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Abstract: In this paper, the velocity and altitude control problem of hypersonic vehicles is studied.
Aiming at the nonlinear parameter uncertainties, external disturbances and coupling of the hypersonic
vehicle system, a control method combining backstepping control with linear active disturbance
rejection control is proposed. The backstepping control solves the coupling of the system and
transforms the longitudinal dynamic model of the hypersonic vehicle into the form of strict feedback,
which is divided into the altitude subsystem and velocity subsystem. The linear extension state
observer (LESO) can observe parameter uncertainty disturbance and external disturbance. At the
same time, the stability of the system is proved by Lyapunov theory. Finally, the effectiveness of the
designed controller is verified by numerical simulation and comparison with classical PID control.

Keywords: velocity and altitude control; hypersonic vehicle; backstepping control; classical PID
control; linear extension state observer

1. Citation

Due to the advanced engine/body integration configuration of hypersonic vehicles,
there is an obvious strong coupling relationship. At the same time, the large flight Mach
number [1] makes the motion process of the hypersonic vehicle have strong nonlinear and
fast time-varying characteristics, which brings many difficulties to controller design. Zhang
et al. [2] put forward the active thermal protection of hypersonic aircraft in flight. Sun
et al. [3] put forward the use of air propulsion and elevator-to-elevator coupling to design
a hypersonic vehicle controller. Wang et al. [4] put forward a quasi-continuous high-order
sliding mode (HOSM) controller based on full state feedback to track the step changes in
speed and altitude. According to the characteristics of the longitudinal model, Li et al. [5]
divided the aircraft model into two subsystems, including the altitude subsystem and
the speed subsystem. Ding et al. [6] summarized the fault-tolerant control anti-saturation
considering the external disturbance of aircraft and the specified performance control
considering transient performance constraints.

In recent years, many scholars have conducted research on the design of hypersonic
vehicle controllers. The literature [7] provides an overview of the current technical issues
and challenges associated with the design of hypersonic vehicles. The cooperative guid-
ance strategy of a multi-hypersonic vehicle system with flight constraints and cooperative
constraints is proposed in the literature [8]. A variety of aircraft engine configurations using
ABREAST are proposed in the literature [9]. Backstepping control, adaptive control [10],
fuzzy control, robust control [11,12], synovial membrane control [13], etc., have been used
in controller design and have achieved excellent results. The research by Rehman et al. [14]
combined feedback linearization and optimal control to design a robust controller for
general systems with parameter uncertainties. The research by Kamal et al. [15] designed a
high-order super-warping algorithm, but the algorithm had too many controller parame-
ters. The research by Wang et al. [16] designed a hypersonic vehicle control system using a
synovial membrane disturbance observer and adaptive backstepping control. It achieved
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good control effects. Backstepping control shows its unique advantages when designing
the controller of a complex system. For example, hypersonic vehicles have parameter uncer-
tainties such as variations and aerodynamic parameter uncertainties. Backstepping control
can fully consider these influencing factors in the controller design, thus significantly im-
proving the robustness of the system and ensuring the stable flight and precise control of
the aircraft under various complexities [17]. In reference [18], a distributed actuator fault
compensation scheme for a hypersonic vehicle is designed based on model transformation
backstepping control, which improves the control accuracy in the case of actuator failure.
However, these control methods still have shortcomings. In the face of random distur-
bances, the tracking error of the controller is relatively large. active disturbance rejection
control (ADRC) can observe the disturbance, which greatly enhances the robustness of
the system. Reference [19] proposes a 2-degree-of-freedom control based on an extended
state observer for estimating and eliminating total disturbance. Reference [20] proposes the
application of linear flatness control along with active disturbance rejection control (ADRC)
for the local stabilization and trajectory tracking problems in the underactuated ball and
rigid triangle system. An adaptive robust control device is proposed in reference [21]. A
linear active disturbance rejection controller (LADRC) is designed for NMAMS single-axis
trajectory tracking control in reference [22]. The literature [23] introduces the theory of
ADRC. The research by Yan and Sun [24] designed a hypersonic vehicle controller based on
ADRC. Considering the two situations of standard parameters and parameter perturbation
in a large range, the control system can demonstrate good control performance. However,
there are too many controller parameters in ADRC. Many intelligent optimization algo-
rithms such as the foraging algorithm [25] and particle swarm algorithm [26,27] are used
to optimize controller parameters. In the literature [28], a mass adaptive control method
combining with robust sliding mode control (SMC) and linear active disturbance rejection
control (LADRC) is designed for the quadrotor load unmanned aerial vehicle (UAV) with
mass variation, but they are still difficult to adjust and have large parameter errors. An
improved active disturbance rejection controller (ADRC) based on particle swarm opti-
mization (PSO) is proposed to solve the problems of control accuracy, response speed and
parameter tuning in the current dynamic communication antenna servo system [29]. A
non-singular finite-time terminal sliding mode control is proposed in the literature [30].
The particle swarm optimization algorithm is used to obtain the design parameters of the
proposed disturbance observer and controller. The literature [31] proposes an integrated
filtered extended state filter into an active disturbance rejection control (ADRC) system and
derives an improved ADRC. A general nonlinear ADRC algorithm is introduced in the
literature [32].

