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Abstract: In order to investigate the contact characteristics of the mechanical parts of the brewing
robot with wine lees particles, it is essential to calibrate the parameters of the discrete elemental
model of wine lees particles. This paper proposes a method based on tests of the angle of repose.
The simulation test is conducted to establish a regression model and combined with physical tests to
find optimization. The contact model used in simulation modeling is Hertz-Mindlin with Johnson-
Kendall-Roberts. Not all discrete element model parameters of wine lees particles have a significant
impact on the angle of repose, so screening through Plackett-Burman Design is performed. The
results indicate that the restitution coefficient between wine lees particles and restitution coefficient
between wine lees particle and steel plate have a significant impact on angle of repose. Additionally,
another parameter that is difficult to obtain, namely surface energy (JKR), also plays a crucial role.
The optimal value interval for these three parameters is determined by the steepest ascent test, and
a linear regression model for angle of repose is built through Box-Behnken Design. The optimal
values obtained are as follows: restitution coefficient between wine lees particles—0.603; restitution
coefficient between wine lees particle and steel plate—0.595; JKR—0.083. Finally, in order to verify the
accuracy of calibrated parameters, simulation verification tests are carried out which show that there
is only a relative error rate at 0.18% between simulated angle of repose and actual angle of repose,
indicating that accurate calibration parameters were achieved. This study can provide reference for
selecting discrete element model parameters for wine lees particles in future research endeavors.

Keywords: wine lees particle; discrete element method; calibration of parameters; angle of repose

1. Introduction

The Chinese distilled wine (baijiu) brewing industry is rumored to rely on fermentation
to produce aroma, and the aroma is produced by distillation. It is evident that the distillation
process has a significant impact on the quality of liquor. Distillation of liquor is one of the
most critical links in the brewing process and also one of the most challenging aspects to
automate. During distillation, it is essential to achieve gentleness, looseness, uniformity,
flatness, accuracy, and thinness in order to improve alcohol distillation and ensure both
yield and quality of liquor [1–3]. The quality of the distillation process is influenced by
factors such as dryness and wetness of grains, fluffiness degree, feeding speed, strength, etc.,
making it difficult to maintain stability in both quality and efficiency. These factors can affect
the overall quality of liquor production which ultimately impacts its market price. Due
to subtle differences in quality among liquors, prices may vary significantly—sometimes
even tenfold. Baijiu enterprises are increasingly focusing on scaling up production while
also automating processes through intelligent technologies instead of manual labor. The
introduction of robots into liquor production has become an inevitable trend (see Figure 1
for a depiction of loading during the distillation process) [4].
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the accuracy of the discrete element simulation results depends on the particle model dis-
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(particle size, Poisson’s ratio, shear modulus, and density), contact parameters (collision 
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Figure 1. Loading for the steaming process. (a) Artificial steaming. (b) Semi-automatic steaming.
(c) Steamer-filling robot.

It is challenging for the brewing robot to achieve “light, loose, even, flat, accurate and
thin” in the feeding process. In order to realize these six points, numerous universities and
enterprises have undertaken a series of efforts. They have designed various mechanisms
to manipulate the particles before feeding. However, regardless of the type of mechanism
used, it is inevitable that the machine structure will come into direct contact with the lees
particles. As a result, the lees particles will create a certain resistance to the robot and
simultaneously impact their form upon contact with the robot. This interaction ultimately
affects both the quality and output of the produced wine. In order to accurately simulate
the interaction between the winemaking robot and the particles, it is necessary to model
the lees particles using discrete element software and realize the simulation solution of the
resistance of the manipulator through the coupling of RecurDyn and EDEM. However, the
accuracy of the discrete element simulation results depends on the particle model discrete
element parameters. The model parameters include material intrinsic parameters (particle
size, Poisson’s ratio, shear modulus, and density), contact parameters (collision recovery
coefficient, coefficient of static friction, and coefficient of rolling friction), and contact model
parameters (normal/tangential modulus for the Bonding model, surface energy JKR for the
Johnson-Kendall-Roberts model, etc.). The material intrinsic parameters are usually fixed
and can be obtained through literature review and experimental measurements, while the
contact parameters and contact model parameters are difficult to obtain directly and need
to be calibrated through simulation tests [5].

