in the extraction stage. Building on this, we propose a novel feature alignment-
based model (FA-VTON). Specifically, FA-VTON aligns the upsampled higher-level features from
both person and garment images to acquire precise boundary information, which serves as guidance
for subsequent garment warping. Concurrently, the Efficient Channel Attention mechanism (ECA)
is introduced to generate the final result in the try-on generation module. This mechanism enables
adaptive adjustment of channel feature weights to extract important features and reduce artifact
generation. Furthermore, to make the student network focus on salient regions of each channel, we
utilize channel-wise distillation (CWD) to minimize the Kullback–Leibler (KL) divergence between
the channel probability maps of the two networks. The experiments show that our model achieves
better results in both qualitative and quantitative analyses compared to current methods on the
popular virtual try-on datasets.

Keywords: deep learning; virtual try-on; image generation; knowledge distillation

1. Introduction

With the surge in online shopping, virtual try-on technology has emerged as a highly
esteemed innovative solution, aiming to enhance users’ try-on experience in response to
the inherent challenge of not being able to physically try on garments while shopping
online. Currently, research on virtual try-ons can be broadly categorized into two main
types: based on 3D models [1–3] and based on 2D images [4–11].

Virtual try-on technology based on 3D methods requires 3D parametric human body
models [12]. Acquiring data for 3D models presents challenges due to its difficulty and
cost, which in turn restricts its accessibility and complicates its promotion and application.
Conversely, image-based models offer a more straightforward and cost-effective means of
obtaining image data, thereby expanding their potential applications. Consequently, they
have garnered growing interest from researchers.

While 2D virtual try-on technology offers reduced complexity compared to its 3D
counterpart and can yield satisfactory results, it still faces limitations. Many existing
methods overlook the crucial aspect of feature alignment during the extraction process.
Low-quality multi-scale features often lead to undesirable warping effects. For example,
blurred edges in person features may cause garments to warp disproportionately, resulting
in unclear try-on images or generating artifacts that adversely affect the try-on experience.
As shown in Figure 1, we choose the current SOTA parser-free model FS-VTON [7] for
comparison. In the second column of each sub-figure, we can see that the feature maps
extracted by the FS-VTON model are very blurry, especially at the boundaries of objects.
The third column shows the features extracted by our model, which are significantly higher
in quality than those of FS-VTON, especially in terms of garment patterns and boundaries.
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In virtual try-on tasks, we not only want warped garments to retain as much original
information as possible but also need to remove parts that did not appear in the final try-on
image. However, existing methods struggle to distinguish garment boundaries, remove
necessary details, like complex texture structures, or retain unnecessary parts, such as the
back fabric of garments.
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Figure 1. Comparison of feature maps generated by our method with FS-VTON. We visualize
the feature maps by compressing the color channels. (a) Comparison of garment feature maps;
(b) comparison of person feature maps.

Furthermore, existing models fail to consider the weighted processing of channel
information during try-on image generation. The generated results may not adequately
enhance retained garment features and fail to suppress incorrectly warped garment features,
resulting in artifacts. Finally, virtual try-on models typically combine various person or
garment parsing results as prior knowledge inputs. Most parser-free models simply
minimize point-wise differences, neglecting the impact of semantic information from
different channels in teacher models.

To handle the above issues, we propose a feature alignment-based model (FA-VTON)
without relying on people or garment parsing. Firstly, in the feature extraction stage, we
introduce a Feature Alignment Selection Module (FASM), which consists of two parts:
a Feature Alignment Module (FAM) and a Feature Selection Module (FSM). The FAM
effectively learns pixel transformation offsets to contextually align upsampled higher-level
features, allowing the model to learn more precise boundaries of both the person and
garment image. It helps guide accurate garment warping. The FSM selectively retains
important features and reduces irrelevant feature interference. Secondly, we utilize the
ECA mechanism in the try-on image generation stage. It learns effective channel attention
and avoids losses caused by dimensionality reduction. The try-on image generation
module effectively mitigates errors resulting from incorrect parsing or excessive garment
deformation, improving the quality of generated images. Lastly, we adopt a knowledge
distillation framework to train our parser-free virtual try-on model and utilize a channel-
wise knowledge distillation method to learn significant feature information from the teacher
network.
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In summary, our contributions are as follows. Firstly, we analyze the twisted try-on
results by existing methods and explain the importance of the feature alignment in the
extraction module in garment deformation and image generation. Secondly, we propose
a feature alignment-based model (FA-VTON) that learns accurate person and garment
boundaries from upsampled features without relying on human or cloth parsing. This
method enables more precise garment warping by aligning upsampled features. Then,
we adopt the ECA mechanism in the try-on image generation module to generate more
realistic try-on images and reduce the impact of incorrect deformations. Finally, based on
the training framework of the parser-free model, we introduce a channel-wise knowledge
distillation method to learn rich channel information from the teacher model, enhancing
the feature extraction capability of student models and thereby generating high-quality
try-on results.

