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Abstract: Aiming at the problem that the range profile of the current array lidar has a low resolution
and contains few target details and little edge information, a super-resolution reconstruction method
based on projection onto convex sets (POCS) combining the Lucas–Kanade (LK) optical flow method
with a Gaussian pyramid was proposed. Firstly, the reference high-resolution range profile was
obtained by the nearest neighbor interpolation of the single low-resolution range profile. Secondly,
the LK optical flow method was introduced to achieve the motion estimation of low-resolution
image sequences, and the Gaussian pyramid was used to perform multi-scale correction on the
estimated vector, effectively improving the accuracy of motion estimation. On the basis of data
consistency constraints, gradient constraints were introduced based on the distance value difference
between the target edge and the background to enhance the reconstruction ability of the target edge.
Finally, the residual between the estimated distance and the actual distance was calculated, and the
high-resolution reference range profile was iteratively corrected by using the point spread function
according to the residual. Bilinear interpolation, bicubic interpolation, POCS, POCS with adaptive
correction threshold, and the proposed method were used to reconstruct the range profile of the
datasets and the real datasets. The effectiveness of the proposed method was verified by the range
profile reconstruction effect and objective evaluation index. The experimental results show that the
index of the proposed method is improved compared to the interpolation method and the POCS
method. In the redwood-3dscan dataset experiments, compared to the traditional POCS, the average
gradient (AG) of the proposed method is increased by at least 8.04%, and the edge strength (ES) is
increased by at least 4.84%. In the real data experiments, compared to the traditional POCS, the AG of
the proposed method is increased by at least 5.85%, and the ES is increased by at least 7.01%, which
proves that the proposed method can effectively improve the resolution of the reconstructed range
map and the quality of the detail edges.

Keywords: lidar; POCS; LK optical flow method; Gaussian pyramid; super-resolution reconstruction;
range profile

1. Introduction

A three-dimensional range profile can provide key information such as the precise
position, geometry, size and shape of the target, which is promising for a wide range of
applications in the fields of target detection, urban security, and autonomous driving [1].
The Geiger Mode Avalanche Photon Diode (GM-APD) array-based lidar used in this paper
has the advantages of high sensitivity, long detection range, small size, fast response speed,
and the ability to simultaneously acquire the distance and intensity information of the
target [2,3]. At present, foreign published research has shown that the number of array
lidar arrays based on GM-APD has reached 256 × 256, but in the domestic research on
its late start, subject to the device limitations, the number of array pixels is only up to
64 × 64 [4]. The subsequent detection task, the distance into the image, contains fewer
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target information pixels; feature extraction cannot be performed due to the lack of rich
target details and edge information, resulting in the acquisition of target details of the edge
with limited information about the features, which reduces the accuracy of the detection
and recognition [5]. In this paper, a super-resolution reconstruction method is utilized to
improve the range profile resolution and enrich the target details and edge information.

The currently existing super-resolution reconstruction methods are mainly categorized
into three types: interpolation-based, learning-based, and reconstruction model-based [6,7].
The widely used interpolation-based super-resolution reconstruction techniques are nearest
neighbor interpolation, bilinear interpolation, and bicubic interpolation. Nearest neighbor
interpolation [8] considers the unknown image element to have the same distance value
as the nearest neighbor image element, which is based on the principle of taking the
distance value of the neighboring point with the shortest Euclidean distance among the
four neighboring pixel points around the point to be interpolated as the distance value of
that point. The bilinear interpolation [9] principle takes the original range profile with its
neighboring four points in the image element distance value of the horizontal and vertical
direction of the linear interpolation so as to calculate the distance value of the points to be
sampled. Bicubic interpolation [10] takes into account not only the effect of the distances of
the four directly neighboring points, but also the effect of the rate of change in the distance
values between each neighboring point, which better preserves the details and structures
in the range profile. However, the interpolation-based method only relies on its own image
information, which makes it difficult to recover detail information effectively.

Learning-based super-resolution reconstruction techniques mainly use deep learn-
ing models to learn the mapping relationship between low-resolution images and high-
resolution images and generate high-quality reconstruction results. Dong et al. [11,12],
for the first time combining a convolutional neural network and super-resolution image
reconstruction technology, proposed the SRCNN (super-resolution convolutional neural
network) method, through a large amount of convolution of the input low-resolution image
feature extraction and its reconstruction effect, and its reconstruction efficiency was higher
than that of previous image reconstruction methods. Subsequently, Kim [13] et al. proposed
the FSRCNN (fast super-resolution convolutional neural network) method on the basis of
the SRCNN method to address the problems of insufficient details in processing images,
high network computation, and low network computation rate. Learning-based super-
resolution reconstruction techniques often require a large number of high-resolution images
to establish a sample library in order to conduct super-resolution reconstruction. Deep
learning methods rely on large amounts of labeled data for training and excel in handling
complex image details and textures. However, these methods face challenges in scenarios
with limited data availability. Additionally, deep learning models often require retraining
or fine-tuning to maintain a high performance across different datasets or application
contexts, which increases the complexity of their application. The internal mechanisms
of deep learning models are also complex, typically regarded as a “black box,” which
can pose challenges in applications that demand result transparency and interpretability.
The imaging system used in this paper cannot obtain high-resolution images due to the
limitations of the detection array, and in the application fields of precision guidance and
urban security, it is difficult to ensure that there is a more complete target sample library
during the process of super-resolution reconstruction of the target range profile by using
a neural network method. Therefore, it is particularly important to propose an image
super-resolution reconstruction technique that does not rely on sample learning.

