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Abstract: This study presents a modified compensating observer control strategy for nonlinear multi-
agent systems affected by unknown hysteresis signal loops. Compared to conventional high-gain
observers, this approach introduces a novel compensation signal, effectively reducing the tracking
error of traditional observers. Then, by utilizing a backstepping method, an adaptive output feedback
controller is designed, such that the tracking error converges to the small neighborhood around
the origin. Simulation experiments with and without the compensation term demonstrate that this
control strategy can effectively reduce error, but it increases input chattering to some extent.

Keywords: compensated observer; adaptive control; hysteresis-loop effect; output feedback

1. Introduction

The coordinated control of multi-agent systems has emerged as a pivotal area of
contemporary research, driven by the proliferation of distributed network resources and the
imperative for collaboration among various mechanical devices [1–3]. Key aspects of such
systems encompass group interaction and communication, coordination and cooperation,
and conflict resolution. A prominent example of these concepts is the multi-flight simulator
system [4]. Additionally, multi-agent systems have notable applications in the healthcare
sector [5].

Exploration of multi-agent systems has yielded numerous methodologies and control
strategies aimed at ensuring consistent stability. For instance, dynamic surface control
combined with a first-order low-pass filter has been utilized to address the inherent “differ-
ential explosion” issue in traditional recursive methods [6–9]. While this method simplifies
computational complexity, it also introduces errors associated with filter computation and
increases the number of control parameters, potentially compromising transient perfor-
mance management. Recent research [10] has attempted to resolve the algebraic loop
problem intrinsic to the backstepping method, thereby ensuring transient tracking per-
formance, albeit at the cost of increased control complexity due to the introduction of
new variables.

In addressing the problem of unknown states in high-order multi-agent systems,
observers are often employed. Among these, the use of high-gain observers is a common
research approach [11,12]. Through the application of such observers, disturbances within
the system, including external input disturbances, system coupling, and other factors, can
be effectively managed [13–17]. These mechanisms ensure the stability of the entire closed-
loop system while optimizing the tracking performance of each subsystem. Various types
of observers employ different methodologies; for example, interval observers utilize neural
networks, resilient control techniques, and fuzzy equations to estimate unmeasurable
states of the system [18]. By narrowing the interval width, this method ensures that the
closed-loop system remains semi-globally ultimately bounded, allowing for a convergence
of tracking and observation errors within a small neighborhood near the origin [19]. Similar
developments have been documented in discrete systems [20]. Optimizations of high-gain
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observers involve dimensionality reduction, as seen in the current literature [21,22] where
the observer model’s complexity is optimized within manageable limits while ensuring
that all closed-loop signals are ultimately bounded under the influence of a continuously
differentiable switching function. Therefore, building upon the research foundation of
high-gain observers, this study considers the addition of compensatory terms to achieve
error reduction and structural simplification.

Furthermore, with the expansion of material science applications, particularly in multi-
agent systems equipped with intelligent materials, significant challenges arise. For example,
piezoelectric ceramics and ionic polymer metal composites have gained attention due to
their exceptional performance and desirable physical characteristics [23]. However, these
materials also exhibit performance deficiencies, such as non-smoothness, nonlinearity, and
hysteresis, which can significantly impact the precision and stability of control systems,
particularly due to the effects of hysteresis signals and coupling characteristics [24]. To
address nonlinear hysteresis inputs, two primary strategies are typically employed. The
first strategy involves mitigating hysteresis effects through the development of an adaptive
hysteresis inverse controller [25]. The second strategy, similar to the methods outlined
in [26], employs an adaptive algorithm to reduce the impacts of hysteresis by modeling
it with both linear and nonlinear components. Commonly referenced models include the
dead zone hysteresis model, the Prandtl–Ishlinskii (PI) hysteresis model, and the Bouc–
Wen hysteresis model. This study discusses the processing of hysteresis signals using the
Prandtl–Ishlinskii model. The specific work content is as follows:

(1) This study introduces a modified compensating observer scheme. By incorporating
this compensatory mechanism, the proposed method effectively reduces tracking
errors and confines them to a small region near zero while ensuring stability, compared
to traditional control schemes.

(2) Unlike most output feedback systems, the system investigated in this study involves
unknown parameters, nonlinear coupling, and hysteresis interference, and the pro-
posed compensating observer has more practical significance.

The proposed scheme in this study demonstrates superior performance in handling
nonlinear multi-agent systems through numerical simulations and case studies while
maintaining low computational complexity. This provides new insights and methods
for controlling nonlinear multi-agent systems and lays a foundation for future research
directions. By comparing with existing mainstream control strategies, this study not only
highlights the advantages of the new method but also reveals its potential limitations
in practical applications, thereby providing valuable references for further optimization
and improvement.

The remainder of this paper is organized as follows. Section 2 outlines the relevant
background information, problem models, assumptions, and lemmas necessary for un-
derstanding the subsequent analysis. In Section 3, we propose a decentralized adaptive
output feedback backstepping approach that incorporates a high-gain observer. Section 4
provides a comprehensive stability analysis, which substantiates the stability and tracking
capabilities of the system. Finally, Section 5 corroborates the effectiveness of our proposed
design through simulation results based on an example presented earlier in the paper.