2. Related Works
2.1. Image-Based Virtual Try-On

Image-based virtual try-on technology aims to seamlessly transfer selected garments
onto target person images to produce realistic and natural-looking results. CAGAN [13]
made the first attempt to address the limitations of training triplet data (original person
image, chosen garment, and image post-try-on) using a cycle consistency structure, but the
quality of the generated images fell short of expectations. VITON [5] broke down the virtual
try-on process into three key stages: parsing the person image, warping the garment, and
generating and refining the result. It introduced a person representation method that did not
rely on the original garments but retained identity characteristics to compensate for the lack
of supervised training data. However, even with these improvements, images produced
by the VITON method still suffered from imperfections and bad quality. Presently, image-
based virtual try-on methods follow the VITON framework, typically involving three main
steps: parsing and extracting features from person and garment images, warping garments,
and generating the final try-on results. To improve the quality of try-on images and
eliminate imperfections, most approaches focus on refining the garment warping and try-
on generation stages. For instance, CP-VTON [10] employs convolutional neural networks
(CNNs) to learn Thin Plate Spline (TPS) [14] parameters for garment warping, resulting in
better-fitting garments and more realistic try-on effects. However, CP-VTON struggles with
complex garment deformations in different poses. ClothFlow [4] introduced appearance
flow [15] to enhance garment adjustments. To tackle the challenge of complex poses, FS-
VTON [7] adopts a StyleGAN [16]-based architecture to estimate a global appearance flow.
RMGN-VTON [17] improves the generation network, which uses a regional mask to fuse
the features of garment and person images. HR-VTON [9] proposed a try-on condition
generator to warp garments and a try-on image generator guided by a segmentation map.
Some methods utilize image inpainting and reconstruction techniques [18–23] for virtual
try-on tasks, such as TWD [24–26]. Despite these advancements in garment warping and
try-on image generation, they ignore the impact of feature alignment. Since the garment
warping module must refine features at different scales, the quality of extracted features
directly influences the accuracy of garment warping. Poor quality features can lead to
misaligned images, reducing the effectiveness of the warping module. Therefore, the design
of a robust feature extraction module is critical in virtual try-on models. In this paper, we
analyze existing shortcomings and explain the significance of the feature extraction module
for garment warping and try-on image generation.

Previous methods typically utilize two simple Feature Pyramid Networks (FPNs) [27]
to extract multi-scale person and garment features, guiding garment warp based on the
extracted features. FPNs are commonly used to address multi-scale information process-
ing issues in tasks, such as object detection and semantic segmentation, improving the
model’s sensitivity to image details. Since being introduced into virtual try-on tasks after
PF-AFN [6], they have been widely used [7,28–30]. However, the FPN overlooks the issue
of feature alignment, and directly adding pixels between upsampling and local features
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can cause a misalignment of contextual feature mappings, leading to incorrect garment
warping and unrealistic results. In this paper, we introduce the Feature Alignment Selec-
tion Module (FASM) [31] into the feature extractor to address the problem of misaligned
contextual feature mappings. Additionally, since existing methods overlook the issue of
selecting different feature information in the try-on image generation module, which can
result in images retaining incorrect garment deformation results, we introduce the ECA
mechanism [32] into the model to weigh different channel information, mitigating adverse
results caused by excessive deformation.

2.2. Parser-Free VTON

To reduce the model’s dependence on additional parsers during inference, some re-
search attempts to train networks using parser-free methods. Parser-free methods for
virtual try-on allow the model to infer without relying on other person or garment parser
models, only requiring the input of garment and person images. WUTON [8] is a pio-
neering parser-free method in the virtual try-on field but produces significant artifacts
and fails to achieve the desired results. PF-AFN [6] introduces a teacher-assistant training
pipeline based on knowledge distillation, reducing the influence of erroneous teacher re-
sults on the student model, and becoming the standard for subsequent parser-free methods.
SDAFN [30] can generate try-on images in a single stage, but it still requires additional
human pose key points. DM-VTON [28] adopts a new knowledge distillation framework
based on FS-VTON and introduces virtual guiding poses to improve the model’s ability to
generate complex poses, achieving real-time parser-free virtual try-on while maintaining
quality. In addition to human pose information, GP-VTON [29] also utilizes a garment
parsing map. In this paper, we propose an FA-VTON model trained using a parser-free
method, requiring no parsers during inference. Additionally, we utilize channel-wise
knowledge distillation loss to help the student model learn rich semantic information from
the teacher network.

3. Twisted Analysis

Current models have made various improvements in both garment warping and try-
on image generation stages, but they have overlooked the importance of feature alignment
in the extraction stage. We analyze the issues present in current virtual try-on results
and explain the impact of feature alignment on garment warping and the final try-on
result. Parser-based models, unlike parser-free ones, require multiple people or garment
parsing results as inputs. Person representation types include pose key points, semantic
segmentation, and DensePose segmentation [33]. Garment representation types include
semantic segmentation and corresponding landmarks [34,35]. The previous models simply
concatenated the inputs from these different channel-wise modalities, without considering
aligning them. To illustrate the importance of feature alignment in virtual try-on tasks, we
take the results of FS-VTON as an example. We can visualize the final layer feature maps
and obtain grayscale images by compressing the color channels.