Model-based methods do not require large amounts of training data, which provides
a significant advantage in scenarios with limited data availability. Since they are based on
well-defined physical and mathematical models, these methods exhibit good generalization
capabilities across different scenarios without the need for retraining or fine-tuning for
various datasets or application contexts. Additionally, model-based methods typically
offer a superior interpretability and transparency, as their mechanisms and results can be
understood and analyzed through physical and mathematical principles. Reconstruction
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model-based methods incorporate the a priori knowledge of the image as constraints into
the image super-resolution reconstruction process. This class of methods is able to uti-
lize image a priori knowledge to infer high-resolution image detail information for better
preservation of image details, and can combine different a priori knowledge and constraints
for image reconstruction with high flexibility and scalability. The projection onto convex
sets (POCS) super-resolution reconstruction method belongs to a type of reconstruction
modeling method that is able to add the a priori information of the low-resolution image se-
quences to the reconstruction process and then reconstructs a higher-quality high-resolution
image by correcting the projection of the interpolated high-resolution reference image [14].
However, this method has the problems of non-unique solution and low convergence sta-
bility, which leads to the presence of artifacts at the edge of the image, and for this reason,
some scholars have carried out improvement research. Jian Chen et al. [15] introduced
Gaussian gradient map theory for neighborhood consistency information measurement,
introduced the gradient information of the image as a convex set constraint, and adaptively
selected the iteration step size for pixels with different gradients, which improved the origi-
nal POCS with a poor retention of edge effects but that lacked the ability to process image
detail quality. Fang Yaoxin et al. [16] performed edge detection on the initial high-resolution
frame to be reconstructed and then applied the improved point spread function (PSF) to
the detected edge pixels, so that the horizontal and vertical coefficients of the PSF corre-
sponding to the pixels at the edges were set to different weights according to the change in
the edge slope. The proposed method took into account the specificity of the reconstruction
of the edge parts of the image, so that the edge of the reconstructed high-resolution image
was well maintained. Wenhao Shao et al. [17] considered the difference between the target
region and the background of the image to introduce an adaptive correction threshold
and adjusted the size of the correction threshold by utilizing the statistical properties of
the edge strength obtained by the Scharr operator, so that the recovered high-resolution
sub-millimeter-wave image was close to the real image. Lina Xu [18] et al. improved the
original POCS by constructing reference frames using energy successive degradation and
motion estimation using the Vandewalle alignment method to determine the exact position
of the low-scoring image in the high-scoring grid, which can effectively improve the image
clarity and increase detail information.

Fractional calculus and fractional processes, with applications in control systems and
image processing, are a hot topic. Many computational fractional intelligence systems and
stability analysis and image processing applications have been proposed [19]. R. Liu [20]
proposed a new image enhancement algorithm using the combination of rough set and
the particle swarm optimization (PSO) algorithm to distinguish the smooth area and edge
and texture areas of the image and, according to the results of image segmentation, an
adaptive fractional differential filter was used to enhance the image. Xue feng Zhang
et al. [21] proposed an image enhancement algorithm based on a rough set and fractional
order differentiator. By combining the rough set theory with a Gaussian mixture model, a
new image segmentation algorithm with higher immunity was obtained. Hui Yan et al. [22]
designed an infrared (IR) and visible (VIS) image fusion algorithm for the injection of the
IR objects into the VIS background in a perceptual manner. It ensures that the fused image
has both the rich background information of the VIS image and the salient features of the
IR image.

Aiming at the problem that the range profiles formed by the current array lidar have
low resolution and contain few target details and little edge information, and inspired by
the above literature, a POCS super-resolution reconstruction method combining the LK
optical flow method and the Gaussian pyramid is proposed in this paper. Considering
the distance mutation of the target at the edge background, the gradient constraint is
introduced under the data consistency constraint to enrich the edge information of the
reconstructed image; finally, projection iteration correction is performed on the reference
high-resolution range profile to achieve the improvement in the resolution of the range
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profile while retaining more detailed edge information of the target. The main contributions
of this paper are as follows:

(1) The LK optical flow method is introduced into the traditional POCS super-resolution
reconstruction method, which combines the Gaussian pyramid with multi-scale correc-
tion of the estimation vector to improve the motion estimation accuracy and effectively
enhance the reconstructed image detail information.

(2) Considering the sudden change in the target’s distance at the edge background, the
gradient constraint is introduced on top of the data consistency constraint, which
enhances the reconstruction ability of the target edge.

The rest of this paper is structured as follows: In Section 2, we discuss the details
of the proposed method and provide the theoretical analysis. In Section 3, we conduct
experimental tests based on the redwood-3dscan dataset and APD array lidar data and
present the experimental results. In Section 4, we present the conclusion and discussion of
our work.

2. Methods
2.1. POCS Method

POCS is an ensemble-based theoretical method that can flexibly utilize all kinds of
prior knowledge, and the relevant prior knowledge can be used as constraints for image
reconstruction [23]. The method is an iterative process; the projection operator of the
corresponding constraint set projects a point in the solution space to the point closest to
the surface of the convex set and repeatedly performs the iterative operation to obtain a
solution that converges to the intersection of the convex constraint set [24].

When applying the POCS method for the super-resolution reconstruction of range
profiles, it is necessary to establish a link between the original low-resolution range profile
sequence and the high-resolution range profile, as shown in Equation (1):

dk(x, y) = ∑
(i,j)

D(i, j) · h(x, y; i, j) + µ(x, y) (1)

where dk(x, y) is the kth frame of the low-resolution (LR) observation range profile, the
D(i, j) is the original high-resolution (HR) range profile, h(x, y; i, j) is the point spread
function (PSF), and µ(x, y) is additive noise.

