CarrDet: Attention–Symmetry-Based Microscopic Carrier Detection for Wastewater Treatment
Abstract
:1. Introduction
- We are the first to propose a carrier detection method specifically for wastewater microscopic images.
- We design a carrier feature block attention module and a symmetry-based defective carrier detection module to effectively reduce unrecognized results and false positives of carrier detection in wastewater microscopic images.
- We propose a carrier dataset called Carrier600 with high-accuracy annotations for evaluation. The experimental results demonstrate the effectiveness of our proposed framework and its practical applicability in real industry scenarios.
2. Related Work
2.1. Carrier for Wastewater Treatment
2.2. Object Detection in Microscopic Images
3. Framework
3.1. Feature Extractor
3.2. Carrier Feature Block Attention
3.2.1. Channel Attention
3.2.2. Sparse Attention
3.3. Detection Head
3.4. Symmetry-based Defective Carrier Detection
4. Experiment
4.1. Dataset
4.2. Experimental Settings
4.3. Compared State-of-the-Art Methods
4.4. Experimental Results
5. Discussion
5.1. Ablation Study
5.1.1. Impact of CFBA
5.1.2. Impact of SDCD
5.2. Impact of Carriers Similarity Threshold
6. Industry Practice
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, Y.; Fan, S.Q.; Shen, Y.; Yang, J.X.; Yan, P.; Chen, Y.P.; Li, J.; Guo, J.S.; Duan, X.M.; Fang, F.; et al. A novel bio-carrier fabricated using 3D printing technique for wastewater treatment. Sci. Rep. 2015, 5, 12400. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Liang, Z.; Dai, X. Enhanced biological phosphorus and nitrogen removal by high-concentration powder carriers: Extracellular polymeric substance, microbial communities, and metabolic pathways. Environ. Sci. Pollut. Res. 2023, 30, 4010–4022. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, D.; Huang, W.; Yang, Y.; Ji, M.; Nghiem, L.D.; Trinh, Q.T.; Tran, N.H. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. Bioresour. Technol. 2019, 288, 121619. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Yi, J.; Cao, D.; Shi, J.; Yang, D.; Dai, L.; Dai, X. High concentration powder carrier bio-fluidized bed process: A new perspective for domestic wastewater treatment. Bioresour. Technol. 2022, 351, 127015. [Google Scholar] [CrossRef] [PubMed]
- Dowsett, M.; Nielsen, T.O.; A’Hern, R.; Bartlett, J.; Coombes, R.C.; Cuzick, J.; Ellis, M.; Henry, N.L.; Hugh, J.C.; Lively, T.; et al. Assessment of Ki67 in Breast Cancer: Recommendations from the International Ki67 in Breast Cancer Working Group. J. Natl. Cancer Inst. 2011, 103, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the ECCV, Amsterdam, The Netherlands, 11–14 October 2016; Lecture Notes in Computer Science Series. Springer: Berlin/Heidelberg, Germany, 2016; Volume 9905, pp. 21–37. [Google Scholar]
- Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Liu, R.; Ao, B.; Wen, Q.; Wu, X.; Yin, J.; Li, K. Combining ExtremeNet with Shape Constraints and Re-Discrimination to Detect Cells from CD56 Images. In Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 4587–4593. [Google Scholar] [CrossRef]
- Ji, W.; Tian, W.; Pan, W.; Sun, S.; Jiang, H.; Feng, R.; Zhang, Y.; Zhao, R.; Jin, G. CellDet: Dual-Task Cell Detection Network for IHC-Stained Image Analysis. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December 2021; pp. 1343–1346. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Jeirani, Z.; Niu, C.H.; Soltan, J. Adsorption of emerging pollutants on activated carbon. Rev. Chem. Eng. 2017, 33, 491–522. [Google Scholar] [CrossRef]
- Xu, X.; Liu, G.; Li, Q.; Wang, H.; Sun, X.; Shao, Y.; Zhang, J.; Liu, S.; Luo, F.; Wei, Q.; et al. Optimization nutrient removal at different volume ratio of anoxic-to-aerobic zone in integrated fixed-film activated sludge (IFAS) system. Sci. Total. Environ. 2021, 795, 148824. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Delatolla, R. Biofilm and microbiome response of attached growth nitrification systems across incremental decreases to low temperatures. J. Water Process. Eng. 2021, 39, 101730. [Google Scholar] [CrossRef]
- Bengtsson, S.; Karlsson, A.; Alexandersson, T.; Quadri, L.; Hjort, M.; Johansson, P.; Morgan-Sagastume, F.; Anterrieu, S.; Arcos-Hernandez, M.; Karabegovic, L.; et al. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnol. 2017, 35, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Shanono, I.H.; Sapiee, M.R.M.; Aziz, K.A.; Suleiman, N.H.Z.; Gomes, A.; Gomes, C. Image processing techniques applicable to wastewater quality detection: Towards a hygienic environment. J. Mater. Environ. Sci. 2018, 9, 2288–2303. [Google Scholar]