Unlike 3D virtual try-on, where garments can be modeled based on the body’s spatial
structure, 2D virtual try-on requires our model to correctly retain the front part of the
garment shown after trying it on and remove the back fabric that will not appear in the
result. As shown in Figure 2, in the first two rows, the try-on result retains the back fabric
of the garment at the neckline, while in the third row, the detailed part of the neckline that
should be retained is removed. In the feature maps in the second column, we can see that
the model can only extract the rough outline of the garment and cannot distinguish complex
clothing details. The garment warping module calculates the appearance flow based just
on the extracted features to generate the warped garment. Consequently, misaligned areas
in the feature extraction stage result in the erroneous retention or removal of areas in the
warped garment in the third column, thereby affecting the final try-on result.



Appl. Sci. 2024, 14, 5255 5 of 22

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 23 
 

should be retained is removed. In the feature maps in the second column, we can see that 
the model can only extract the rough outline of the garment and cannot distinguish com-
plex clothing details. The garment warping module calculates the appearance flow based 
just on the extracted features to generate the warped garment. Consequently, misaligned 
areas in the feature extraction stage result in the erroneous retention or removal of areas 
in the warped garment in the third column, thereby affecting the final try-on result. 

 
Figure 2. The influence of garment feature extraction on try-on results. 

Then, we analyze the influence of the person feature extractor on the try-on results, 
as shown in Figure 3. We classify the upper body, including the arms and neck, as the 
deformable garment regions. Features like the face and other areas that do not require 
deformation, such as the hands and lower body, are identified as non-deformable regions. 
We expect the person feature extractor to accurately identify the deformable garment re-
gions. This should exclude the influence of existing clothing from the original person im-
age and guide the subsequent garment deformation. Parser-free methods struggle to ex-
clude interference from existing garments during input. Therefore, the person feature ex-
tractor must accurately identify real human body boundaries to determine regions to be 
retained and warped. 
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Then, we analyze the influence of the person feature extractor on the try-on results,
as shown in Figure 3. We classify the upper body, including the arms and neck, as the
deformable garment regions. Features like the face and other areas that do not require
deformation, such as the hands and lower body, are identified as non-deformable regions.
We expect the person feature extractor to accurately identify the deformable garment
regions. This should exclude the influence of existing clothing from the original person
image and guide the subsequent garment deformation. Parser-free methods struggle to
exclude interference from existing garments during input. Therefore, the person feature
extractor must accurately identify real human body boundaries to determine regions to be
retained and warped.
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We classify the twists caused by existing garment feature extraction into two categories.
The first category is twists from unclear edges of human images. In the first row in the
trial results, excessive twisting occurs at the shoulders. This happens because the person
feature extractor fails to learn clear edge features, leading to an ambiguous deformable
garment region. The garment warping module requires guidance from the human feature
map for deformation. Thus, the appearance flow struggles to learn the accurate position of
corresponding pixels. Under multiple spatial transformations, this deviation is magnified,
causing twists at the edges. The second category is twists from the inability to eliminate
the influence of existing garments. In the second row, the try-on image retains the V-neck
design of the original garment, while the target garment has a round neck. The feature
extractor is disturbed by the existing clothing, incorrectly retaining the skin at the neckline
of the original image. As a result, this leads the garment to deform incorrectly, ultimately
impacting the try-on outcome.

After the above analysis, we can observe the influence of the alignment in feature
extraction. The garment warping module requires clear boundaries of the garment and the
region to be warped to calculate the correct appearance flow, ensuring that the garment
properly conforms to the human body. The try-on module directly generates missing
body parts, such as the neck and arms, based on the warped garment. Incorrectly warped
garments are directly reflected in the try-on results. Therefore, aligning features is essential
for virtual try-on tasks.

4. Methods

Our aim is to seamlessly transfer clothing onto human images while preserving
individual identity features. The proposed FA-VTON comprises three components: the
Feature Extraction Module (FEM), the Coarse-to-Fine Warping Module (CFWM), and
the try-on image generation module (TGM), detailed in Sections 4.1–4.3, respectively. To
achieve parser-free virtual try-on, we adopt the training strategy employed by existing
non-parsing models [6]. Initially, we pre-train a parser-based model and then employ
knowledge distillation to utilize it as a teacher model to facilitate the training of the final
parser-free model. Additionally, we introduce channel-wise knowledge distillation to
help the student network learn rich features from the teacher network, as elaborated
in Section 4.4. The main architecture of FA-VTON is illustrated in Figure 4. FA-VTON
maintains an identical structure to the teacher network within the student network but
with different inputs.
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4.1. Overview of FA-VTON Framework

Figure 4 shows a teacher network that requires parsers and a student network that
does not. Prior to training the student network, we must first train the teacher network. We
use Human Parsers Models to obtain the parsing results of the human image p, including
human pose estimation, human body segmentation, and DensePose results. These parsing
results are used as a representation p∗ and garment image g, respectively, which serve as
inputs to the FEMs. This approach helps reduce interference from the original clothing and
eliminates the need for triplet data (i.e., the original human image, target clothing, and
human image wearing the target clothing). The CFWM predicts the appearance flow and
generates the warped garment gw with it. Subsequently, we use the preserved parts of the
person image p together with the warped garment image gw as inputs to the GEM module
supervised by the real image p.