Ck(i, j) is the data consistency constraint, which is the basic constraint for recovery
reconstruction, defined as shown in Equation (2):

Ck(i, j) = {D(i, j) : |rd(x, y)| ≤ δ} (2)

δ is the correction threshold and rd indicates the residual difference between the
low-resolution distance value and the reference high-resolution estimated distance value,
calculated as shown in Equation (3):

rd(x, y) = d(x, y)− ∑
(i,j)

D(i, j) · h(x, y; i, j) (3)

For any point D(i, j) in the reference high-resolution range profile, the projection
under constraint Ck(i, j) is satisfied:

D′(i, j) = D(i, j) +



r(x, y)− δ

∑
i

∑
j

h2(x, y; i, j)
·h(x, y; i, j) , r(x, y) > δ

0 , |r(x, y)| ≤ δ
r(x, y) + δ

∑
i

∑
j

h2(x, y; i, j)
·h(x, y; i, j) , r(x, y) < −δ

(4)
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2.2. Improved POCS Method

The process of POCS super-resolution reconstruction is mainly divided into three parts:
constructing the reference frame, motion estimation, and iterative correction by the PSF.
Among them, motion estimation is a key step to ensure whether the low-resolution range
profile can be accurately mapped to the high-resolution reference range profile, whereas the
traditional POCS using the block-matching motion alignment method is unable to provide
pixel-level information alignment, which affects the quality of the details of the final
reconstructed high-resolution range profile. To improve the accuracy of motion alignment,
the Lucas–Kanade optical flow method based on the Gaussian pyramid is introduced for
motion estimation of range profile sequences. The accuracy of the motion estimation can
be further improved by modeling the motion vectors at different scales through a pyramid
structure and performing optical flow calculations using the Lucas–Kanade method, which
is iteratively calculated through the pyramid structure [25,26].

2.2.1. Motion Estimation by the Lucas–Kanade Optical Flow Method

The optical flow method estimates the motion state of the target in the image by using
the temporal and spatial variations in the distance values in the range profiles of two
adjacent frames and their corresponding distance values to obtain the motion vector field.
The LK optical flow method is based on the optical flow field and assumes that the optical
flow vectors are constant in the region centered on a single point. Set the distance value of
point (x, y) at time t as I(x, y). This point reaches point (x + dx, y + dy) at t + dt time, and
the corresponding distance value is I(x + dx, y + dy). According to the image consistency
hypothesis, when dt → 0 , the distance value of each pixel of the range profile remains
unchanged, that is:

I(x, y, t) = I(x + dx, y + dy, t + dt) (5)

We expanded the right-hand side of Equation (5) by a Taylor series expansion, as in:

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

= Ix
dx
dt

+ Iy
dy
dt

+ It = 0 (6)

Let u = dx
dt and v = dy

dt be expressed in vector form, as in:

∇I·U + It = 0 (7)

∇I = [Ix, Iy] denotes the direction of the gradient from the image and U = [u, v]T

indicates the optical flow vector. We used the least square method to solve U = [u, v]T .

2.2.2. Gaussian Pyramid Multi-Scale Optical Flow Iteration

A Gaussian pyramid is used for the multi-scale iterative calculation of motion vectors
to improve the accuracy of the obtained motion vector. The range profile at the bottom of
the pyramid is used to represent the original low-resolution range profile, and the multi-
layer range profile with reduced resolution can be obtained by downsampling the original
range profile continuously. Then, starting from the top of the pyramid, the optical flow
iterative correction is carried out layer by layer downwards, as shown in Figure 1.

Firstly, the optical flow vector d of the low-resolution range profile L0 is first derived
as the initial value of the bottom of the pyramid, and the range profile size is set to be
downsampled by a factor of 2−1 at a time. Then, the top layer Lm motion vector is:

dLm =
d

2Lm
(8)

Secondly, the optical flow value of the top layer Lm is set to dLm = dLm + gLm , so that
the initial value of the estimated optical flow is gLm = [0, 0]T .



Appl. Sci. 2024, 14, 5335 6 of 17

Then, the initial estimate for layer Lm − 1 is:

gLm−1 = 2
(

dLm + gLm
)

(9)
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After being solved iteratively layer by layer, the final value of the underlying optical
flow d is:

d = dL0 + gL0 (10)

2.2.3. Gradient Constraint and Projection Iteration

In order to further improve the edge details of the range profile, gradient constraints
are introduced on the basis of the original constraints, and the formula is calculated
as follows:

∇gd(x, y) =
[

∂d
∂x

(x, y),
∂d
∂y

(x, y)
]

(11)

∇gD(i, j) =
[

∂D
∂i

(i, j),
∂D
∂j

(i, j)
]

(12)

rg(x, y) = ∇gd(x, y)− ∑
(i,j)

∇gD(i, j) · h(x, y; i, j) (13)

where ∇gd is the local gradient of the low-fraction range profile; ∇gD is the reference
high-resolution range profile local gradient; and rg is the gradient-constrained residual,
and the final residual is combined as:

r(x, y) = rg(x, y) + rd(x, y) (14)

The new constraint can be defined as:

C′
k(i, j) = {D(i, j), |r(x, y)| ≤ δ} (15)

For any point D(i, j) on the reference high-resolution range profile, the projection
under the constraint C′

k(i, j) satisfies:

D′(i, j) = D(i, j) +



r(x, y)− δ

∑
i

∑
j

h2(x, y; i, j)
·h(x, y; i, j) , r(x, y) > δ

0 , |r(x, y)| ≤ δ
r(x, y) + δ

∑
i

∑
j

h2(x, y; i, j)
·h(x, y; i, j) , r(x, y) < −δ

(16)
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To sum up, the improved method firstly adopts the nearest neighbor interpolation that
preserves the edge of the range profile to upsample the single low-resolution range profile
to construct the high-resolution reference frame. Secondly, the LK optical flow method is
introduced to calculate the relative motion vector between low-resolution range profile
sequences, and the motion vector is modified with a Gaussian pyramid. Considering
the distance difference between the edge and the background, the gradient constraint
is introduced under the condition of data consistency constraint. Finally, the reference
high-resolution range profile is iteratively modified by projection to improve the resolution
of the range profile while retaining more detailed edge information of the target. The
overall process of the method is shown in Figure 2.
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3. Experimental Results
3.1. Dataset Experiment and Result Analysis

In this paper, the dataset (redwood-3dscan) used in the literature [27] was used for
quantitative evaluation, which was a range profile with a resolution of 640 × 480 collected
by PrimeSense Carmine camera (Made by PrimeSense, Tel Aviv, Israel). The experiments
were verified on a computer with Intel(R) Core (TM) i7-7700HQ and 16 GB memory, and
MATLAB R2022a was used as the experimental simulation platform.