The controller of a hypersonic vehicle needs a strong ability to restrain all kinds of
disturbances in order to achieve higher control accuracy. Therefore, this paper uses a
backstepping controller to make a more accurate nonlinear modeling of the system and
uses an LADRC controller to observe and compensate for all kinds of disturbances of
hypersonic vehicles. The main innovations of this paper are as follows:

1. Aiming at the strong coupling and nonlinearity of hypersonic vehicles, backstepping
control is adopted to model the system close to the actual system model.

2. In view of the influence of unmodeled dynamic parameter disturbance and exter-
nal disturbance on hypersonic vehicles in flight, the LESO is used to observe the
disturbance.

3. In order to simulate the real flight of hypersonic vehicles, we consider the distur-
bance of the internal parameters of hypersonic vehicles and give the parameter fault
tolerance range within 6%. We use Gaussian white noise to simulate the external
disturbance in flight to reflect the randomness and uncertainty of the disturbance.
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2. Basic Theory

Regarding the mathematical model of hypersonic vehicles, early research work in-
cludes a hypersonic vehicle model with a wing cone configuration given by the NASA
Langley Research Center in 1990. This model has published most of the aerodynamic data
of wind tunnel tests and has become the main model used by scholars around the world to
design flight control systems [33]. It is shown as

.
V =

−D + T cos α

m
− sin γ

r2 µ (1)

.
γ =

T sin α + L
mV

−
(
µ − V2r

)
cos γ

Vr2 (2)

.
h = V sin γ (3)
.
α = Q − .

γ (4)
.

Q =
Myy

Iyy
(5)

where
L = 0.5ρV2SCL (6)

D = 0.5ρV2SCD (7)

T = 0.5ρV2SCT (8)

Myy = 0.5ρV2Sc[CM(α) + CM(δc) + CM(q)] (9)

r = h + RE (10)

In Equations (1) through (10), V, γ, h, α and Q are the velocity, track angle, altitude,
angle of attack and pitch rate, respectively. L, D, T and Myy respectively represent lift, drag,
thrust and pitching moment.m, µ, Iyy, r, RE and S represent the mass of the hypersonic
vehicle, gravitational constant, the moment of inertia, the radial distance from the center of
the earth, the earth radius and the wing reference area, respectively. ρ represents the air
density. c is the aerodynamic mean chord length.

When cruising in the state, the expression of CM is as follows:

CL = 0.6203α (11)

CD = 0.6450α2 + 0.0043378α + 0.003772 (12)

CT =

{
0.02576βc, βc < 1

0.0224 + 0.00336βc, βc ≥ 1
(13)

CM(α) = −0.035α2 + 0.036617α + 5.3261 × 10−6 (14)

CM(δe) = ce(δe − α) (15)

CM(Q) = 0.5
cQ
V

(−6.796α2 + 0.3015α − 0.2289) (16)

where ce is the torque coefficient, and the control inputs are throttle opening command βc
and elevator deflection angle δe. For the multi-input and multi-output hypersonic vehicle
system in which altitude and velocity are the most important state variables, if the control
inputs and outputs are arranged as one-to-one correspondence, the ADRC has natural
decoupling for the cross-coupling term between each channel. Based on the literature, the
longitudinal dynamic model of the hypersonic vehicle is deformed and deformed into a
form in which the velocity subsystem and the altitude subsystem are coupled with each
other with a clear order. The parameters of the hypersonic vehicle used in this article are
shown in Table 1.
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Table 1. Parameters of the hypersonic vehicle.