- Girshick, R.B. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Xue, Y.; Ray, N. Cell detection in microscopy images with deep convolutional neural network and compressed sensing. arXiv 2017, arXiv:1708.03307. [Google Scholar]
- Prangemeier, T.; Reich, C.; Koeppl, H. Attention-Based Transformers for Instance Segmentation of Cells in Microstructures. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic of Korea, 16–19 December 2020. [Google Scholar]
- Jiang, H.; Li, S.; Liu, W.; Zheng, H.; Liu, J.; Zhang, Y. Geometry-Aware Cell Detection with Deep Learning. mSystems 2020, 5, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Yin, Z.; Schober, J.M. Iteratively training classifiers for circulating tumor cell detection. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, USA, 16–19 April 2015; pp. 190–194. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, X.; Zhou, H.; Zhang, Q. SRPN: Similarity-based region proposal networks for nuclei and cells detection in histology images. Med. Image Anal. 2021, 72, 102142. [Google Scholar] [CrossRef] [PubMed]
- Abousamra, S.; Belinsky, D.; Arnam, J.S.V.; Allard, F.; Yee, E.; Gupta, R.; Kurç, T.M.; Samaras, D.; Saltz, J.H.; Chen, C. Multi-Class Cell Detection Using Spatial Context Representation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Virtual, 11–17 October 2021; pp. 3985–3994. [Google Scholar]
- Shakarami, A.; Menhaj, M.B.; Mahdavi-Hormat, A.; Tarrah, H. A fast and yet efficient YOLOv3 for blood cell detection. Biomed. Signal Process. Control. 2021, 66, 102495. [Google Scholar] [CrossRef]
- Lin, T.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Ma, Y.; Yu, D.; Wu, T.; Wang, H. PaddleDetection, Object Detection and Instance Segmentation Toolkit Based on PaddlePaddle. Github 2019. Available online: https://github.com/PaddlePaddle/PaddleDetection.git (accessed on 1 January 2024).
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Sun, P.; Zhang, R.; Jiang, Y.; Kong, T.; Xu, C.; Zhan, W.; Tomizuka, M.; Li, L.; Yuan, Z.; Wang, C.; et al. Sparse R-CNN: End-to-End Object Detection with Learnable Proposals. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 19–25 June 2021; pp. 14454–14463. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–24 June 2022; pp. 11976–11986. [Google Scholar]
- Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable DETR: Deformable Transformers for End-to-End Object Detection. In Proceedings of the 9th International Conference on Learning Representations (ICLR), Virtual, 3–7 May 2021. [Google Scholar]
- Zhang, H.; Li, F.; Liu, S.; Zhang, L.; Su, H.; Zhu, J.; Ni, L.M.; Shum, H. DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection. arXiv 2022, arXiv:2203.03605. [Google Scholar]
- Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.R.; Huang, W. TOOD: Task-aligned One-stage Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 3490–3499. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the 9th International Conference on Learning Representations (ICLR), Virtual, 3–7 May 2021. [Google Scholar]
- Bhargavi, K.; Jyothi, S. A survey on threshold based segmentation technique in image processing. Int. J. Innov. Res. Dev. 2014, 3, 234–239. [Google Scholar]
- Weszka, J.S. A survey of threshold selection techniques. Comput. Graph. Image Process. 1978, 7, 259–265. [Google Scholar] [CrossRef]
Method | Backbone | mAP(%) | IPS |
---|---|---|---|
Sparse R-CNN [31] | ResNet50 | 83.59 | 3.68 |
ConvNeXt [32] | ResNet50 | 85.47 | 1.45 |
Deformable DETR [33] | ResNet50 | 86.42 | 3.08 |
DINO [34] | ResNet50 | 87.36 | 2.52 |
TOOD [35] | ResNet50 | 90.90 | 4.08 |
ViT [36] | VisionTransformer | 90.91 | 3.47 |
CarrDet | ResNet50 | 94.32 | 4.93 |
CFBA (Channel Attention) | CFBA (Channel Attention) | SDCD | mAP(%) |
---|---|---|---|
84.72 | |||
✓ | 88.90 | ||
✓ | 89.37 | ||
✓ | ✓ | 92.93 | |
✓ | 89.04 | ||
✓ | ✓ | ✓ | 94.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Liu, S.; Liu, R.; Shi, H.; Hu, C.; Shi, R. CarrDet: Attention–Symmetry-Based Microscopic Carrier Detection for Wastewater Treatment. Appl. Sci. 2024, 14, 5393. https://doi.org/10.3390/app14135393
Chen H, Liu S, Liu R, Shi H, Hu C, Shi R. CarrDet: Attention–Symmetry-Based Microscopic Carrier Detection for Wastewater Treatment. Applied Sciences. 2024; 14(13):5393. https://doi.org/10.3390/app14135393
Chicago/Turabian StyleChen, Huizhen, Shuning Liu, Rongkai Liu, Heyuan Shi, Chao Hu, and Ronghua Shi. 2024. "CarrDet: Attention–Symmetry-Based Microscopic Carrier Detection for Wastewater Treatment" Applied Sciences 14, no. 13: 5393. https://doi.org/10.3390/app14135393
APA StyleChen, H., Liu, S., Liu, R., Shi, H., Hu, C., & Shi, R. (2024). CarrDet: Attention–Symmetry-Based Microscopic Carrier Detection for Wastewater Treatment. Applied Sciences, 14(13), 5393. https://doi.org/10.3390/app14135393