In order to verify the reconstruction effect of the super-resolution method, the range
profiles of the dataset were firstly downsampled by 1/2, 1/4, and 1/8 to simulate the low-
resolution range profiles and then reconstructed by 200%, 400%, and 800%, respectively,
and compared to bilinear interpolation, bicubic interpolation, POCS, and the POCS method
reproduced in the literature [17]. The average gradient (AG) and edge strength (ES) were
used to objectively evaluate the reconstructed range profile [28].

The AG is the average of the pixel gradient values in the image, and the gradient
reflects the rate of change in the pixel intensity in the image. This indicator not only reveals
the change trend of the entire image, but also captures the change in the contrast and
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texture of tiny details, which is closely related to the clarity of the image, and the larger the
value, the clearer the image, as in:

AG =
1

M × N

M

∑
i=1

N

∑
j=1

√√√√√(
∂ f
∂x

)2
+

(
∂ f
∂y

)2

2
(17)

where M and N represent the number of horizontal and vertical pixels of the range profile,
respectively. ∂ f

∂x is the horizontal gradient and ∂ f
∂y is the vertical gradient.

ES is an important index to evaluate edge sharpness and intensity in images. An
edge refers to an area where the strength of a pixel changes rapidly, often representing
the outline or boundary of the target. The edge intensity is measured by measuring the
gradient amplitude of the edge points in the image, and the larger the value, the better the
retention effect of the edge information, as in:

ES(i, j) =
√
∇x f (i, j)2 +∇y f (i, j)2 (18)

The first-order difference formula of the image along the x and y directions at point
(i, j) is as follows: {

∇x f (i, j) = f (i, j)− f (i − 1, j)
∇y f (i, j) = f (i, j)− f (i, j − 1)

(19)

For the dataset experiment with the reference high-resolution range profile, we addi-
tionally introduced peak signal to noise ratio (PSNR) and structural similarity (SSIM) [21]
to analyze the algorithm performance.

The PSNR measures the quality between the original image and the enhanced image.
A higher PSNR value indicates less degradation of the image. It is estimated by calculating
the value of mean square error (MSE) as:

MSE =
1

MN

M

∑
m=1

N

∑
n=1

(
f (α)(m, n)− f (m, n)

)2
(20)

PSNR = 10 log

(
(L − 1)2

MSE

)
(21)

The SSIM is an indicator of the similarity between two images, which is defined as:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (22)

where µx and µy are the averages of x and y, respectively; σ2
x and σ2

y are the variances of x
and y, respectively; σxy is the covariance of x and y; and c1 = (0.01L)2 and c2 = (0.03L)2

are constant numbers to stabilize the equation. The range of SSIM is [0, 1]. When the two
images are exactly the same, the value of SSIM is equal to 1.

In this experiment, the number of iterations of POCS was set to 5, and the Gaussian
model was used to simulate the PSF. The number of layers of the Gaussian image pyramid
used in this paper was 3. Figures 3 and 4 are the 400% super-resolution reconstruction
effect diagram, and Tables 1 and 2 are the evaluation index results of different algorithms
under different magnifications.
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Figure 3. Super-resolution rendering of the sofa range profile with (a) the original sofa range profile;
(b) bilinear sofa range profile; (c) bicubic sofa range profile; (d) POCS sofa range profile; (e) POCS [17]
sofa range profile; (f) POCS with the LK sofa range profile; (g) POCS with gradient sofa range profile;
and (h) the proposed sofa range profile.

Table 1. Comparison of the evaluation indicators of the sofa range profiles under different magnifications.

AG ES Time/ms

×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8

Bilinear 0.98 0.94 0.86 10.87 10.50 9.69 13.1 14.2 15.4
Bicubic 1.25 1.04 0.91 12.70 11.10 9.93 13.7 15.1 16.1
POCS 1.42 1.10 0.95 13.98 11.37 10.29 34.3 41.6 49.8

POCS [17] 1.53 1.15 0.99 15.02 11.95 10.76 43.2 48.4 53.3
POCS with LK 1.57 1.17 1.05 14.93 11.89 10.73 45.7 51.2 57.6

POCS with Gradient 1.41 1.09 0.96 15.21 12.03 11.13 41.4 46.2 51.1
Proposed 1.58 1.19 1.05 15.42 12.32 11.21 47.3 53.1 59.7

Table 2. Comparison of the PSNR and SSIM of the sofa range profiles under different magnifications.

PSNR SSIM

×2 ×4 ×8 ×2 ×4 ×8

Bilinear 22.4767 19.6141 17.4205 0.8126 0.7174 0.6017
Bicubic 22.6498 19.754 17.6544 0.7889 0.6707 0.5203
POCS 24.4371 22.2587 18.2147 0.8317 0.7752 0.6932

POCS [17] 25.7124 23.7412 18.8253 0.8617 0.7984 0.7184
POCS with LK 25.5834 23.7368 18.8865 0.8543 0.7897 0.7032

POCS with Gradient 24.9758 22.8907 18.8356 0.8412 0.7834 0.7015
Proposed 26.1342 24.0297 18.8793 0.8832 0.8084 0.7217



Appl. Sci. 2024, 14, 5335 10 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 18 
 

In order to further verify the effectiveness of the proposed method in image detail 
edge processing, the vehicle range profile with abundant target surface details and edge 
information was selected from the dataset for experimental verification. It can be seen 
from Figure 4 that the range profile reconstructed based on POCS is better than the overall 
contour details reconstructed by interpolation. Due to the introduction of the adaptive 
correction factor in the method proposed in the literature [17], Figure 4e is sharper than 
Figure 4d at the lights and wheels. Compared to Figure 4f, Figure 4h better highlights the 
difference between the edge and the background at the edges, such as the wheel, but better 
shows the overall details of the object. The range profile reconstructed by the method pro-
posed in this paper is sharper in edge and image detail than that proposed in the literature 
[17] and is the closest to the original range profile. 