Parameter Description Value Unit

m Quality 137,800 kg

Iyy
Y-axis moment of

inertia 9,500,000 kg/m3

S Reference area 335.2 m2

c Average aerodynamic
chord length 24.384 m

ρ Atmospheric density 0.0125368 kg/m3

RE Earth radius 6,371,393 m

2.1. Velocity Subsystem

For the throttle opening βc = 0.1762 at the equilibrium point, condition βc < 1 is
satisfied, so Equations (8) and (13) are brought into the speed control loop in the speed
Expression (1), as shown in Equation (17):{ .

V = fV + gV βc
yV = V

(17)

where gV = 0.01288 cos αρV2S
m and fV = −Dr2−2mµ sin γ

2mr2 . In addition, if β ≥ 1 is consid-

ered, gV = 0.0018 cos αρV2S
m and fV = 0.00224ρV2S cos αr2−Dr2−2mµ sin γ

2mr2 . It can be seen from
Equation (17) that the speed subsystem takes the throttle opening βc as the control input
and the flight speed V as the output, which is a typical first-order system.

2.2. Altitude Subsystem

The altitude subsystem consists of a pitch angle loop, track angle loop and alti-
tude loop.

2.2.1. Track Angle Loop

By modifying Equation (2), the track angle loop can be expressed as a first-order
system, as shown in Equation (18). { .

γ = fγ + gγθ
yγ = γ

(18)

where fγ = T sin α−0.31015ρV2Sγ
mV − (µ−V2r cos γ)

V2r2 and gγ = 0.31015ρV2S
mV .

2.2.2. Altitude Loop

The expression of the height loop is Equation (3). Taking height as output, the expres-
sion becomes the following: { .

h = V sin γ
yh = h

(19)

Here, because γ is small, there is γ ≈ sin γ, and the altitude loop can be regarded as a
first-order system with track angle as input.
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2.2.3. Pitch Angle Loop

According to Equations (2) and (4), the pitch angle loop can be expressed as a second-
order system shown in the following Equation (20).

.
θ =

.
α +

.
γ = Q

.
Q = fQ + gQδe

yQ = θ

(20)

fQ =
0.5
Iyy

(ρV2Sc(−3.398cQ
V

− 0.035)α2 + (
0.15075cQ

V
− 0.963383 − ce)α − 0.11445cQ

V
+ 5.3261 × 10−6),

gQ =
0.5
Iyy

ρV2Scce.

3. Proposed Methods
3.1. Theoretical Basis of Backstepping Control

Backstepping control is a kind of nonlinear control used to solve the control problem
of a nonlinear system. Based on the recursive idea, the nonlinear system is transformed
into a series of linear subsystems by designing virtual controllers and virtual variables
step by step, and linear controllers are designed to control these subsystems, thus realizing
the control of the whole nonlinear system. Firstly, based on the principle of feedback
linearization, the longitudinal dynamic model of a hypersonic vehicle is transformed into
strict feedback form and divided into the altitude subsystem and velocity subsystem. In
view of the disturbance existing in the altitude and velocity subsystems, the LESO is used
to estimate the disturbance and improve the anti-interference ability of the system.

The general steps of backstepping controller design are as follows [34]:
Define the state and control inputs of the system. Determine the state variables and

control input variables of the system.

(1) Designing virtual controllers and virtual variables: According to the characteristics
and control requirements of the system, a virtual controller and corresponding virtual
variables are designed. By introducing these virtual variables, the original nonlinear
system is transformed into a new nonlinear system.

(2) Designing a linear controller: Based on the new nonlinear system, a linear controller
is designed to make the output requirements of the subsystem. Linear controls such
as LQR (Linear Quadratic Regulation) or PID (Proportional Integral Differential)
controllers can be used.

(3) Iterative design: According to the complexity and control requirements of the system,
it may be necessary to design a virtual controller and linear controller iteratively for
many times until the control requirements of the whole nonlinear system are met.

(4) Implementation controller: The designed controller is implemented in the actual system.