During the student model training, we utilize the generated results pt of the teacher
model as inputs for the student model. In this case, we do not need a human parser model
but can simply input pt together with clothing images g′ into the student model. The
student model predicts the appearance flow and warps the clothing g′w. The generation
module synthesizes the images pt with the warped garment image g′w as inputs and
generates the final result image s under the supervision of p. During the training process
for the student network, we also employ the knowledge distillation function to help the
student network learn the rich features extracted by the teacher network.

4.2. Feature Extraction Module (FEM)

In the architecture of virtual try-on models, especially in teacher models, various
human and garment parsing results are often utilized as prior knowledge. They are
concatenated along the channel dimension and collectively serve as the input to the network.
This requires our feature extraction module not only to effectively learn from additional
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parsing information but also to ignore features that could interfere with the final image
generation, reducing the generation of artifacts.

We have devised a feature extraction module to address the issue of feature alignment
and fusion of multimodal information during the feature extraction process for virtual
try-on. Building on the traditional feature pyramid, we introduced a Feature Alignment
Module (FAM) in its top-down portion and a Feature Selection Module (FSM) in its lateral
connection section. We term this structure the Feature Alignment Selection Module (FASM).
It aligns person and garment features, enhancing the feature fusion capability of the multi-
scale network to better guide subsequent garment deformation. The network structure of
the person FEM is illustrated in Figure 5.
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In the figure, the image in the bottom left corner represents the input image for training.
During the training phase, various human parsing results are often input to the model for
reference. The multi-scale feature maps output by the residual blocks are shown above
the input image, while the fused multi-scale feature maps in the pyramid network are
displayed on the right. In our model, we set the FEMs with five layers. In the bottom-up
process, the number of output channels is [64, 128, 256, 256, 256], and the feature size
is halved with each downsampling operation. In the top-down process, the feature size
changes correspondingly to the bottom-up process, while the channel dimension remains
fixed at 256.

4.2.1. Feature Alignment Module (FAM)

The recursive downsampling operations operated by the FPN often have spatial mis-
alignments between the upsampled high-dimensional feature map and the corresponding
low-dimensional feature map. Consequently, the simplistic feature fusion methods used
by the traditional FPN, such as element-wise addition or channel-wise concatenation, can
adversely affect the boundary perception of the target object.

However, regardless of whether it is for person or garment feature extraction, errors
in boundary perception can significantly impact the subsequent warping stage. Errors
in extracting the edges of a person can lead to incorrect shaping of garments. Similarly,
boundary perception errors in garment feature extraction can result in the loss of garment
details or erroneous retention of back fabric.
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In this paper, we use a Feature Alignment Module to adjust the upsampled feature
map by learning offsets to align various sampling positions. Specifically, we adjust the
upsampled feature Pup

i based on spatial positional information provided by Ĉi−1. We
represent spatial positional information using a 2D feature map, where each offset value
can be viewed as the two-dimensional spatial displacement distance between each point in
Pup

i and its corresponding point in Ĉi−1.
The specific structure of the FAM is illustrated in Figure 6a.
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Figure 6a shows the workflow of the FAM. Prior to feature fusion, the upsampled
feature map Pup

i is aligned with its reference feature map Ĉi−1. This alignment involves
normalizing the upsampled feature Pup

i based on the spatial position information provided
by Ĉi−1. Additionally, K denotes convolutional kernels at K sampled positions, and C repre-
sents feature channel numbers. ∆i represents the offset to be learned for the convolutional
kernels. Feature alignment can be mathematically described.

Learn offsets from upsampled and downsampled feature maps as follows:

∆i = fo f f set

([
Ĉi−1, Pup

i

])
, (1)

then, apply offsets to the downsampled feature map Pup
i for alignment as follows:

P̂up
i = falign

(
Pup

i ,△i

)
, (2)

where
[
Ĉi−1, Pup

i

]
denotes the concatenation of Ĉi−1 and Pup

i , providing spatial disparities
between the upsampled and corresponding bottom-up features. fo f f set(·) represents learn-
ing offset from spatial disparities ∆i, and falign(·) is the function aligning features with
learned offsets. fo f f set(·) and falign(·) are 3 × 3 deformable convolutions [36]. Deformable
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convolutions adjust convolutional sampling positions based on offsets, aligning features
Pup

i according to spatial distances between Ĉi−1 and Pup
i .

4.2.2. Feature Selection Module (FSM)

In the traditional FPN, a simple 1 × 1 convolution operation is performed to unify
the channel numbers of high-dimensional and low-dimensional features. However, this
approach overlooks the significance of different channels, resulting in the loss of important
spatial details during channel compression. Moreover, due to the specific nature of virtual
try-on tasks, information from different modalities is often concatenated as the input.
Effectively utilizing important features while suppressing irrelevant features is a problem
that the feature extraction module needs to solve.

We adopt the FSM, which models important features during the feature mapping process.
It utilizes global max-pooling to calculate the maximum value for each channel, extracting the
most relevant information from each channel. This simultaneously suppresses and recalibrates
redundant feature mappings. Figure 6b illustrates the data flow of the FSM.

