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Featured Application: Detection of superficial semi-elliptical defects in steel pipes using the
variation in the self-magnetic flux leakage based on the metal magnetic memory method.

Abstract: Ferromagnetic pipes are widely used for fluid transportation in various industries. The
failure of these ferromagnetic pipes due to surface defects can generate industrial accidents, economic
losses, and environmental pollution. Non-destructive testing techniques are required to detect
these surface defects. An alternative is the metal magnetic memory (MMM) method, which can be
employed to detect surface flaws in ferromagnetic structures. Based on this method, we present an
analysis of experimental results of the magnetic field variations around five different surface semi-
elliptical defects of an ASTM A36 steel pipe. A measurement system of MMM signals is implemented
with a rotatory mechanism, a magnetoresistive sensor, a data processing unit, and a control digital unit.
The MMM method does not require expensive equipment or special treatment of the ferromagnetic
structures. In order to research a potential relationship between the defect sample size and the
measured MMM signals, variable defect dimensions are experimentally considered. According to
these results, the shape and magnitude of the normal and tangential MMM signals are altered by the
superficial semi-elliptical defects. In particular, the maximum and mean tangential components and
the maximum and minimum normal components are related to the defect dimensions. The proposed
measurement system can be used to study the behavior of magnetic field variations around surface
defects of ferromagnetic pipes. This system can be adapted to measure the position and damage level
of small defects on the surface of ferromagnetic pipes.

Keywords: ferromagnetic structure; surface magnetic defects; magnetic field sensor; metal magnetic
memory method; non-destructive testing; magnetic field variation; semi-elliptic defect

1. Introduction

Different liquids and gases are transported daily through steel pipes between in-
dustries and city installations. Efficient damage detection techniques in transportation
ferromagnetic pipelines are required to avoid catastrophic accidents or environmental
pollution. These accidents can generate high economic loss and damage to the human
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population. For instance, the US has approximately 170,000 miles of hazardous liquid
pipelines [1]. According to current regulations, hazardous liquids include petroleum,
petroleum products, and anhydrous ammonia. About 66% of domestic petroleum moves
through these pipelines [2]. The types of costs due to accidents involving US hazardous liq-
uid pipeline infrastructure include the following: (i) the value of the product lost; (ii) public,
private, and operator property damage; and (iii) cleanup, recovery, and other costs [3].

Damage detection in steel pipes is an essential challenge for non-destructive test-
ing (NDT). Different NDT techniques have been employed for damage monitoring on
ferromagnetic pipes, including liquid penetrant tests [4], ultrasonic tests [5], dynamic
permeability testing [6], corrosion monitoring techniques [7], visual inspection and assess-
ment techniques [8], eddy current testing [9], magnetic flux leakage testing [10], and X-ray
inspection [11]. Defects in ferromagnetic pipes can be detected using liquid-penetrant
testing based on the accumulation of a liquid around the defect on the sample surface.
However, this NDT technique requires smooth and contaminant-free surfaces [12]. In ultra-
sonic testing, small defects in ferromagnetic pipes can be detected using ultrasonic pulses.
Nonetheless, ultrasonic testing requires highly trained and experienced operators [13–15].
On the other hand, visual inspection NDT techniques can be employed to monitor pipe
surface flaws [16,17]. Nevertheless, visual inspection is suitable for detecting relatively
large ferromagnetic defects. In another NDT technique, the ferromagnetic pipe cracks can
be detected using small magnetic particles through a dry or wet suspension of iron filings.
However, this NDT technique has a low sensitivity of the inspection of cracks parallel to
the applied magnetic field [18,19]. Another NDT technique is based on the eddy current,
which can detect cracks in ferromagnetic pipelines [20,21]. This NDT technique requires
an electromagnetic energy source for the eddy current induction on the pipe surface and
high-skilled personnel to analyze the results. Moreover, magnetic flux leakage is another
NDT technique for monitoring flaws in ferromagnetic pipes, in which the pipe is magne-
tized, employing an external magnetic field [22–24]. Finally, the X-ray inspection NDT can
be used for monitoring surface or internal discontinuities in ferromagnetic pipes. However,
this NDT technique requires high-cost equipment and skilled personnel [25].

Flaws on ferromagnetic pipes can be detected using conventional NDT techniques,
although several NDT techniques require expensive specialized equipment and sample
treatments. Furthermore, these NDT techniques require highly skilled personnel to study
their results. Also, conventional NDT techniques have problems in monitoring early stage
damage on ferromagnetic pipe surfaces, such as small defects at the micrometer scale and
in stress concentration zones (SCZs) [26]. On the other hand, magnetic properties analysis
has been used in NDT techniques to characterize ferromagnetic materials. For instance, the
micromagnetic characterization of ferromagnetic steels in various heat treatment conditions
can be measured using a hysteresis frame device [27]. Magnetic force microscopy can be
employed to assess the magnetic properties of nanomaterials [28].