（d）POCS

（e）POCS （h）Proposed

（a）Original （b）Bilinear （c）Bicubic

（f）POCS with LK （g）POCS with Gradient
 

Figure 4. Super-resolution rendering of the car range profile with (a) the original car range profile; 
(b) bilinear car range profile; (c) bicubic car range profile; (d) POCS car range profile; (e) POCS [17] 
car range profile; (f) POCS with the LK car range profile; (g) POCS with gradient car range profile; 
and (h) the proposed car range profile. 

It can be seen from Tables 1 and 3 that the POCS super-resolution reconstruction 
method is superior to the interpolation-based super-resolution reconstruction method in 
the evaluation indexes of reconstructed images under different magnifications. Our 
method improves the AG by at least 1.18% and the ES is improved by at least 1.5%, for the 
sofa range profile reconstruction image quality at different magnifications; for the car 
range profile at different magnifications, the AG is improved by at least 1.37% and the ES 
is improved by at least 0.84%. From Tables 2 and 4, we can also see that our algorithm 
outperforms other comparison algorithms in terms of the PSNR and SSIM. 

  

Figure 4. Super-resolution rendering of the car range profile with (a) the original car range profile;
(b) bilinear car range profile; (c) bicubic car range profile; (d) POCS car range profile; (e) POCS [17]
car range profile; (f) POCS with the LK car range profile; (g) POCS with gradient car range profile;
and (h) the proposed car range profile.

The sofa range profile in the dataset that can effectively distinguish the target edge
from the background was selected to verify the effectiveness of the proposed algorithm.
At the same time, ablation experiments were added to verify the effectiveness of the
introduced LK optical flow method and gradient constraint, where POCS + LK means that
the LK optical flow method is introduced to replace the traditional block matching method
in POCS motion registration and POCS + Gradient indicates that gradient constraint is
introduced in POCS. Figure 3a shows the original range profile; Figure 3b,c represent the
range profiles of 400% upsampling bilinear interpolation and bicubic interpolation after
1/4 downsampling, respectively; Figure 3d–h, respectively, represent the 400% upsampling
range profile reconstructed by using POCS after 1/4 downsampling and according to POCS,
POCS + LK, and POCS + Gradient reproduced in reference [17] and the method proposed
in the paper.

As it can be seen from Figure 3, the details at the border of the sofa in Figure 3b are
fuzzy and the edge is not sharp enough; Figure 3c is clearer than Figure 3b in terms of image
details, but it can be seen from the local enlarged image of Figure 3c that the edge details at
the division of sofa and background are not obvious. The reconstruction of range profile
details based on the traditional POCS method is better than that of the interpolation method,
but the edges are still fuzzy when combined with the local magnification of Figure 3d. In
Figure 3e, using the statistical characteristics of the edge intensity obtained by the Scharr
operator to adjust the size of the correction threshold, the effect of the reconstructed range
profile at the edge is better than POCS, but there are still artifacts on the edge. In Figure 3f,



Appl. Sci. 2024, 14, 5335 11 of 17

the motion estimation between the low-resolution image sequences is more accurate due
to the introduction of the LK optical flow method, and the display effect is clearer than
that in Figure 3b–e,g. The edge processing effect needs to be improved, and the target edge
contour cannot be effectively distinguished from the background. The gradient constraint
is introduced in Figure 3g, and although the edge processing effect is better than that in
Figure 3d, the overall detail display effect of the target is worse than that in Figure 3f.
In Figure 3h, by introducing the LK optical flow method and gradient constraint, the
overall details and edge effects of the target are better than those in Figure 3b–g, which can
effectively retain the details and edge information of the target.

In order to further verify the effectiveness of the proposed method in image detail
edge processing, the vehicle range profile with abundant target surface details and edge
information was selected from the dataset for experimental verification. It can be seen
from Figure 4 that the range profile reconstructed based on POCS is better than the overall
contour details reconstructed by interpolation. Due to the introduction of the adaptive
correction factor in the method proposed in the literature [17], Figure 4e is sharper than
Figure 4d at the lights and wheels. Compared to Figure 4f, Figure 4h better highlights
the difference between the edge and the background at the edges, such as the wheel, but
better shows the overall details of the object. The range profile reconstructed by the method
proposed in this paper is sharper in edge and image detail than that proposed in the
literature [17] and is the closest to the original range profile.

It can be seen from Tables 1 and 3 that the POCS super-resolution reconstruction
method is superior to the interpolation-based super-resolution reconstruction method in
the evaluation indexes of reconstructed images under different magnifications. Our method
improves the AG by at least 1.18% and the ES is improved by at least 1.5%, for the sofa range
profile reconstruction image quality at different magnifications; for the car range profile at
different magnifications, the AG is improved by at least 1.37% and the ES is improved by
at least 0.84%. From Tables 2 and 4, we can also see that our algorithm outperforms other
comparison algorithms in terms of the PSNR and SSIM.

Table 3. Comparison of the evaluation indicators of the car range profiles under different magnifications.

AG ES Time/ms

×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8

Bilinear 1.27 1.21 1.01 13.84 13.45 12.07 14.3 15.7 16.9
Bicubic 1.64 1.29 1.08 16.27 16.06 15.17 14.8 16.1 17.4
POCS 2.01 1.36 1.12 19.02 18.79 17.16 36.7 43.2 51.2

POCS [17] 2.27 1.47 1.16 19.58 19.17 17.63 44.8 49.7 55.1
POCS with LK 2.35 1.49 1.20 19.49 18.98 17.54 47.3 52.9 59.4

POCS with Gradient 2.13 1.41 1.14 20.08 19.59 17.97 43.4 47.8 53.8
Proposed 2.38 1.52 1.21 20.35 19.70 18.08 49.6 55.4 61.3

Table 4. Comparison of the PSNR and SSIM of the car range profiles under different magnifications.