First, global information is extracted from the input feature map using max-pooling
operations to minimize loss. After extracting global information, the important feature
construction layer fc(·) learns the weights of each channel in the input feature map. These
weights are represented as a feature importance vector v, indicating the importance of each
feature map. The initial input feature map is scaled according to the importance vector,
and the scaled feature map is then concatenated with the original feature map in order to
generate the resized feature map. This process fs(·) preserves selectively retains features.
The specific workflow of the Feature Selection Module is as follows:

v = fsig( fc(zmax)), (3)

Ĉi = fs(Ci + v ∗ Ci), (4)

where v represents the saliency vector of the input feature map after activation; zmax is
the feature vector obtained after the global max-pooling operation; fc(·) includes a 1 × 1
convolutional layer; fsig(·) represents the feature activation layer constituted by the sigmoid
function; fs(·) is composed of a 1 × 1 convolutional layer; and Ci and Ĉi refer to the input
and output feature maps, respectively.

4.3. Coarse-to-Fine Warping Module (CFWM)

The purpose of the CFWM is to warp the garment to adapt to body posture while pre-
serving garment details. Due to the superior flexibility of flow-based networks compared
to the TPS algorithm, they can adapt to complex posture warping. Following the work
of FS-VTON [7], we adopt a coarse-to-fine warping structure, composed of subnetworks
with different-sized convolutional layers, to utilize multi-scale features extracted by the
FEM for appearance flow estimation. Flow-based networks effectively capture distant
correspondences between garment and person images, thereby reducing the problem of
garment warping misalignment. A specific structure is shown in Figure 7.

The CFWM is composed of n stacked Warping Blocks, and the specific structure of
the Warping Block is shown in Figure 7b; each of our Warping Blocks consists of two parts.
Specifically, we first use the garment and person features extracted from the last layer of
the previous module to generate the global style vector s through the connected operation,
which includes the global information, such as the position and structure of the two, and
guides the generation of the initial rough appearance flow f ′k−1, which is formulated as
follows:

f ′k−1 = MConv(W(gk, U( fk−1)), s), (5)

where U(·) is the upsampling operation and W(·) is the sampling operation. According
to the spatial transformation of the corresponding layer gk after the upsampling of the
appearance flow, we follow the design of the modulation convolution operation Mconv(·)
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in StyleGan [16], which is able to modulate with the help of global style vectors, and it can
deal with the bias of the large distance between the garment and the person to generate the
rough appearance flow.
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Then, we refine the rough appearance flow with the help of both person and garment
features in order to further improve the correspondence between the warped garment and
the person. The specific formula is as follows:

rk = W
(

gk, f ′k−1
)
, (6)

fk = Conv
(

rk
⊕

pk

)⊕
f ′k−1, (7)

where W(·) denotes the sampling operation. After performing a spatial transformation on
gk, it is concatenated with the person feature to obtain rk. Conv(·) represents convolutional
blocks composed of convolutions and Leaky ReLU functions. By inputting rk together
with the person feature pk into the convolutional blocks, the network is better able to learn
the correspondence between the garment and the person. Finally, the refined appearance
flow, concatenated with the coarse appearance flow f ′k−1, serves as the final output fk of
this Warping Block. Throughout the entire CFWM, we utilize the appearance flow from
the final module to perform the warp operation, thereby generating the final deformed
garment.

Additionally, to enhance the preservation of garment features, we also optimize
this module with second-order smoothness loss [6]. We aim to achieve pixel-to-pixel
matching between the source and target garment regions to better estimate geometric
transformations and generate realistic results. By implementing pixel-level matching, we
can capture subtle details, such as wrinkles and fabric textures, thus rendering a more
lifelike garment appearance in the synthesized images. However, due to the density and
high degree of freedom of the appearance flow, some undesirable phenomena often occur,
such as significant artifacts and incoherent textures. To address these issues, we reference
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the work of [6,7,28] and introduce a second-order smoothness loss, which helps regularize
the estimated flow field, making it spatially smoother and more continuous. This approach
reduces unnatural jagged edges and fragmented textures in the images, thereby enhancing
the visual quality and realism of the synthesized results. The calculation process is as
follows:

Lsecond = ∑N
i=1 ∑p ∑π∈Np

Char
(

f p−π
i + f p+π

i − 2 f p
i

)
, (8)

where f p
i represents the p-th point on the i-th scale flowchart; Np is the collection of

horizontal, vertical, and diagonal neighborhoods around the p-th point; and Char(x) =
(x2 + ϵ2)

a denotes the generalized Charbonnier loss [37]. The generalized Charbonnier loss
function is widely used in optical flow estimation [38,39]. The introduction of the power
operation reduces its sensitivity to large discrepancies, thereby enhancing the model’s
robustness to outliers.