Currently, in the field of agricultural engineering, many scholars have conducted a lot
of research on the calibration of discrete element model parameters of particles. Yunxia
Wang, Fanyi Liu, and Tao Wu calibrated the discrete elemental model parameters of corn
seeds, wheat, and clayey soil, respectively, based on angle of repose simulation experi-
ments [6–8]; Xu Bing established a non-spherical particle model of buckwheat seeds using
the auto-filling method and parameterized it using a discrete element model [9]. Wang
Long designed a device to simultaneously determine the angle of repose and angle of
accumulation of materials and calibrated the contact parameters of cotton seeds through
physical and simulation tests [10]. Balevičius measured the static friction coefficient be-
tween pea and glass by sliding test [11]. Grima and Wypych calibrated the rolling friction
coefficients of dry and wet particles in the collapse test [12]. Since there are fewer studies on
the parameter calibration of the lees particle model, in order to simulate the actual working
conditions more accurately, this paper intends to study the parameter calibration of the
lees particle model.

Although extensive research has been conducted by scholars on the virtual calibration
of discrete element simulation parameters, the commonly adopted “trial and error” method
lacks a standardized parameter calibration approach. As a result, some scholars have
proposed a parameter calibration method based on the response surface method. For
example, Santos utilized the response surface method to obtain the dynamic angle of
repose of dried cherries through the rotating drum test and calibrated corresponding
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parameters in discrete element simulation [13]. Xia employed the Box-Behnken design
for parameter calibration of coal particles [14], while Gong Xun completed wood chips
parameter calibration using biological wood chips as the research subject based on the
Box-Behnken test [15].

In this study, the cohesive contact model “Hertz-Mindlin with JKR” in EDEM2022 soft-
ware was selected to simulate the angle of repose of sample lees particles. The experimental
tests conducted included Plackett-Burman Design, Steepest Climb Test, and Box-Behnken
Design. The above three experiments were designed using Design-Expert13 software. The
parameters of the discrete element model were calibrated using the physical test results of
the lees particles to achieve more accurate simulation results.

2. Materials and Methods
2.1. Basic Parameters of Lees Particles

The lees particles utilized in this study were obtained from a distillery, consisting
mainly of the residues remaining after the brewing of sorghum, barley, and corn. A total
of 500 g of lees particles was measured post-brewing, with a mass of 398 g after drying
for 5 h, resulting in a moisture content of 20.4%. Sieving was conducted using screens
with apertures measuring 3 mm, 4.5 mm, and 6 mm to determine the geometric size of
the lees particles. The intrinsic parameters of the lees particles were determined through
consultation with relevant data and EDEM material library. The basic parameters are
presented in Table 1.

Table 1. Mass of particles of various sizes.

Particle Radius Distribution/%
Densities/kg·m−3 Poisson’s

Ratio
Shear

Modulus/Pa≤3.0 mm 3.0–4.5 mm ≧4.5 mm

27.6% 42.5% 29.9% 1053 0.4 1.1 × 107

2.2. Experimental Methods

In this paper, a combination of physical and simulation tests [16,17] is utilized to
calibrate the parameters of the discrete elemental model of wine lees. Initially, physical
tests were conducted to obtain the lees particle pile using the funnel test method and
measure the actual angle of repose. Subsequently, simulation tests were performed using
EDEM software to screen the parameters that significantly affect the angle of repose by
Plackett-Burman Design. The optimal value interval of the significant parameters was then
determined by the steepest climb test. Following this, a regression model between the
rest angle of lees and the significance parameters was established and optimized through
Box-Behnken Design response surface analysis in order to obtain a regression equation.
This equation was solved with the actual resting angle as the target value to determine an
optimal value for each significance parameter. Finally, simulation tests were carried out
under these calibrated parameters, and comparison between simulated rest angles of lees
with their actual counterparts verified accuracy in calibration. The technical route is shown
in Figure 2.

2.3. Angle of Repose Physical Tests

In this study, the funnel method was employed to conduct the test. Initially, a baffle
plate (100 mm long, 55 mm wide) was placed at the bottom of the funnel (33 mm small
diameter, 150 mm large diameter, 140 mm high) to prevent the particles from falling.
Subsequently, the funnel was filled with lees particles (500 g). The stopper was then pulled
out to the right side at a speed of 5 m/s, allowing the lees to fall and naturally pile up
as depicted in Figure 3. The stacking image underwent processing, and contours were
extracted using MATLAB2022 software. The angle of repose was determined through
linear fitting utilizing the least squares method [18]. By conducting five repeated tests, an
average value for the actual angle of repose of the lees particles was calculated to be 25.79◦.
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2.4. Simulation Models
2.4.1. Contact Model

The particles in lees contain water between them, leading to an adhesion phenomenon.
The classical Hertz-Mindlin contact model only considers elastic deformation and does not
account for the bonding force between the particles, making it challenging to accurately
simulate the behavior of lees particles. The Hertz-Mindlin with Bonding contact model uses
a finite-sized “glue” to simulate particle bonding but is only suitable for simulating hard
media such as rocks. On the other hand, the Hertz-Mindlin with Johnson-Kendall-Roberts
(JKR) contact model is based on Hertz’s theory and incorporates adhesive properties into
its particle contact model. This allows for a better description of viscoelastic characteristics
between particles and considers the effect of adhesive force on motion between water-
containing particles. It is particularly suitable for modeling adhesion phenomena due
to static electricity and moisture, such as those found in crops and soil where cohesion
between lees particles is considered. Therefore, we have chosen the “Hertz-Mindlin with
JKR” model as our contact model in this paper, as shown in Figure 4.
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The normal elastic force for the Hertz-Mindlin with JKR contact model is based on the
normal overlap and the surface energy, which is:

FJKR = −4
√

πγE∗α
3
2 +

4E∗

3R∗ α3 (1)

δ =
α2

R∗ −
√

4πγα

E∗ (2)

where FJKR is the JKR normal elastic force, N; δ is the normal overlap between the two
contacting particles, m; α is the tangential overlap between the two contacting particles, m;
γ is the surface energy, N/m; E* is the equivalent modulus of elasticity, Pa; and R* is the
equivalent contact radius, m. Equivalent modulus of elasticity, E*, and equivalent contact
radius, R*, are defined as:

1
E∗ =

1 − ν2
1

E1
+

1 − ν2
2

E2
(3)

1
R∗ =

1
R1

+
1

R2
(4)

where E1 and E2 are the elastic modulus of the two contacting particles, Pa; v1 and v2 are
the Poisson’s ratios of the two contacting particles; and R1 and R2 are the contact radius
of the two contacting particles, m. When the surface energy γ = 0, the JKR normal elastic
force becomes the Hertz-Mindlin normal force:

FJKR = FHertz =
4
3

E∗√R∗δ
3
2 (5)

Even if the particles are not in direct contact, the Hertz-Mindlin with JKR contact
model provides attractive cohesion, and the maximum gap between particles with non-zero
cohesion is:

δc =
α2

c
R∗ −

√
4πγαc

E∗ (6)

αc =

[
9πγR∗2

2E∗ −
(

3
4
− 1√

2

)] 1
3

(7)

where δc is the normal maximum gap between particles with non-zero cohesion, m; αc is
the tangential maximum gap between particles with non-zero cohesion, m.

When δ > δc, the inter-particle cohesion becomes zero; when the particles are not in
physical contact and the spacing is less than δc, the cohesion reaches a maximum:

Fcohesion = −3
2

πγR∗ (8)
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where Fcohesion is the cohesion force between the 2 particles, N; R* is the equivalent contact
radius, m.

The Hertz-Mindlin with JKR contact model can simulate lees particles when the
separation force required to separate the 2 particles depends on the liquid surface tension
and wetting angle:

Fpullout = −2πγs cos(τ)
√

RiRj (9)

where Fpullout is the separation force required to separate the 2 particles, N; γs is the surface
tension of the liquid, N; τ is the wetting angle, (◦); and Ri, Rj are the radius of the particle, m.

2.4.2. Discrete Elemental Modeling of Particles

Due to the irregular shape of the lees particles, an amount of 500 g of lees particles
with a particle size of 2~6 mm was counted and categorized into spherical, rugby ball, and
flat types based on similar shapes. The geometrical dimensions of each type of particle
were observed under a microscope, as shown in Figure 5a. In discrete element simulation
software, spherical particles are typically used to construct discrete element models of bulk
materials. However, simulating with a single spherical model cannot accurately reflect the
interaction characteristics between irregular particles. To more realistically simulate the
irregular characteristics of the lees particles, a discrete elemental model was established
using the multi-sphere method (MSM for short) based on the geometrical dimensions
of various particles given in Figure 5a [19–22]. The discrete metamodel obtained by this
method closely resembles the actual appearance of lees particles. Since spherical particles
would overlap and pile up, they were treated as a single body in the EDEM software, as
shown in Figure 5b. The experiment utilized 1 kg of lees particles and randomly generated
the mass share of each type according to the range of actual lees particle diameters.
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2.4.3. Simulation Parameter Settings

Based on the parameters of particle size and steel plate properties in discrete element
simulations conducted both domestically and internationally [23–26], the range of variation
for each simulation parameter in this study was determined, as shown in Table 2. During the
simulation test [27], the velocity of the moving baffle plate was set to 5 m/s, consistent with
physical testing conditions. Additionally, due to the influence of simulation parameters
on stress wave propagation within particles, individual simulations may have different
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Rayleigh time steps. Therefore, a uniform Rayleigh time step of 20% was utilized in all
simulations. The grid size is defined as 5 times the size of the smallest spherical cell.

Table 2. Parameters required for EDEM simulation.