In the backstepping controller design, the speed subsystem and the height subsystem
are designed, respectively. There is only one step in the design of the speed subsystem
controller. The controller design of the altitude subsystem is divided into four steps
according to the order of altitude, track angle, pitch angle, pitch angle, rate and elevator
deflection angle. The structural diagram of the system is shown in Figure 1.

In order to further improve the control accuracy of the system, a backstepping control
law is designed for height and speed subsystems to replace LSEF in LADRC to realize
on-line disturbance compensation. Figure 2 is a backstepping LADRC control structure
diagram taking a second-order system as an example.
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3.2. Design of Backstepping Linear Active Disturbance Rejection Controller
3.2.1. Controller Design of Velocity Subsystem

For Equation (17), take the velocity error: eV = V − Vd, where Vd is the reference
velocity trajectory, and V is the actual velocity trajectory, and then derive the velocity
tracking error as follows:

.
eV =

.
V −

.
Vd (21)

Bringing Equation (17) into Equation (21),

.
eV = fV + gV βc −

.
Vd (22)

The controllable rate of the combination of Formulas (21) and (22) is the following:

βc =
1

gV

( .
Vd − fV − c1eV

)
(23)
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where c1 is an adjustable normal number.
The velocity subsystem represented by the definition x1V = V and x2V = fV in

Equation (17) can be expressed in the form of the following state space expression:
.
x1V = x2V + gV βc

.
x2V =

.
f V

yV = x1V

(24)

The state variables of the system represented by Equation (24) are observed using the
LESO. The observation equation of the LESO is shown by the following Equation (25):

εV = z1 − yV.
z1V = z2V − βV

01εV + gV βc.
z2V = −βV

02εV

(25)

The tracking of the state variables of the original system (24) can be realized when the
system reaches stability through the observation of the LESO. According to Equations (23)
and (25), the controllable rate is as follows:

βc =
1

gV

( .
Vd − z2V − c1eV

)
(26)

3.2.2. Design of Height Subsystem Controller

(1) Design of Height Loop Controller

For Equation (19), take the height error: eh = h − hd, where hd is the reference height
trajectory, and h is the actual height trajectory, and then derive the height tracking error:

.
eh =

.
h −

.
hd (27)

Bringing Equation (19) into Equation (27),

.
eh = Vγ −

.
hd (28)

The controllable rate of the combination of Formulas (27) and (28) is as follows:

γd =

.
hd − c2eh

V
(29)

where c2 is an adjustable normal number.

(2) Design of Track Angle Loop Controller

For Equation (18), take the track angle error: eγ = γ − γd, where γd is the reference
track angle trajectory, and γ is the actual track angle trajectory, and then derive the track
angle tracking error:

.
eγ =

.
γ − .

γd (30)

Bringing Equation (18) into Equation (30),

.
eγ = gγθ + fγ − .

γd (31)

The controllable rate of the combination of Formulas (19) and (20) is as follows:

θd =
1

gγ

( .
γd − fγ − c3eγ

)
(32)

where c3 is an adjustable normal number.



Appl. Sci. 2024, 14, 5367 8 of 18

The track angle subsystem represented by the definition x1γ = γ and x2γ = fγ in
Equation (18) can be expressed in the form of the following state space expression:

.
x1γ = x2γ + gγθ

.
x2γ =

.
f γ

yγ = x1γ

(33)

The state variables of the system represented by Equation (33) are observed using the
LESO. The observation equation of the LESO is shown by the following Equation (34):

εγ = z1γ − yγ.
z1γ = z2γ − β

γ
01εγ + gγθ

.
z2γ = −β

γ
02εγ

(34)

The tracking of the state variables of the original system (33) can be realized when the
system reaches stability through the observation of the LESO. According to
Equations (32) and (34), the controllable rate is as follows:

θd =
1

gγ

( .
γd − z2γ − c3eγ

)
(35)

(3) Design of Pitch Angle Loop Controller

For Equation (20), take the pitch angle error: eθ = θ − θd, where θd is the reference
pitch angle trajectory, and θ is the actual pitch angle trajectory, and then derive the pitch
angle tracking error:

.
eθ =

.
θ −

.
θd (36)

Bringing Equation (20) into Equation (36),

.
eθ = Q −

.
θd (37)

The controllable rate of the combination of Formulas (36) and (37) is as follows:

Qd =
.
θd − c4eθ (38)

where c4 is an adjustable normal number.