PSNR SSIM

×2 ×4 ×8 ×2 ×4 ×8

Bilinear 23.7236 20.4894 18.5695 0.8270 0.7490 0.6563
Bicubic 23.9589 20.6875 18.8796 0.7958 0.6942 0.5709
POCS 25.4371 23.1215 19.3532 0.8621 0.7872 0.7016

POCS [17] 26.7464 24.1632 20.6725 0.8823 0.8057 0.7225
POCS with LK 26.6824 23.9758 20.6346 0.8723 0.7974 0.7183

POCS with Gradient 26.1728 23.5432 20.1325 0.8711 0.7925 0.7097
Proposed 27.1419 25.2231 21.1322 0.8985 0.8154 0.7348
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3.2. Real Detecting Data Experiment and Result Analysis

The GM-APD lidar system diagram (a) and the range profile acquisition schematic (b)
constructed for the experiment are shown in Figure 5. The system is mainly divided into
the laser launching system and echo receiving system; the main process of its detection and
imaging principle is to set up a good delay and gate width in the host computer in advance
and control the laser to launch laser pulses after a delay time ts. After the GM-APD detector
began to work, while the timer began to work, the echo pulse signal triggers the GM-APD;
the GM-APD and timer stop working and this time is recorded as td.
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Figure 5. (a) Schematic diagram of the GM-APD lidar system. (b) Schematic diagram of the GM-APD
lidar range profile acquisition.

Finally, the distance values corresponding to the triggering of each array element are
obtained using the ToF Formula (20):

Di =
ts + td

2
· c (23)

where Di is the distance value recorded by the ith probe array element and c is the speed
of light.

3.2.1. Indoor Scene Experiment and Result Analysis

For this radar system, we set the laser outgoing re-frequency to 10 kHz, pulse width
to 5 ns, single-pulse energy to 120 µJ, and the transceiver instantaneous field of view to
0.8◦ × 0.8◦.

A 64 × 64 low-resolution range profile was obtained by detecting a tank model and an
armored vehicle model at a distance of 10 m from the lidar in an indoor environment, and
5 consecutively selected from the imaged range profile sequence as a low-resolution image
sequence were used as the raw data input.

Since nearest neighbor interpolation is better than bilinear interpolation and bicubic
interpolation for image edge detail preservation, this experiment used nearest neighbor in-
terpolation to complete the construction of high-resolution reference frames. Figures 6 and 7
show the effect of a 400% super-resolution reconstructed image, and Tables 3 and 4 show
the results of evaluation indexes of different algorithms under different magnifications.

From Figures 6 and 7, it can be seen that the interpolation-based super-resolution
reconstruction method is blurred at the edges of the gun barrel and the rear of the tank
model in Figure 6b,c and the front of the armored vehicle and the wheels of the armored
vehicle in Figures 6c and 7b, due to the gradual change in the distance value in the
processing of the unknown pixels. The traditional POCS method is still better than the
interpolation-based method in terms of image details, but due to the large gap between
the distance values of the complex areas of the model contour, the edges of the model
contour are still fuzzy, and the method proposed in the literature [17] has a clear image,
but the edges of Figures 6e and 7e are still slightly artifactual. The method in this paper
can effectively improve the fuzzy edges of the model, and the reconstruction effects of
Figures 6f and 7f are clear and sharp edges, which can effectively improve the model edge
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blurring. The reconstruction effect of Figures 6f and 7f is clear and the edges are sharp,
which can effectively retain the detailed information of the reconstructed images.
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Figure 6. Super-resolution rendering of the tank model range profile with (a) the original tank model
range profile; (b) bilinear tank model range profile; (c) bicubic tank model range profile; (d) POCS
tank model range profile; (e) POCS [17] tank model range profile; and (f) the proposed tank model
range profile.

Combining the effect diagrams with the evaluation index results from Tables 5 and 6,
it can be seen that the details and edge information contained in the range profile of the
armored vehicle model are significantly higher than those of the tank model range profile,
which is due to the fact that the GM-APD is a single-photon probabilistic detector. The
surface contour of the armored vehicle model is more complex than the surface of the tank
model, the number of photons returned by the armored vehicle is lower than that of the
tank model, and the number of gaps between the wheels is large, resulting in significantly
more voids in the final range profile than in the tank model. The number of photons
returned from the armored car is lower than the number of photons from the tank model,
and there are considerable gaps between the wheels, which leads to the fact that there
are more holes in the final range profile than in the tank model. As a result, the edge
information of the range profile of the armored car model is significantly larger than that of
the tank model.
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Figure 7. Super-resolution rendering of the armored car model range profile with (a) the original
armored car model range profile; (b) bilinear armored car model profile; (c) bicubic armored car
model range profile; (d) POCS armored car model range profile; (e) POCS [17] armored car model
range profile; and (f) the proposed armored car model range profile.

Table 5. Comparison of the evaluation indicators of the tank model range profile under different
magnifications.

AG ES Time/ms

×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8

Bilinear 2.34 1.27 0.65 23.94 13.81 7.33 4.1 5.3 6.7
Bicubic 3.22 1.69 0.85 30.38 18.08 9.56 4.2 6.4 7.3
POCS 5.06 2.17 1.11 34.96 22.36 11.93 16.2 23.8 31.5

POCS [17] 5.27 2.26 1.16 36.01 23.29 12.47 24.1 29.5 35.2
Proposed 5.46 2.35 1.22 37.41 24.16 12.82 27.2 32.4 39.1

Table 6. Comparison of the evaluation indicators of the armored car model range profile under
different magnifications.

AG ES Time/ms

×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8

Bilinear 4.28 2.37 1.24 42.60 25.64 13.80 4.9 6.3 7.2
Bicubic 5.98 3.17 1.61 55.26 33.85 18.01 5.2 7.4 8.1
POCS 9.35 3.90 1.97 64.52 38.69 20.85 18.2 25.3 34.2

POCS [17] 10.16 4.34 2.16 68.39 40.54 21.68 25.4 31.2 37.3
Proposed 10.69 4.56 2.24 71.48 42.21 22.52 29.5 35.3 42.6
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3.2.2. Outdoor Scene Experiment and Result Analysis

In order to further verify the reliability of the method, under the settings of the same
radar system experimental parameters, the detection imaging of the outdoor scene at
a distance of 280 m from the lidar was carried out, and the detection targets included
pedestrians riding bicycles, SUV cars, and sedans, in which the SUV cars were in the state
of being obscured. Figure 8 shows the 400% super-resolution imaging effect.
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scene range profile; (b) bilinear outdoor scene range profile; (c) bicubic outdoor scene range profile;
(d) POCS outdoor scene range profile; (e) POCS [17] outdoor scene range profile; and (f) the proposed
outdoor scene range profile.