EDEM Parameters Materials Value Materials Value

Density/kg·m−3 Steel 1930 Particle 1053
Poisson’s ratio Steel 0.3 Particle 0.4

Shear modulus/Pa Steel 2 × 1011 Particle 1.1 × 107

Coefficient of restitution Particle-steel 0.4~0.8 Particle-particle 0.4~0.8
Coefficient of static friction Particle-steel 0.5~1.0 Particle-particle 0.5~1.0

Coefficient of rolling friction Particle-steel 0.01~0.02 Particle-particle 0.01~0.02
Surface energy/J Particle-particle 0.05~0.1

2.4.4. Stacking Simulation Model

The parameters of the funnel were set in the simulation to match those used in the
experiment. Once the particles were generated above the funnel, they fell freely and filled
the entire funnel. The particles were generated using the Dynamic method at a rate of
0.25 kg/s for a duration of 4 s. Excess particles from the outside and top of the funnel were
removed before running the simulation model for approximately 15 s to reach equilibrium.
The baffle plate was then moved horizontally at a rate of 5 m/s, causing the particles
to slowly flow out of the bottom of the funnel and eventually form a stable pile on the
bottom plate. The experimental setup and simulation model are depicted in Figures 6 and 7,
respectively.
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To reduce the subjectivity and uncertainty of human measurement and to measure the
angle of repose more accurately, a MATLAB image processing technique was employed
to obtain the bulk angle of repose [28,29]. Firstly, the image is converted to grayscale,
enhanced, and binarized (refer to Figure 8). Subsequently, the binarized image undergoes
open operation and median filtering. Secondly, the boundary points of the filtered image
are extracted in order to obtain the boundary curve. Finally, a linear fit is applied to the
boundary curve using the least squares method to determine the slope of the fitted equation
(as shown in Figure 9).
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3. Results and Discussion
3.1. PB Experimental Design
3.1.1. PB Experimental Design and Results

In this study, the PB test was designed using Design-Expert’s 11-factor table. Two
levels of high and low were assigned to each factor, with the ratio of high level to low
level set within 2.5. The study includes seven real variables, encompassing exposure
parameters of the exposure model and model parameters, as well as four dummy variables
for estimating errors and distinguishing the effects of different factors. The ranges of
material intrinsic parameters and contact parameters are available based on references and
EDEM material database. However, surface energy varies significantly with particle size
and moisture content, for which no relevant reference values are provided in the literature.
Therefore, pre-simulation tests are necessary to determine the range of surface energy. In
summary, Table 3 presents the range of parameters for the PB experimental design.

Table 3. Parameters of PB test.

Surface Energy Low Level High Level

Particle-particle surface energy X0 0.05 0.1
Particle-particle recovery coefficient X1 0.4 0.8

Particle-particle static friction coefficient X2 0.5 1.0
Particle-particle rolling friction coefficient X3 0.01 0.02

Particle-steel coefficient of restitution X4 0.4 0.8
Particle-steel static friction coefficient X5 0.5 1.0

Particle-steel rolling friction coefficient X6 0.01 0.02
Virtual factors V1, V2, V3, V4 −1 +1
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After determining the high and low levels of the parameters, a PB test design was
implemented to intercept the bulk pile from two directions spaced 180◦ apart. The test
design and results can be found in Table 4.

Table 4. PB test design and results.

No. X0 X1 V1 X2 X3 V2 X4 X5 V3 X6 V4 Resting Angle/◦

1 0.1 0.4 −1 1 0.02 1 0.8 0.5 −1 0.01 1 27.0197
2 0.05 0.4 −1 0.5 0.02 1 0.4 1 1 0.02 1 28.5799
3 0.1 0.4 1 1 0.02 −1 0.4 1 −1 0.02 −1 28.679
4 0.05 0.8 −1 1 0.01 −1 0.8 1 −1 0.02 1 13.5499
5 0.1 0.8 −1 0.5 0.02 −1 0.8 1 1 0.01 −1 14.7664
6 0.1 0.4 1 0.5 0.01 −1 0.8 0.5 1 0.02 1 25.4851
7 0.05 0.4 −1 0.5 0.01 −1 0.4 0.5 −1 0.01 −1 27.2393
8 0.05 0.8 1 1 0.02 −1 0.4 0.5 1 0.01 1 22.2007
9 0.05 0.8 1 0.5 0.02 1 0.8 0.5 −1 0.02 −1 17.5636

10 0.05 0.4 1 1 0.01 1 0.8 1 1 0.01 −1 25.9859
11 0.1 0.8 −1 1 0.01 1 0.4 0.5 1 0.02 −1 21.5922
12 0.1 0.8 1 0.5 0.01 1 0.4 1 −1 0.01 1 22.6013

3.1.2. Analysis of PB Test Results

In this study, Design-Expert was utilized to conduct an ANOVA analysis of the PB
test results (refer to Table 5). The correlation coefficients of the PB test indicate that the
model can account for 93.3% of the experimental variance, as evidenced by a coefficient
of determination R2 value of 0.9330, demonstrating a high degree of fit with the actual
data. Additionally, R2

adj = 0.8158, which is in close proximity to R2, indicating a strong
correlation; and the coefficient of variation (CV) is relatively small at 9.8%, suggesting
greater precision at 7.7831. In conclusion, these findings suggest that the model exhibits
high reliability and can effectively elucidate the impact of factors on response values.