(4) Design of Pitch Angle Rate Loop Controller

For Equation (20), take the pitch angle rate error: eQ = Q − Qd, where Qd is the
reference pitch angle rate trajectory, and Q is the actual pitch angle rate trajectory, and then
derive the pitch angle rate tracking error:

.
eQ =

.
Q −

.
Qd (39)

Bringing Equation (20) into Equation (39),

.
eQ = gQδe + fQ −

.
Qd (40)

The controllable rate of the combination of Formula (39) and Formula (40) is as follows:

δe =

.
Qd − fQ − c5eQ

gQ
(41)

where c5 is an adjustable normal number.
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The pitch angle rate subsystem represented by the definition x1Q = Q and x2Q = fQ
in Equation (20) can be expressed in the form of the following state space expression:

.
x1Q = x2Q + gQδe

.
x2Q =

.
f Q

yQ = x1Q

(42)

The state variables of the system represented by Equation (42) are observed using the
LESO. The observation equation of the LESO is shown by the following Equation (43):

εQ = z1Q − yQ
.
z1Q = z2Q − βQ

01εQ + gQδe
.
z2Q = −βQ

02εQ

(43)

The tracking of the state variables of the original system (42) can be realized when the
system reaches stability through the observation of the LESO. According to
Equations (41) and (43), the controllable rate is as follows:

δe =

.
Qd − z2Q − c5eQ

gQ
(44)

4. Proof of Stability
4.1. Proof of Stability of Velocity Subsystem

The Lyapunov function is defined as follows for the velocity subsystem:

VV =
1
2

e2
V (45)

By deriving the above formula, we can obtain the following:

.
VV =

.
eVeV (46)

Bringing Equations (22) and (26) into Equation (46),

.
VV = eV( fV + gV βc −

.
Vd)

= eV [ fV + gV
1

gV

( .
Vd − z2V − c1eV

)
−

.
Vd]

= eV( fV − z2V − c1eV)
= −c1e2

V ≤ 0

(47)

According to Lyapunov stability, the velocity subsystem is uniformly stable. Simulta-
neously, it can also be proved that the velocity error eV and its differential

.
eV are bounded.

According to Barbalat theorem, if the eV and
.
eV are bounded and eV is square inte-

grable, the following formula holds:

lim
t→∞

eV(t) = 0 (48)

According to Equation (47), Equation (45) is a bounded and decreasing function, which
can be derived: ∫ ∞

0
e2

V(t)dt = [VV(0)− VV(∞)]/l < ∞ (49)

According to Formula (49), eV is square integrable. At the same time, eV and
.
eV are

bounded. Therefore, the speed tracking error converges to 0, and the speed subsystem is
asymptotically stable.
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4.2. Proof of Stability of Altitude Subsystem

The Lyapunov function is defined as follows for the altitude subsystem:

Vh =
1
2

e2
h +

1
2

e2
γ +

1
2

e2
θ +

1
2

e2
Q (50)

By deriving the above formula, we can obtain the following:

.
Vh = eh

.
eh + eγ

.
eγ + eθ

.
eθ + eQ

.
eQ (51)

Bringing Equations (28), (29), (31), (35), (37), (38), (40) and (44) into Equation (51),

.
Vh = eh(Vγ −

.
hd) + eγ(gγθ + fγ − .

γd) + eθ(Q −
.
θd) + eQ(gQδe + fQ −

.
Qd)

= −c2e2
h − c3e2

γ − c4e2
θ − c5e2

Q ≤ 0
(52)

According to Lyapunov stability, the altitude subsystem is uniformly stable. Simulta-
neously, it can also be proved that everything in the altitude subsystem is bounded.

According to Function (52), Function (50) is a bounded and decreasing function, which
can be derived as follows:∫ ∞

0
[e2

h(t) + e2
γ(t) + e2

θ(t) + e2
Q(t)]dt = [Vh(0)− Vh(∞)]/l < ∞ (53)

According to Formula (53), eh, eγ, eθ and eQ are square integrable. Therefore, the
altitude tracking error converges to 0, and the altitude subsystem is asymptotically stable.