The metal magnetic memory (MMM) method is an NDT technique used to detect
flaws in ferromagnetic structures and it was introduced by Duvov [29]. The MMM method
is based on the magneto-elasticity property associated with the magnetic fields of ferro-
magnetic materials under stress as well as with the geomagnetic fields. The MMM method
can measure the magnetic field shifts on ferromagnetic surfaces [30–37]. This method does
not need artificial magnetic field sources, which is in contrast with magnetic flux leakage
(MFL) testing [38–40]. In ferromagnetic materials, the magnetic field measured with the
MMM method is related to the residual magnetic leakage field (RMFL) around surface
defects [41–43].

The surface defects on ferromagnetic samples can be measured using the variations
of the MMM signals around the defects without skilled personnel and expensive equip-
ment [44,45]. The ferromagnetic materials may have residual magnetic fields due to their
fabrication processes, flaws, SCZs, and applied magnetic fields. Small variations in the
magnetic field around the surface defects of ferromagnetic structures can be measured by
employing highly sensitive and high-resolution magnetometers. This MMM method can
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detect flaws and SCZs on ferromagnetic structure surfaces. According to mathematical
models reported by [46,47], the MMM signals around flaws on ferromagnetic surfaces
register a tangential Ht(x) component peak value and a normal Hn(x) component zero value
at the center of the ferromagnetic material defect or SCZ [48], as is depicted in Figure 1.
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The MMM method is used in diverse fields due to its easy and low-cost implemen-
tation. This method can assess the size and shape of the defects on a ferromagnetic
pipe surface [34]. Various researchers have reported models and experimental tests
to quantify the relationship between the defect size and the variation in their MMM
signals [30–32,40,47,49]. Nevertheless, this method requires more experimental tests to
quantify the shape and size of different defects on pipe surfaces. Herein, we report the
analysis of the behavior of the MMM signals related to the size and shape of five differ-
ent semi-elliptical defects on the surface of a ferromagnetic pipe. The MMM signals are
measured using a rotatory structure, a magnetoresistive sensor, a microcontroller board,
and a laptop. According to the experimental results, the size of semi-elliptical defects
can be estimated by studying the behavior of the normal and tangential MMM signals.
This measurement system of MMM signals can be used to predict the position and size of
semi-elliptical defects on the surface of ferromagnetic pipes. This system does not require
expensive equipment and highly skilled operators.

2. Materials and Methods

The measurement system for the ferromagnetic pipe sample is shown in Figure 2. An
ATmega2560 microcontroller board (Arduino, Turin, Italy) is used for the data acquisition
of the magnetic field sensor, actuator control, and data transmission to the computer. The
data processing and MMM signals are plotted using MATLAB software (version 2022).

The MMM signals are measured with the three-axis magnetoresistive sensor MAG3110
(Freescale Semiconductor Inc., Austin, TX, USA) that is placed at a fixed distance of 2 mm
from the pipe surface. The proposed system can measure the MMM signals of defects
on the surface of ferromagnetic pipes in rotation using the one-step motor NEMA-17
(Leadshine Technology Co., Shenzhen, China) driven by the DVR8825 (Texas Instruents,
Dallas, TX, USA) shield board. The data of the magnetoresistive sensor are transferred to a
microcontroller board using I2C. Next, the data of this microcontroller board are transferred
to a computer using USB. The structure of the measurement system was fabricated with
non-magnetic materials, such as nylamid, copper, and aluminum. This system can be used
for pipes with different diameters.

The pipe is collocated on the nylamid rotary disk that is driven by the x-axis step
motor using a speed-reduction copper gear. This speed-reduction gear has internal and
external diameters of 78.5 mm and 89 mm, respectively, a width of 5.5 mm, and a total of
102 teeth. A speed reduction from 1.8 degrees/step to 0.00227 degrees/step is achieved
with the gear system, as shown in Figure 3.
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Figure 3. The gear system of the measurement system.

The control of the step motors for pipe movement and sensor data acquisition/
transmission is achieved by the microcontroller program that is developed in the Ar-
duino programming language. The rotational and longitudinal movements of the pipe
are driven by the x-axis and y-axis step motors, respectively. Figure 4 depicts the program
flowchart used to measure the MMM signals of the defects on the pipe surface. The main
program is constantly pooling a command, which is serially received from the computer,
to set a counterclockwise or clockwise pipe rotational movement. The pipe rotational
angle is computed by an encoder value reading within an interrupt service routine (ISR). A
counterclockwise command (N_Clk) is first received at the start of the scan. The sensor data,
current degree, and arc length are serially sent to a computer within the counterclockwise
scan until a reference angle is reached. Then, a clockwise scanning command is received
(Clk), and the same information is serially sent until the initial position is reached. The data
are serially received by the computer using the MATLAB software, in which the MMM
signals are processed.
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3. Results and Discussion

Five semi-elliptical shape defects were made on the surface of an ASTM A36 ferromag-
netic pipe [50] with a length of 113.55 mm, an outer diameter of 89 mm, and a thickness
of 5.45 mm. The defects were generated with the vertical cutter tool Ball Noise End Mills
series 1725 through a computer numerical control (CNC) machine (see Figure 5). The
resulting shape dimensions of the five defects are depicted in Figure 6.
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Figure 6. Dimensions of the five semi-elliptical defects machined on the surface of the ASTM A36
ferromagnetic pipe.