Table 5. Significance analysis of PB test parameters.

Parameters Effect Sum of Mean
Squares

Impact
Rate F p Significance

Ranking

X0 0.84 2.10 0.70 0.42 0.55 4
X1 −8.45 214.33 70.97 42.38 0.00 1
X2 0.47 0.65 0.22 0.13 0.74 6
X3 0.39 0.46 0.15 0.09 0.78 7
X4 −4.42 58.62 19.41 11.59 0.03 2
X5 −1.16 4.01 1.33 0.79 0.42 3
X6 −0.73 1.59 0.53 0.31 0.61 5

R2 = 0.9330, R2
adj = 0.8158, CV = 9.8%, Adeq Precision = 7.7831

Based on the findings presented in Table 5 and Figure 10, it is evident that both the
particle-particle recovery coefficient and the particle–steel plate recovery coefficient have a
significant impact on the angle of repose of the lees particles. In contrast, the other contact
parameters exhibit a smaller influence. Notably, the particle-particle recovery coefficient
exerts a greater effect on the angle of repose compared to the particle–steel plate recovery
coefficient. This can be attributed to the fact that, during the stacking process of bulk
materials, only the bottom contact particles interact with the steel plate, whereas there are
more interactions among lees particles.
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3.2. Steepest Climb Test

The optimal values of factors can be determined more quickly using the steepest
climb test. According to the PB test results in this paper, only two significant parameters
showed a gradual decrease with the selected step (indicating a negative parameter influence
effect), while surface energy showed a gradual increase with the selected step (indicating a
positive parameter influence effect). In this paper, Design-Expert13 software was applied to
design the steepest climb test. The remaining parameters were set to an intermediate level
(particle-particle static friction coefficient 0.75, particle-particle rolling friction coefficient
0.015, particle–steel plate static friction coefficient 0.75, particle–steel plate static friction
coefficient 0.015) for the steepest climb test. The simulated angle of repose was then
compared with the actual angle of repose of wine lees particles, and the relative error was
calculated. The test program and results are shown in Table 6.

Table 6. Design parameters and results of the steepest ascent test.

No. 1 2 3 4 5

X0 0.05 0.0625 0.075 0.0875 0.1
X1 0.8 0.7 0.6 0.5 0.4
X2 0.75 0.75 0.75 0.75 0.75
X3 0.015 0.015 0.015 0.015 0.015
X4 0.8 0.7 0.6 0.5 0.4
X5 0.75 0.75 0.75 0.75 0.75
X6 0.015 0.015 0.015 0.015 0.015

Resting angle/◦ 17.89 23.8161 26.51365 27.3669 28.4261
Relative error 30.64% 7.67% 2.79% 6.10% 10.21%

Based on the data presented in Table 6, it is evident that the particle simulation
angle of repose increases as the interparticle recovery coefficient and the particle-plate
recovery coefficient increase. Additionally, there is a decrease followed by an increase in
the relative error between the simulated angle of repose and the actual angle of repose. The
3rd combination method exhibits the smallest relative error, suggesting that the optimal
interval for the significance parameter should be close to the selected level of the 3rd set of
tests. To determine this optimal value, a regression model was established using the levels
of the 2nd, 3rd, and 4th groups of tests during response surface analysis testing.
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3.3. Response Surface Analysis Test
3.3.1. BBD Test Design and Results

Box-Behnken response surface analysis is based on the results of the steepest climb
test. Box-Behnken Design with Design-Expert Software. In this test, the non-significant
parameter was chosen at the middle level, while the two significant parameters and surface
energy were each taken at high, medium, and low levels, as shown in Table 7. The regression
model for lees rest angle with these three parameters was established. Three center points
were selected for error estimation, and the experimental design and results are presented
in Table 8, comprising a total of 15 replicated tests including three center points.

Table 7. Factors and levels for Box-Behnken test.

Symbolic Simulation Parameters Low Level (−1) Mid-Level (0) High Level (1)

X0
Particle-particle surface

energy 0.0625 0.075 0.0875

X1
Particle-particle recovery

coefficient 0.5 0.6 0.7

X4
Particle-steel recovery

coefficient 0.5 0.6 0.7

Table 8. Design and results of Box-Behnken simulation test.