5. Simulation and Analysis

In order to avoid a given mutation in height and speed, the prefilters are used to
generate the velocity and altitude commands of the hypersonic vehicle in this paper:

Vd = (Vc − V0)×
λ2

s2 + 2µλs + λ2 + V0 (54)

hd = (hc − h0)×
λ2

s2 + 2µλs + λ2 + h0 (55)

where µ and λ are the filter parameters; V0 and h0 are the initial velocity and altitude of the
aircraft; Vc and hc are the given step reference. The function of the prefilter is to modulate
the step Vc, hc into Vd, hd.

The initial simulation values of the hypersonic vehicle are shown in Table 2 below.

Table 2. Initial simulation values of hypersonic vehicle.

Parameter Description Value Unit

V0 Initial value of velocity 4590 m/s
γ0 Initial value of track angle 0 deg
h0 Initial value of altitude 33,528 m
α0 Initial value of angle of attack 2.745 deg

Q0
Initial value of pitch angular

rate 0 deg/s

Example 1. In order to verify the effectiveness of the algorithm proposed in this paper, the speed
and altitude reference tracking is carried out without interference. The control strategy requires a
speed of 50 m/s and a height of 200 m. The controller parameters are shown in the following Table 3.
In order to verify the superior performance of the controller designed in this paper, the classical PID
controller is adopted to track the speed and altitude of the aircraft, which is the same as above. The
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PID controller parameter settings are shown in Table 4. Finally, the tracking performance of the two
controllers in altitude and speed channels is compared.

Table 3. Controller parameters.

Parameter Value Parameter Value

βV
01 120 c1 1

βV
02 4800 c2 1

β
γ
01 50 c3 2

β
γ
02 7500 c4 2

βQ
01 90 c5 2

βQ
02 2700

Table 4. PID Controller parameters.