4.4. Try-On Generation Module (TGM)

The TGM takes the human image and the warped garment as inputs, fusing them
to generate the final try-on result. The goal of the module is to produce a realistic image
of the person wearing the target garment. In order to achieve try-on without parsing,
the model must generate try-on images without any human or garment parsing. In this
method, the try-on image generation module cannot use additional human parsing to
create a human-agnostic image that reduces the influence of the original image’s garment,
which requires the generation module to be able to filter out important features and reduce
irrelevant information, thereby minimizing artifact generation. The overall structure of the
module is illustrated in Figure 8.
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In this module, we utilize an enhanced U-Net [40] as the backbone architecture for
the TGM. We introduce residual structures and the ECA attention mechanism [32] on it.
The addition of the ECA mechanism helps alleviate incorrect results due to prior parsing
errors or excessive garment deformation, improving the quality of the generated image. It
not only preserves the details of the warped garment but also maintains key human body
parts, reducing the impact of irrelevant information.

Many studies have shown that attention mechanisms can enhance the overall perfor-
mance of deep learning methods. The SE module [41] proposed an effective mechanism
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for attention learning, which first learned channel attention and achieved outstanding
performance. However, the SE attention mechanism compresses the input feature maps
along the channel dimension, which has a detrimental effect on learning dependencies
between channels.

In order to avoid dimensionality reduction and facilitate proper cross-channel inter-
action, ECA proposes a local cross-channel interaction strategy without dimensionality
reduction and a method for adaptive selection of the size of one-dimensional convolu-
tional kernels. With just a few extra parameters, the ECA module achieves significant
performance improvements. The structure of the ECA module is shown in Figure 9.
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ECA first performs global pooling on the input feature layer. Then, ECA captures local
cross-channel interactions and obtains the weight for each channel by sigmoid function.
Finally, the weights are multiplied by the corresponding elements of the input feature layer
to obtain the final output feature layer. The local cross-channel interaction strategy can be
implemented through a one-dimensional convolution with a kernel size of k, calculated as
follows:

w = σ(Lk(y)), (9)

where w represents the channel weights, σ is the sigmoid function, Lk(·) denotes the one-
dimensional convolution, k is the kernel size of L, and y represents the aggregated features.
This method involves only k parameters.

We adopt an adaptive method to determine the convolution kernel k, where the size
of the kernel k is proportional to the channel dimension C (i.e., there may be a mapping
between k and C). Due to the limitations of linear mapping, we employ non-linear mapping
instead. Additionally, we know that the channel dimension is typically a power of 2; thus,
we use an exponential function with base 2 to represent the non-linear mapping relationship,
as shown below:

C = ϕ(k) = 2(γ∗k−b). (10)

Once the mapping relationship between the kernel size and channel dimension is
determined, we can determine the range of local cross-channel interactions based on the
channel dimensions of different feature maps, using different kernel sizes for different
channels. The kernel size k can be calculated using the following equation:

k = ψ(C) =
∣∣∣ log2(C)

γ + b
γ

∣∣∣
odd

, (11)

where k is the size of the convolution kernel, C is the number of channels, and | t |odd
represents the nearest odd number to t. We set γ and b as 2 and 1, respectively.
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4.5. Parser-Free Framework Based on Knowledge Distillation
4.5.1. Parser-Free Method

To achieve a parser-free method, we employ a framework based on knowledge distilla-
tion. The entire framework consists of two parts: a teacher network and a student network,
as illustrated in the structure in Figure 4. The input of the person feature extraction module
of the teacher network includes various human parsing results. The garment warping
module infers the appearance flow between the person and the garment based on previ-
ously extracted multi-level features and utilizes this flow to generate a warped garment.
Finally, the warped garment, along with the preserved regions on the image, is used as the
input to train the try-on generation module, supervised by ground truth. After training the
teacher network, the student network takes the output of the teacher network as the input
for person images and randomly selects different garment images to generate try-on results.
The output of the student network is supervised by the human images input to the teacher
network, effectively solving the problem of insufficient paired images under supervision.
Additionally, since the input information of the teacher network contains human parsing,
resulting in richer learned features, we use channel-wise knowledge distillation to guide the
student network in fully learning the rich channel information from the teacher network.

4.5.2. Channel-Wise Distillation (CWD)

Due to the teacher model’s input containing various parser-based prior knowledge,
we introduce channel-wise knowledge distillation [42]. This method focuses on features
from different channels, softly adjusting the activations of corresponding channels between
the teacher and student networks. To perform this, we first convert the channel activations
into probability distributions and measure their differences using probability distribution
metrics, adopting KL divergence in our text. Subsequently, we use a trained teacher model
to obtain activation maps for predicting channel-specific masks, enabling the student
network to learn useful knowledge from the teacher network.