No. X0 X1 X4 Resting Angle/◦ Relative Error

1 −1 −1 0 26.60 3.13%
2 0 1 −1 24.46 5.18%
3 0 −1 1 26.66 3.35%
4 0 0 0 25.84 0.18%
5 1 0 1 26.11 1.23%
6 0 0 0 25.84 0.18%
7 1 1 0 25.15 2.49%
8 −1 0 −1 25.99 0.76%
9 −1 1 0 24.79 3.89%

10 0 1 1 23.76 7.87%
11 1 −1 0 27.52 6.69%
12 −1 0 1 26.15 1.37%
13 0 0 0 25.84 0.18%
14 1 0 −1 26.96 4.52%
15 0 −1 −1 27.75 7.60%

3.3.2. Regression Model Analysis
Design-Expert was utilized to establish the second-order regression equation between

the angle of repose and the three parameters, which is expressed as:

Y = 31.57 + 17.48X1 − 0.3X4 − 183.72X0 + 10.1X1 × X4 − 110.74X1 × X0 − 200.92X4 × X0 − 23.5X2
1 + 5.17X2

4 + 2618.92X2
0 (10)

The analysis of variance (ANOVA) of the quadratic regression model was performed
as shown in Appendix A, Table A1, and based on the F-value and p-value, it can be obtained
that the effects of the three factors on the angle of repose Y are in the order of X1 > X4 >
X0 > X0

2 > X4 × X0 > X1
2 > X1 × X0 > X1 × X4 > X4

2, where the particle-particle recovery
coefficient is p < 0.05, indicating that this parameter has a significant effect on the angle
of repose. This linear regression model with p < 0.05 shows the validity of the regression
model, indicating that the relationship between the angle of repose and the resulting
regression equation is significant. The coefficient of variation of the test, CV = 1.41%,
indicates that the reliability of this test is good; coefficient of determination R2 = 0.9595,
Calibration coefficient of determination R2adj = 0.8875, it shows that the regression equation
is highly reliable; Adeq Precision = 11.9308, it shows that the accuracy of the regression
model is good.
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The quadratic regression model is optimized by eliminating terms that do not signifi-
cantly affect the results. The optimized regression equation is as follows:

Y = 30.80 + 15.71X1 + 11.97X4 − 246.34X0 − 200.92X4 × X0 − 23.5X2
1 + 2593.45X2

0 (11)

The ANOVA results of the optimized regression model are presented in Appendix A,
Table A2. At this stage, the coefficient of variation (CV) is 1.22%, the coefficient of deter-
mination (R2) is 0.9522, the corrected coefficient of determination (R2adj) is 0.9164, and the
precision Adeq Precision is 16.5885. Compared to the pre-optimization period, there has
been a significant improvement in terms of goodness of fit, reliability, and precision in this
regression equation.

The quadratic regression model was further optimized by again removing the terms
with insignificant effects. The optimized regression equation is:

Y = 48.92 − 12.96X1 − 3.10X4 − 383.28X0 + 2702.69X0
2 (12)

The analysis of variance (ANOVA) of the regression model after the secondary opti-
mization is shown in Appendix A, Table A3, with coefficient of variation CV = 1.37%, coef-
ficient of determination R2 = 0.9245, corrected coefficient of determination R2adj = 0.8943,
and precision Adeq Precision = 17.5399. After the secondary optimization, the resultant
regression equations further improved the accuracy of the model.

Applying the software Design Expert to solve the optimized regression equation
with the actual rest angle of the particles as the target, we obtained optimal values for
three parameters: a particle-particle recovery coefficient of 0.603, a particle-plate recovery
coefficient of 0.595, and a JKR value of 0.083. By substituting these parameter values into
Equation (12), we calculated a rest angle of 26.033◦, which matches the experimental rest
angle with a relative error of only 0.94%. This small relative error in the angle of repose
demonstrates that the parameters obtained by solving for the response value are indeed
valid for our purposes in this study.

Finally, Table 9 presents the discrete meta-parameters of the wine lees particles
as obtained:

Table 9. DEM parameters of wine lees particles.

Parameters Values

Particle Poisson’s ratio 0.4
Particle shear modulus 1.1 × 107 Pa

Particle density 1053 kg/m3

Particle-particle recovery factor 0.603
Particle-particle static friction coefficient 0.75

Particle-particle rolling friction coefficient 0.015
Particle-steel recovery factor 0.595

Particle-steel static friction coefficient 0.75
Particle-steel rolling friction coefficient 0.015

Surface energy 0.083

3.3.3. Analysis of Interaction Effects

Based on the results of the regression analysis using the established mathematical
model, the impact of factor interactions on the response value can be objectively demon-
strated in order to identify optimal process parameters through parameter interactions. The
three-dimensional spatial maps, which consist of the angle of repose on particle-particle
recovery coefficient, particle-plate recovery coefficient, and surface energy, provide an intu-
itive representation of the influence of each variable on the angle of repose. Additionally,
the shapes of the contour lines reflect the strength of interaction effects, as depicted in
Figure 11, Figure 12, and Figure 13, respectively.