Parameter Value Parameter Value

kh
p 1 kV

p 1
kh

i 0.1 kV
i 0.1

kh
d 0.05 kV

d 0.05

It can be seen that the speed and altitude can track the given speed and altitude stably
without interference. It can be seen from the height tracking curve in Figure 3 that the two
controllers have reached the preset height at last, but BSLADRC obviously has a better
tracking effect than PID. Before 90 s, the PID tracking effect is not as good as the BSLADRC
tracking effect and has obvious error, and BSLADRC has smaller overshoot than PID,
almost no overshoot and can quickly reach a stable state. From the speed tracking curve
in Figure 4, we can see the two controllers have reached the preset velocity at last, but
BSLADRC obviously has a better tracking effect than PID. Before 90 s, the PID tracking
effect is not as good as the BSLADRC tracking effect and has obvious error, and BSLADRC
has smaller overshoot than PID, almost no overshoot and can quickly reach a stable state.
Figure 5 shows that the tracking curve of the track angle converges to the steady state value
in about 1.2 s after the given speed change and altitude change instructions, which shows
that the controller can control and track the track angle quickly and reach the steady state
quickly. Figure 6 shows the tracking curve of the angle of attack. The curve shows that
it converges to the steady state value in about 2.7 s; that is, the aircraft can stabilize its
attitude in about 2.7 s so that it can fly stably; that is, it can quickly reach the steady state of
flight. Figure 7 shows that both controllers can finally reach a steady state, but the error of
BSLADRC can converge to 0 faster. The fluctuation before 40 s of BSLADRC indicates that
the aircraft will be affected by some disturbances inside the aircraft during the ascent stage,
so it will lead to fluctuations. After reaching the steady state value, the stable flight of the
aircraft can be realized; that is, the designed controller can make the aircraft rise to the
preset altitude. However, the time for PID to reach stability is too long, and the error is also
very large, so BSLADRC has better performance and stability than PID control. Figure 8
shows the tracking curve of speed error. The curve shows that BSLADRC converges faster
than PID, and it can reach the stable value for 1 s. After reaching the stable value, it can
realize the stable flight of the aircraft; that is, the designed controller can accelerate the
aircraft to the preset speed and then rise the aircraft to the preset altitude. But PID takes a
longer time to reach steady state and has a large error, so BSLADRC has better performance
and stability than PID control.
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Example 2. Considering that the hypersonic vehicle may be subjected to various unknown random
disturbances in flight, they will affect the stability of the system. In order to verify the anti-jamming
ability of the proposed algorithm against random disturbances, white Gaussian noise with a mean
value of 0 and variance of 2.5 is used as the noise jamming of the hypersonic vehicle system in this
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simulation test. The control strategy is the same as the requirements of Example 1. Figure 9 is a
Gaussian white noise curve. The controller parameters are the same as those set in Example 1. The
PID controller parameter settings are the same as in Example 1.
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It can be seen that both speed and altitude can track the given speed and altitude
instructions stably under the condition of interference. From the altitude tracking curves
in Figure 10, it can be seen that the two controllers have reached the preset height at
last, but BSLADRC obviously has a better tracking effect than PID. Before 80 s, the PID
tracking effect is not as good as the BSLADRC tracking effect and has obvious error, and
BSLADRC has smaller overshoot than PID, almost no overshoot and can quickly reach a
stable state. From the velocity tracking curves in Figure 11, it can be seen that we can see
the two controllers have reached the preset velocity at last, but BSLADRC obviously has
a better tracking effect than PID. Before 90 s, the PID tracking effect is not as good as the
BSLADRC tracking effect and has obvious error, and BSLADRC has smaller overshoot than
PID, almost no overshoot and can quickly reach a stable state. Figure 12 shows that both
controllers can finally reach a steady state, but the error of BSLADRC can converge to 0
faster. The fluctuation before 40 s of BSLADRC indicates that the aircraft will be affected by
some disturbances inside the aircraft during the ascent stage, so it will lead to fluctuations.
After reaching the steady state value, the stable flight of the aircraft can be realized; that
is, the designed controller can make the aircraft rise to the preset altitude. However, the
time for PID to reach stability is too long, and the error is also very large, and the error
fluctuates between −5 and 5 all the time, so BSLADRC has better performance and stability
than PID control. Figure 13 shows the tracking curve of speed error. The curve shows
that BSLADRC converges faster than PID, and it can reach the stable value for 1 s. After
reaching the stable value, it can realize the stable flight of the aircraft; that is, the designed
controller can accelerate the aircraft to the preset speed and then rise the aircraft to the
preset altitude. But PID takes a longer time to reach steady state and has a large error, so
BSLADRC has better performance and stability than PID control. The simulation results
show that the designed controller has a strong ability to suppress the disturbance under
the influence of Gaussian white noise disturbance, which enhances the anti-interference
ability of the system. Compared with the classical PID control, the control accuracy of the
system is improved, and the robustness of the system is enhanced.
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6. Conclusions

Based on backstepping control and active disturbance rejection theory, the velocity and
altitude tracking problem of hypersonic vehicles under the influence of internal parameter
uncertainties and external disturbances is studied. The main results are as follows:

(1) The LADRC controller is designed based on the ADRC theory. The LESO can effec-
tively compensate the total disturbance suffered by the hypersonic vehicle.

(2) By designing a backstepping control law instead of LSEF in LADRC, it is realized
on-line compensation for disturbance.

(3) The stability is demonstrated using Lyapunov stability theory. Compared with the
classical PID control, the control scheme proposed in this paper can overcome the
adverse effects brought by external uncertainties and track the control instructions
stably and accurately without overshoot; whether from the point of view of control
accuracy or error, the control scheme proposed in this paper can ensure the accurate
tracking of the given and can ensure almost no overshoot, can ensure its control
accuracy and improve the robustness of the control system compared with the classical
PID control.

At present, this paper is limited to theoretical analysis. Although it is widely used
and has difficult to adjust parameters in classical PID control, the control accuracy will be
greatly reduced in the face of nonlinear complex system similar to a hypersonic vehicle, and
it is not suitable for the precise control of this nonlinear complex system. For the control
scheme proposed in this paper, although it solves the nonlinear modeling of the model and
improves the anti-interference ability of the system, this modeling depends on the accuracy
of the model. Because the control rate is established based on the mathematical model
of the system itself, if the mathematical model of the system is inaccurate, it is similar to
the approximate or simplified mathematical model. This scenario will not be applicable
to this type of model. In addition, the actual flight of aircraft is much more complicated
than the simulation, so this paper only carries out an approximate simulation. Subsequent
work will be carried out to study more complex simulation to further enhance the control
performance of the proposed seven-point control system.
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