We denote the feature maps of the teacher network and the student network as yT
c and

yS
c , respectively. Then, the channel-wise distillation loss can be expressed in general form

as follows:
Lcwd = φ

(
ϕ
(

yT
c

)
, ϕ

(
yS

c

))
, (12)

where ϕ(·) is used to convert the feature values into probability distributions as follows:

ϕ(yc) =
exp

(
yc,i
τ

)
∑W·H

i=1 exp
(

yc,i
τ

) , (13)

where c = 1, 2, . . . , C represents the channel; i represents the pixel position within the
channel; and τ represents the temperature parameter for distillation, where a higher τ
leads to softer output probability distributions, meaning each channel focuses on a larger
spatial area. If the number of channels between the teacher and student networks does
not match, a 1 × 1 convolutional layer is used to upsample the number of channels in the
student network. This paper uses KL divergence to evaluate the difference between the
output channel distributions of the teacher and student. The formula is as follows:

φ
(

yT , yS
)
=

τ2

C

C

∑
c=1

W·H
∑
i=1

ϕ
(

yT
c,i

)
· log

ϕ
(

yT
c,i

)
ϕ
(

yS
c,i

)
. (14)

KL divergence is an asymmetric measure. In the above equation, it can be seen that
when ϕ

(
yT

c,i

)
is larger, ϕ

(
yS

c,i

)
should be as large as ϕ

(
yT

c,i

)
to minimize KL divergence.

When ϕ
(

yT
c,i

)
is smaller, KL divergence pays less attention to minimizing ϕ

(
yS

c,i

)
. Therefore,
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the student network can learn significant features from the teacher network, especially
when student networks do not have human-agnostic images as inputs.

4.5.3. Loss Function

Due to the fact that the input of parser-based models contains more semantic infor-
mation compared to parser-less models, we also adopt a scheme based on knowledge
distillation learning with a distillation loss to guide the feature extractors of the student
network as follows:

Ldis = φ ∑l ∥pt
l − ps

l ∥2, (15)

φ =

{
1, i f ∥pt − pG∥1 < ∥ps − pG∥1

0, otherwise
, (16)

where pt
l and ps

l represent the feature maps extracted by the teacher network and the
student network at the l-th scale, pt and ps are the parsing results of the teacher network
and the student network, respectively, and pG is the ground truth of the person image.

The loss function used in the extracting and warping stages is defined as follows:

Lw = λperLper + λ1L1 + λsecLsec + λdisLdis + λcwdLcwd, (17)

where Lper is the perceptual loss [43] of the warped garment, L1 represents the pixel-wise
L1 loss of the warped garment, Lsec is the second-order smoothness loss of the appearance
flow from PFAFN [6], Ldis is the distillation loss, and Lcwd is the channel-wise distillation
loss.

During the training of the generator, the model parameters are optimized by minimiz-
ing Lg as follows:

Lg = αeucLeuc + αperLper, (18)

where Leuc is the pixel-wise L1 loss and Lper is the perceptual loss [43], and the formulas
are as follows:

Leuc = ∥IG − I∥1, (19)

Lper = ∑m ∥ϕm(IG)− ϕm(I)∥1, (20)

where IG and I are the generated image and ground truth, respectively, and ϕm(·) represents
the m-th layer feature map in the VGG-19 [44] network pre-trained on ImageNet.

5. Experiments
5.1. Experimental Settings

We conduct our experiments on the VITON [5] and VITON-HD [45] datasets. VITON
is the most popular dataset used in image-based virtual try-on tasks. The VITON dataset
consists of a training set containing 14,221 pairs of images and a test set containing 2032
pairs of images. Each image pair includes a target garment image and a person image, with
both having a resolution of 256 × 192. VITON-HD is the same as VITON, except that the
image resolution is 512 × 384.

We train our model on the VITON dataset using the Adam optimizer. We first train
the teacher network using the clothes image and the image of the person wearing the
clothes. The parsing results are also utilized in this phase. Then, we train the student
network. Each model is trained for 100 epochs with an initial learning rate of 5 × 10−4

and is linearly decayed after 50 epochs. The hyperparameters are set as follows: λper = 1.0,
λ1 = 1.0, λdis = 0.2, λsec = 6.0, and λcwd = 0.8. During testing, the reference person image
and the target clothes image are provided as inputs to the student network to generate the
output image. Unlike the training phase, additional inputs, such as human parsing results,
are not used.

We compare FA-VTON with several methods, including ACGPN [10], PF-AFN [6],
SDAFN [30], FS-VTON [7], and DM-VTON [28]. All models are trained on the same VITON
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dataset by using the official codes provided by the authors to ensure the fairness of the
experiments.

We evaluate the similarity between the generated images and ground truth using three
widely used metrics: the Structural Similarity Index (SSIM) [46], Learned Perceptual Image
Patch Similarity (LPIPS) [47], and Fréchet Inception Distance (FID) [48]. The SSIM and
LPIPS are used for paired images, while FID is used for unpaired images.

5.2. Qualitative Results

Figure 10 illustrates the qualitative comparison results of FA-VTON with the latest
baselines on the VITON-HD dataset.
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In the first row, our goal is to correctly distinguish between the front and back parts of
the garment to avoid retaining excess fabric at the back. Previous models tended to retain
excess fabric, especially around the neckline and hem. By aligning features in the feature
extraction stage, we can accurately identify the boundaries of the garment, providing
correct guidance for the subsequent garment warping module to remove the excess parts.

In the second row, our objective is to achieve smooth deformation at the edges of
the garment, such as at the cuffs, and generate arms wearing clothing with a realistic
appearance. Blurry regions for garment replacement often exacerbate errors in deformation
refinement, leading to excessive deformation at the edges, particularly at the cuffs and
shoulders. Artifacts often appear at the junction between the garment and the skin.