Appl. Sci. 2024, 14, 5281 13 of 16

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18 
 

Particle density 1053 kg/m3 
Particle-particle recovery factor 0.603 

Particle-particle static friction coefficient 0.75 
Particle-particle rolling friction coefficient 0.015 

Particle-steel recovery factor 0.595 
Particle-steel static friction coefficient 0.75 

Particle-steel rolling friction coefficient 0.015 
Surface energy 0.083 

3.3.3. Analysis of Interaction Effects 
Based on the results of the regression analysis using the established mathematical 

model, the impact of factor interactions on the response value can be objectively demon-
strated in order to identify optimal process parameters through parameter interactions. 
The three-dimensional spatial maps, which consist of the angle of repose on particle-par-
ticle recovery coefficient, particle-plate recovery coefficient, and surface energy, provide 
an intuitive representation of the influence of each variable on the angle of repose. Addi-
tionally, the shapes of the contour lines reflect the strength of interaction effects, as de-
picted in Figure 11, Figure 12, and Figure 13, respectively. 

  

Figure 11. Three-dimensional response surface and contour plots of particle-plate recovery coeffi-
cients and particle-particle recovery coefficients for angle of repose. 

  

Figure 11. Three-dimensional response surface and contour plots of particle-plate recovery coefficients
and particle-particle recovery coefficients for angle of repose.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18 
 

Particle density 1053 kg/m3 
Particle-particle recovery factor 0.603 

Particle-particle static friction coefficient 0.75 
Particle-particle rolling friction coefficient 0.015 

Particle-steel recovery factor 0.595 
Particle-steel static friction coefficient 0.75 

Particle-steel rolling friction coefficient 0.015 
Surface energy 0.083 

3.3.3. Analysis of Interaction Effects 
Based on the results of the regression analysis using the established mathematical 

model, the impact of factor interactions on the response value can be objectively demon-
strated in order to identify optimal process parameters through parameter interactions. 
The three-dimensional spatial maps, which consist of the angle of repose on particle-par-
ticle recovery coefficient, particle-plate recovery coefficient, and surface energy, provide 
an intuitive representation of the influence of each variable on the angle of repose. Addi-
tionally, the shapes of the contour lines reflect the strength of interaction effects, as de-
picted in Figure 11, Figure 12, and Figure 13, respectively. 

  

Figure 11. Three-dimensional response surface and contour plots of particle-plate recovery coeffi-
cients and particle-particle recovery coefficients for angle of repose. 

  

Figure 12. Three-dimensional response surface and contour plots of particle-particle recovery coeffi-
cients and surface energies against angle of repose.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 18 
 

Figure 12. Three-dimensional response surface and contour plots of particle-particle recovery coef-
ficients and surface energies against angle of repose. 

  

Figure 13. Three-dimensional response surface and contour plots of particle-plate recovery coeffi-
cient and surface energy against angle of repose. 

3.4. Validation Experiments 
To validate the accuracy of the discrete element parameters obtained, EDEM was uti-

lized to simulate the angle of repose of lees particles by substituting the optimized discrete 
element parameters. The results indicate that the simulated angle of repose of lees parti-
cles is 25.84°, which is very close to the actual angle of repose of lees particles (25.79°) with 
a relative error of only 0.18%. This insignificant difference proves that the optimal param-
eter values obtained are accurate. Figure 14 illustrates the comparison between the simu-
lation test and physical test, showing that the heap profiles of two lees particles are highly 
similar. 

 
(a) 

 
(b) 

Figure 14. Comparison of simulation and physical test. (a) Physical test stacking image. (b) Simula-
tion test stacking image. 

4. Conclusions 
1. This paper utilizes EDEM discrete element simulation software to specifically ana-

lyze the lees particles in a winery. The Hertz-Mindlin with JKR contact model is se-
lected to simulate the lees particles with a moisture content of 20.4%. Through the 
screening process using Plackett-Burman Design, the contact parameters and model 
parameters that significantly affect the angle of repose of the lees particles were 

Figure 13. Three-dimensional response surface and contour plots of particle-plate recovery coefficient
and surface energy against angle of repose.