From Figure 8b,c, it can be seen that the interpolation-based super-resolution range
profile of the target edge and contour details are fuzzy, and when the target and the target or
target and background distance values are similar, for example, pedestrians riding bicycles
and in close proximity of the side car, the pedestrian is easily interfered with by the bicycle
and the car, resulting in the reduction in the accuracy of the extracted feature information.
Figure 8f clearly shows the target contours of pedestrians, bicycles, sedans, and SUVs, and
it can be seen in Table 7 that the proposed method improves the AG by at least 4.15% and
the ES by at least 6.73% compared to the above-compared methods.

As the super-resolution of the range profile increases, the retention of both the detail
and edge information of the image by the super-resolution method decreases, but the POCS-
based super-resolution reconstruction method still outperforms the interpolation method
for the retention of the detail and edge information of the image at the same magnification.
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Table 7. Comparison of the evaluation indicators of the outdoor scene range profile under different
magnifications.

AG ES Time/ms

×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8

Bilinear 0.22 0.12 0.06 2.35 1.35 0.68 4.4 6.1 7.8
Bicubic 0.28 0.14 0.07 2.74 1.58 0.83 5.8 7.9 8.7
POCS 7.13 4.66 3.76 69.06 44.57 29.91 17.8 24.7 33.5

POCS [17] 7.31 4.78 3.85 74.29 47.38 31.15 24.6 30.4 36.1
Proposed 7.59 5.03 3.98 78.84 51.11 33.08 28.3 34.1 41.3

By analyzing the effect of the reconstructed image and objective evaluation indexes,
it is proved that the method in this paper has a better edge detail retention ability than
bilinear interpolation, bicubic interpolation, and the POCS super-resolution reconstruction
methods and meets the demand of the super-resolution reconstruction of range profiles.

4. Conclusions

A POCS super-resolution reconstruction method combining the LK optical flow
method and the Gaussian pyramid is proposed in this paper. The method solves the
problems of the low resolution of range profiles formed by array lidar and the low retention
of target details and edge information by the traditional super-resolution methods.

We compared the method presented in this paper with bilinear interpolation, bicubic
interpolation, POCS, and POCS with adaptive correction thresholding using the dataset
and the actual data taken from the laboratory-built GM-APD lidar system.

The experimental results show that the proposed method outperforms the other
methods in terms of the AG and ES under different super-resolution conditions. In the
experiments on the redwood-3dscan dataset, the method proposed in this paper improves
the AG by at least 10.12% and the ES by at least 7.02% over the conventional POCS;
in the experiments with real mining data, the method proposed in this paper shows at
least 9.11% improvement in the AG and at least 9.03% improvement in the ES over the
conventional POCS.

It can be seen that the super-resolved range profile can also clearly display the detailed
contours of different targets when the distance between the targets is close, which proves
that the proposed method can effectively retain the target details and edge information
while improving the resolution of the range profile.

Author Contributions: Conceptualization, X.Z. and C.W.; methodology, X.Z. and C.W.; software, C.S.
and X.L.; validation, G.X. and R.Z.; formal analysis, C.S. and X.L.; writing—original draft preparation,
X.Z.; writing—review and editing, X.Z. and C.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (Grant No.
2022YFC3803702) and the Shaanxi Provincial Science and Technology Department’s Innovative Talent
Promotion Program-Youth Science and Technology Rising Star Project (Grant No. 2023KJXX-055).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data underlying the results presented in this paper are not publicly
available at this time but may be obtained from the authors upon reasonable request.

Acknowledgments: The manuscript was supported by the Xi’an Key Laboratory of Active Photoelec-
tric Imaging Detection Technology.

Conflicts of Interest: The authors declare no conflicts of interest.



Appl. Sci. 2024, 14, 5335 17 of 17

References
1. Yu, J.Q.; Yang, S.X.; Zhu, B.L. Target Extraction Base on Range profile from Missile-Borne Imaging LADAR. Trans. Beijing Inst.

Technol. 2016, 36, 1279–1282. [CrossRef]
2. Cao, J.; Hao, Q.; Zhang, F.; Xu, C.; Cheng, Y.; Zhang, J.; Tao, Y.; Zhou, D.; Zhang, K. Research progress of APD three-dimensional

imaging lidar. Infrared Laser Eng. 2020, 49, 20190549. [CrossRef]
3. Aull, B.F.; Schuette, D.R.; Young, D.J.; Craig, D.M.; Felton, B.J.; Warner, K. A Study of Crosstalk in a 256 × 256 Photon Counting

Imager Based on Silicon Geiger-Mode Avalanche Photodiodes. IEEE Sens. J. 2015, 15, 2123–2132. [CrossRef]
4. Gong, D.; Li, S.; Jiang, P.; Liu, D.; Sun, J. Research on super resolution reconstruction of lidar range profile. Infrared Laser Eng.

2020, 49, 20190511. [CrossRef]
5. Xia, W.; Han, S.; Cao, J.; Yu, H. Target recognition of log-polar ladar range profiles using moment invariants. Opt. Lasers Eng.

2017, 88, 301–312. [CrossRef]
6. Zhong, M.; Jiang, L. Review of Super-Resolution Image Reconstruction Algorithms. J. Front. Comput. Sci. Technol. 2022, 16,

972–990. [CrossRef]
7. Ma, Y.Z.; Wang, S.Y.; Lei, T.; Li, B.; Li, F. Superresolution reconstruction of infrared polarization microscan images in focal plane.