In the third row, we aim to show that FA-VTON can adapt to complex poses and
deform the garment to reasonable positions. Previous methods were sensitive to misinter-
preting the human body due to the influence of the original image, resulting in unreasonable
garment deformation and body part generation during synthesis. However, our model,
provided with a robust feature extractor, can accurately identify the regions for garment
replacement, guiding the garment to warp correctly. Additionally, because of the attention
mechanism added to our generation module for weighted feature processing, we can
effectively suppress unimportant features, thus preserving complex patterns, like clothing
textures, and generating more natural-looking images.
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In the fourth row, the garment patterns in the try-on images generated by our model
do not retain excessive deformation, and they naturally blend with the lower garment.
Furthermore, the edges are smooth, and the wrinkles are realistic.

Additionally, we also present some try-on results, especially those with complex
neckline structures, as shown in Figure 11.
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5.3. Quantitative Results

We evaluated the performance of our proposed method on the VITON and VITON-HD
datasets. Table 1 compares our method with several baseline methods, including ACGPN,
PF-AFN, SDAFN, FS-VTON, and DM-VTON. Our method achieved excellent scores of
0.86, 8.72, and 0.184 for the SSIM, FID, and LPIPS on the VITON dataset and achieved
excellent scores of 0.85, 9.53, and 0.096 on the VITON-HD dataset. These scores outperform
those of other methods, showing the effectiveness of our proposed virtual try-on model. In
summary, our model achieves outstanding quantitative results on the VITON dataset.
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Table 1. Quantitative results of different models on the VITON and VITON-HD datasets. For SSIM,
the higher is the better. For FID and LPIPS, the lower is the better.

Dataset VITON VITON-HD

Method SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓
ACGPN 0.69 16.64 0.226 0.78 14.99 0.170
PF-AFN 0.79 10.09 0.213 0.69 25.44 0.229
SDAFN 0.78 9.42 0.228 0.82 9.97 0.113

FS-VTON 0.85 8.89 0.200 0.83 10.00 0.102
DM-VTON 0.81 10.57 0.213 0.82 11.81 0.125

Ours 0.86 8.72 0.184 0.85 9.53 0.096

5.4. Ablation Study

We conducted ablation experiments to validate the effectiveness of our designed fea-
ture extraction module, the try-on image generation module, and channel-wise knowledge
distillation.

We compared the performance with and without the FASM in both the clothing feature
extraction module and the human body feature extraction module, demonstrating how
the features from the first stage gradually influence the final try-on results. We visualized
the feature maps of the last layer and obtained grayscale images by compressing the
color channels. As shown in Figure 12, the first two columns are the model inputs, and
columns 3 to 8 show the comparisons with and without the FASM. In the first row, the
impact of the human body feature extraction map on garment warping and try-on image
generation is explained. It can be seen that without adding the FASM, the model fails to
learn the contour information of the human body, especially around the right shoulder,
resulting in excessive deformations at the edges by the subsequent garment warping
module. The coarse-to-fine warping module aggravates the erroneous effects, resulting
in excessively deformed garments in the final try-on image. In contrast, the model using
the FASM can extract boundary information well, providing more reasonable information
for subsequent warping and generating more realistic try-on images. The second row in
Figure 12 illustrates the impact of the garment feature extraction map on garment warping
and try-on image generation. It is evident that with the FASM, the model can effectively
learn the boundaries of the garment. Due to the irregularities in garment design, their
layout images may reveal fabric areas that are unnecessary for the try-on images, posing a
challenge to whether the model can correctly retain the corresponding garment areas. The
feature maps generated by the traditional feature extractor cannot distinguish between the
front and back of the garment, while our model can effectively identify the garment shapes
and guide subsequent garment warping.
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Furthermore, we specifically decomposed the FASM for qualitative comparisons. As
shown in Table 2, we evaluated three metrics of the final generated try-on images when



Appl. Sci. 2024, 14, 5255 19 of 22

only adding the FSM, only adding the FAM, and adding both parts. It can be observed
that the image quality is higher when both modules are added compared to when only one
module is added.

Table 2. Comparing the results with only the FAM, FSM, and FAM + FSM.

SSIM ↑ FID ↓ LPIPS ↓
FAM 0.857 8.86 0.193
FSM 0.855 8.99 0.196

FAM + FSM 0.860 8.82 0.189

We also conducted ablation experiments on the ECA module. As shown in Figure 13,
we can observe that adding the ECA module can make the synthesized images more realis-
tic, while also mitigating, to some extent, the unreasonable results caused by deformation
errors. As shown in Table 3, after adding the ECA module, the two metrics—FID and
LPIPS—are all superior to those of the model without the ECA module.
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Finally, we conduct ablation experiments on the CWD loss function. The CWD loss
function helps the student network effectively utilize the teacher network’s knowledge
based on parsers. Since the input of the student model retains the original garment, under
the guidance of CWD, the student network focuses on learning parsing representations
unrelated to the original garment, such as the teacher network’s prior knowledge of human
pose key points. As shown in Figure 14, the student network is able to focus on learning
representation knowledge unrelated to the original garment, reducing interference from
the original image.
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