3.4. Validation Experiments

To validate the accuracy of the discrete element parameters obtained, EDEM was
utilized to simulate the angle of repose of lees particles by substituting the optimized
discrete element parameters. The results indicate that the simulated angle of repose of lees
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particles is 25.84◦, which is very close to the actual angle of repose of lees particles (25.79◦)
with a relative error of only 0.18%. This insignificant difference proves that the optimal
parameter values obtained are accurate. Figure 14 illustrates the comparison between the
simulation test and physical test, showing that the heap profiles of two lees particles are
highly similar.
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4. Conclusions

(1) This paper utilizes EDEM discrete element simulation software to specifically analyze
the lees particles in a winery. The Hertz-Mindlin with JKR contact model is selected
to simulate the lees particles with a moisture content of 20.4%. Through the screening
process using Plackett-Burman Design, the contact parameters and model parameters
that significantly affect the angle of repose of the lees particles were identified. The
results indicated that the particle-particle coefficient of recovery and the particle-plate
coefficient of recovery had the most significant impact.

(2) The steepest climb test was employed to determine the optimal value ranges for
significance parameters and surface energy. A regression model between the angle of
repose of lees particles and these significance parameters as well as surface energy
was established and optimized using the Box-Behnken Design response surface anal-
ysis test. Analysis of variance (ANOVA) revealed that, in addition to significance
parameter and surface energy, the quadratic term of surface energy between particles
also had a significant effect on the angle of repose of lees particles.

(3) By taking into account the actual angle of repose as an objective response value,
optimization and solution techniques were applied to obtain three optimal parame-
ter values: a particle-particle recovery coefficient of 0.603, a particle-plate recovery
coefficient of 0.595, and a JKR value of 0.083.

(4) By substituting the optimal values of the discrete element parameters for the simu-
lation test of the angle of repose of lees particles, it was found that the relative error
with the experimental angle of repose is 0.18%. This result proves that the method of
obtaining optimal parameter values by solving the angle of repose as the response
value is effective. The comparative validation test results also demonstrate that there
is no significant difference between the simulated rest angle of lees particles and the
actual rest angle, thus confirming the accuracy and reliability of the calibrated discrete
element model parameters for lees particles.
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Appendix A

Table A1. Variance analysis of regression model of BBD test.

Parameters Sum of Mean
Squares Freedom Mean

Square F p Significance

Models 16.08 9 1.79 13.27 0.0054 *
X1 13.44 1 13.44 99.88 0.0002 *
X4 0.768 1 0.768 5.71 0.062
X0 0.612 1 0.612 4.54 0.086

X1X4 0.041 1 0.041 0.303 0.606 -
X1X0 0.077 1 0.077 0.569 0.485 -
X4X0 0.252 1 0.252 1.87 0.229 -
X1

2 0.204 1 0.204 1.51 0.273 -
X4

2 0.010 1 0.010 0.073 0.797 -
X0

2 0.618 1 0.618 4.59 0.085
Residual 0.673 5 0.135

Lack of Fit 0.673 3 0.224
Pure error 0 2 0
Cor Total 16.75 14

R2 = 0.9598, R2adj = 0.8875, CV = 1.41%, Adeq Precision = 11.9308

Ps: * is significant (p < 0.05); - is not significant (p > 0.1).

Table A2. Variance analysis of optimized regression model of BBD test.

Parameters Sum of Mean
Squares Freedom Mean

Square F p Significance

Models 15.95 6 2.66 26.58 <0.0001 **
X1 13.44 1 13.44 134.38 <0.0001 **
X4 0.77 1 0.77 7.68 0.024 *
X0 0.61 1 0.61 6.11 0.039 *

X4X0 0.25 1 0.25 2.52 0.151 -
X1

2 0.21 1 0.21 2.12 0.184 -
X0

2 0.61 1 0.61 6.1 0.039 *
Residual 0.80 8 0.10

Lack of Fit 0.80 6 0.13
Pure error 0 2 0
Cor Total 16.75 14

R2 = 0.9522, R2adj = 0.9164, CV = 1.22%, Adeq Precision = 16.5885

Ps: ** is extremely significant (p < 0.0001); * is significant (p < 0.05); - is not significant (p > 0.1).

Table A3. ANOVA of the regression model for secondary BBD optimization.

Parameters Sum of Mean
Squares Freedom Mean

Square F p Significance

Models 15.95 4 3.87 30.62 <0.0001 **
X1 13.44 1 13.44 106.30 <0.0001 **
X4 0.77 1 0.77 6.08 0.033 *
X0 0.61 1 0.61 4.84 0.053 *
X0

2 0.67 1 0.67 5.26 0.045 *
Residual 1.26 10 0.13

Lack of Fit 1.26 8 0.16
Pure error 0 2 0
Cor Total 16.75 14

R2 = 0.9245, R2
adj = 0.8943, CV = 1.37%, Adeq Precision = 17.5399

Ps: ** is extremely significant (p < 0.0001); * is significant (p < 0.05).
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