The tangential (Ht(x)) and normal (Hn(x)) MMM signals around semi-elliptical defects
on the pipe surface were obtained using the measurement system. Six continuous tests
were reported for each of the five semielliptical defects S1–S5. The scan length was 12 mm
with the defect located in the center.

The tangential and normal MMM signals for the five defects are shown in Figures 7
and 8, respectively. As it is observed, the resulting MMM signal shapes for all the samples
agree with the theoretically expected values; see Figure 1. The tangential component
maximum Ht_max(x) and the tangential component mean value along the scanning length
Ht_mean(x) are shown in Table 1. In addition, Table 2 shows the maximum and minimum
values of the MMM signal component Hn(x)_max and Hn(x)_min, the distance between
the normal component maximum and minimum values ∆n(x), and the normal component
mean value along the scanning length Hn(x)_mean.

Table 1. Tangential MMM signals of the five semi-elliptical defects.

Defect Sample Ht(x)_max
(mT)

Ht(x)_mean
(mT)

S1 83.28 ± 0.354 43.49 ± 0.335
S2 91.3 ± 0.328 46.77 ± 0.265
S3 92.55 ± 0.243 56.66 ± 0.288
S4 86.12 ± 0.160 55.77 ± 0.237
S5 80.27 ± 0.207 57.42 ± 0.380

Table 2. Normal MMM signals of the five semi-elliptical defects.

Defect Sample Hn(x)_min
(mT)

Hn(x)_max
(mT)

∆n(x)
(mm)

Hn(x)_mean
(mT)

S1 160.75 ± 0.596 217.15 ± 0.493 3.806 ± 0.242 183.72 ± 0.304
S2 194.2 ± 1.018 263.18 ± 0.564 3.526 ± 0.411 225.16 ± 0.448
S3 193.92 ± 0.728 260.67 ± 0.589 3.814 ± 0.885 223.16 ± 0.545
S4 188.55 ± 0.468 244.17 ± 0.516 2.115 ± 0.152 216.42 ± 0.127
S5 196.57 ± 0.398 237.15 ± 0.423 2.423 ± 0.128 220.15 ± 0.266
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The maximum tangential component Ht(x)_max has an increasing behavior for the
defect samples S1, S2, and S3 and a decreasing behavior for S4 and S5. The tangential
component mean Ht(x)_mean has an increasing value tendency from S1 to S5. In this sense,
the measuring of Ht(x)_max and Ht(x)_mean might be further researched to be used to
quantitatively determine the defect severity level. As it is observed in Figure 7, the location
of the maximum tangential values are nearby the defect centers. Hence, such values might
be used to locate a defect.

As can be seen from Table 2, no significant difference in the normal component mean
value Hn(x)_mean was obtained for the considered defect samples. A higher value of
the distance between the minimum and maximum normal component locations ∆n(x)
was achieved for S1, S2, and S3 compared with S4 and S5. Hence, the smaller the defect
dimensions, the higher the distance ∆n(x).

As it is observed for all five semi-elliptical defects samples, the peak value of the
tangential component signal is located near the defect center (x = 0 mm). Moreover, the
deepest defect has the highest tangential component mean value. On the other hand, the
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normal component signal maximum and minimum values are located approximately near
the defect edges.
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4. Conclusions

An MMM-based analysis of the magnetic field variations around five semi-elliptical
defects with different sizes on an ASTM A36 steel pipe was reported. A measuring system
not requiring high-cost equipment, highly skilled operators, and additional pipe treatment
was implemented for monitoring MMM signals on the surface of ferromagnetic pipes. The
characterized MMM normal and tangential component signals due to semi-elliptical defect
dimensions were achieved by the measuring system.

The defect locations were discovered by using the measured MMM normal and
tangential components in the experimental stage. Although the defects were completely
located, further experimental work involving signal analysis techniques is required to
quantitatively characterize the defect severity level, which is a promising future application
of the measuring system. Based on the results of the MMM component signals, the
maximum and mean tangential component values as well as the distance between the
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location of the maximum and minimum normal component values were found to be related
to the defect dimension. These results can be used in future research for a quantitative
assessment of the defect severity level.

The described MMM signals measuring system is a helpful tool in researching NDT
magnetic methods focused on analyzing defects or SCZs on ferromagnetic tubes. The
effect analysis of measured MMM signal components due to defined defect shapes, stress
concentration in specific pipe zones, and damage severity level is left as future work.
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