Opt. Precis. Eng. 2023, 31, 2418–2429. [CrossRef]
8. Blu, T.; Thévenaz, P.; Unser, M. Linear interpolation revitalized. IEEE Trans. Image Process. 2004, 13, 710–719. [CrossRef]
9. Lee, S.W.; Paik, J.K. Image interpolation using adaptive fast B-spline filtering. In Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing, Minneapolis, MN, USA, 27–30 April 1993; Volume 5, pp. 177–180. [CrossRef]
10. Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29,

1153–1160. [CrossRef]
11. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In Computer

Vision—ECCV 2014, Proceedings of the ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Lecture Notes in Computer Science;
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Computer Springer: Cham, Switzerland, 2014; Volume 8692. [CrossRef]

12. Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In Computer Vision—ECCV 2016,
ECCV 2016, Proceedings of the ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Lecture Notes in Computer Science;
Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 9906. [CrossRef]

13. Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654.

14. Stark, H.; Oskoui, P. High-resolution image recovery from image-plane arrays, using convex projections. JOSA A 1989, 6,
1715–1726. [CrossRef]

15. Chen, J.; Wang, W.G.; Liu, T.X.; Li, B.; Jiang, R.; Gao, H. Research on fast POCS super-resolution restoration algorithm based on
gradient image. Chin. J. Sci. Instrum. 2015, 36, 327–338. [CrossRef]

16. Fang, Y.X.; Guo, B.F.; Ma, C. Super-resolution reconstruction of remote sensing images based on the improved point spread
function. Laser Technol. 2019, 43, 713–718. [CrossRef]

17. Shao, W.H.; Zhu, L.; Liu, J.; Zou, L. Super-resolution algorithm of submillimeter wave holography based on improved projections
onto convex sets. Electron. Opt. Control 2021, 28, 28–31. [CrossRef]

18. Xu, L.N.; He, L.X. GF-4 Images Super Resolution Reconstruction Based on POCS. Acta Geod. Cartogr. Sin. 2017, 46, 1026–1033.
[CrossRef]

19. Zhang, X.F.; Boutat, D.; Liu, D.Y. Applications of fractional operator in image processing and stability of control systems. Fractal
Fract. 2023, 7, 359. [CrossRef]

20. Zhang, X.; Liu, R.; Ren, J.; Gui, Q. Adaptive fractional image enhancement algorithm based on rough set and particle swarm
optimization. Fractal Fract. 2022, 6, 100. [CrossRef]

21. Zhang, X.F.; Dai, L.W. Image enhancement based on rough set and fractional order differentiator. Fractal Fract. 2022, 6, 214.
[CrossRef]

22. Yan, H.; Zhang, J.X.; Zhang, X.F. Injected infrared and visible image fusion via L1 decomposition model and guided filtering.
IEEE Trans. Comput. Imaging 2022, 8, 162–173. [CrossRef]

23. He, J.; Hao, X.L.; Lv, J.L. POCS algorithm based on gradient interpolation and variable threshold. Chin. Sci. Technol. Pap. 2017, 12,
1655–1658. [CrossRef]

24. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory. 2006, 52, 1289–1306. [CrossRef]
25. Bouguet, J.Y. Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel. Corp. 2001, 5, 4.
26. Peng, Y.; Liu, X.; Shen, C.; Huang, H.; Zhao, D.; Cao, H.; Guo, X. An Improved Optical Flow Algorithm Based on Mask-R-CNN

and K-Means for Velocity Calculation. Appl. Sci. 2019, 9, 2808. [CrossRef]
27. Choi, S.; Zhou, Q.Y.; Miller, S.; Koltun, V. A large dataset of object scans. arXiv 2016. [CrossRef]
28. Guo, Y.F.; Jin, S.Z.; Li, H.G.; Zeng, Z.; Liao, W. Super-resolution reconstruction of terahertz image based on linear array scanning

imaging. Chin. J. Lasers 2024, 51, 0814001. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.15918/j.tbit1001-0645.2016.12.013
https://doi.org/10.3788/IRLA20190549
https://doi.org/10.1109/JSEN.2014.2368456
https://doi.org/10.3788/IRLA20190511
https://doi.org/10.1016/j.optlaseng.2016.09.001
https://doi.org/10.3778/j.issn.1673-9418.2111126
https://doi.org/10.37188/OPE.20233116.2418
https://doi.org/10.1109/TIP.2004.826093
https://doi.org/10.1109/ICASSP.1993.319776
https://doi.org/10.1109/TASSP.1981.1163711
https://doi.org/10.1007/978-3-319-10593-2_13
https://doi.org/10.1007/978-3-319-46475-6_25
https://doi.org/10.1364/JOSAA.6.001715
https://doi.org/10.19650/j.cnki.cjsi.2015.02.011
https://doi.org/10.7510/jgjs.issn.1001-3806.2019.05.024
https://doi.org/10.3969/j.issn.1671-637x.2021.05.007
https://doi.org/10.11947/j.AGCS.2017.20170070
https://doi.org/10.3390/fractalfract7050359
https://doi.org/10.3390/fractalfract6020100
https://doi.org/10.3390/fractalfract6040214
https://doi.org/10.1109/TCI.2022.3151472
https://doi.org/10.3969/j.issn.2095-2783.2017.14.016
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.3390/app9142808
https://doi.org/10.48550/arXiv.1602.02481
https://doi.org/10.3788/CJL231284

	Introduction 
	Methods 
	POCS Method 
	Improved POCS Method 
	Motion Estimation by the Lucas–Kanade Optical Flow Method 
	Gaussian Pyramid Multi-Scale Optical Flow Iteration 
	Gradient Constraint and Projection Iteration 


	Experimental Results 
	Dataset Experiment and Result Analysis 
	Real Detecting Data Experiment and Result Analysis 
	Indoor Scene Experiment and Result Analysis 
	Outdoor Scene Experiment and Result Analysis 


	Conclusions 
	References