2. Establishing the Problem Model
2.1. Preliminaries

According to the principles of the graph theory presented in [10–12], the relationship
among followers is represented here by a directed topological graph G = {U, T, M},
where U = {1, · · · , N} denotes the set of nodes, T = U × U defines the set of edges, and
M =

{
aij
}
∈ Ri is the adjacency matrix. If node j can send data to node i, then aij = 1 ;

otherwise, aij = 0. To facilitate system analysis, we employ the following lemmas and
inequality theorems.
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Lemma 1 [5]. The following formula is valid as long as there exist normal numbers ∆, σ1 , and
σ2 and a symmetrical positive definite matrix P , where E is the identity matrix.
D = diag[0 1 · · · ni−1] :

σ1E ≤ DP + PD + 2∆P ≤ σ2E. (1)

Lemma 2 [17]. There is a positive definite matrix P that meets the following requirements if matrix
Ai − qicT

i is a Hurwitz matrix:

(Ai − qicT
i )

T P + P(Ai − qicT
i ) = −E. (2)

Lemma 3 [9]. The following inequality is met for any d > 0 and x ∈ Ri (where Ri represents the
set of real numbers):

0 ≤ |x| − x2
√

x2 + d2
< d. (3)

Theorem 1. Young’s inequality: ΘiΓeij ≤
ρ
2 θ ∥ Γ ∥2 eij

2 + 1
2ρ

eijϵ2j ≤ ρl1+2∆
i eij

2 + 1
4ρ li

⊓
ϵ2j

2 (4)


∂αi−1

∂yi
ϵ2jeij ≤ ρl1+2∆

i

(
∂αi−1

∂yi

)2
eij

2 + 1
4ρ li

⊓
ϵ2j

2

∂αi−1
∂yi

ΘiΓeij ≤
ρ
2

(
∂αi−1

∂yi

)2
θ ∥ Γ ∥2 eij

2 + 1
2ρ

. (5)

The parameters that are already in place are known positive design parameters. The
other parameters will be determined later.

2.2. Basic Model and Problem Hypothesis

We consider a set of nonlinear systems defined as follows. First, Equation (6) delineates
the state equation:

.
xij= Aixij + φ0,i,j(yi) +

ri

∑
k=1

φk,i,j(yi)ak,i,j + Fi,j(yi)xij + bi Hi,j(yi)wi

yi= cT
i xi

. (6)

Let xij =
[
xi1 xi2 · · · xini

]T , xij ∈ Ri denote the j-th state variable of the i-th sub-
system, where j = 1, 2, · · · , ni and i = 1, 2, · · · , n. The actual output of the i-th subsystem
is yi ∈ Ri. Here, the smooth nonlinear function vectors φ0,i,j(yi) ∈ Ri and φk,i,j(yi) ∈ Ri are
known, as is the lower triangular nonlinear function matrix Fi,j(yi). The matrix Hi,j(yi) is a
known function matrix, while ak,i,j and bi are unknown, non-zero constant parameters. The
structure of the matrix is as follows:

Ai =

[
0 Ei−1
0 0

]
(7)

ci =
[
1 0 0 0 · · · 0

]
=
[
1 0(ni−1)×1

]
(8)

Fi,j(yi) =


0 0 0
0 f2,2 0
0 f3,2 f3,3

· · ·
0
0
0

...
. . .

...
0 fn,2 fn,3 · · · fn,ni

 (9)

Hi,j =
[
0z−2,j 0 Hz,j · · · Hn,j

]T (10)
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φ0,i,j(yi) =
[
φ0,1,j(yi) φ0,2,j(yi) · · · φ0,n,j(yi)

]T (11)

φk,i,j(yi) =
[
φk,1,j(yi) φk,2,j(yi) · · · φk,n,j(yi)

]T (12)

where wi is an input for hysteresis. The Prandtl–Ishlinskii model was selected as the
hysteresis model in this study. The relevant formula and mathematical model are as follows:

wi(t) = σiui(t) +F [ui]( t). (13)

In the expression F [ui]( t) =
∫ R

0 k(r)FΨ
r [ui](t)dr, the function k(r) is a continuous,

non-negative known function, while σi is an unknown, non-zero constant. This equation
represents an area-based hysteresis model.

The design parameter R serves as the upper limit of integration. In practical analysis,
the influence of k(r) can be neglected when R approaches infinity (R = ∞). Consequently,
both k(r) and FΨ

r [ui](t)dr are bounded, and k(r) is determined by experimental data. As a
result, the functions F [ui]( t) are also bounded. Thus, the range of F [ui]( t) is constrained
to F , or F k

r [ui](t)dr ≤ F .
This formulation describes the saturation play operator FΨ

r [ui]. The expression uses
ui(t) and wi, respectively, as the input and output of symmetrical hysteresis, which is
constrained by the curve Ψ and represented by a well-known, continuous, non-decreasing
function. Here, R indicates the hysteresis threshold:

FΨ
r [ui](0)= f Ψ

r (ui(0)) (14)

FΨ
r [ui]( t) = f Ψ

r (ui(t),FΨ
r [ui](tk)) (15)

f Ψ
r (ui(t), wi) = max(Ψ(ui)− r, min(Ψ(ui) + r, wi)) (16)

tk < t < tk+1 , 0 ≤ k ≤ M − 1. (17)

Next, we provide a monotone input signal, which is monotone in the interval [tk, tk+1],
and select the parameter number using the formula above, as follows:

σi = 0.6, Ψ(ui) = 6tanh(ui), R = 70, k(r) = 0.9e−0.04(r−0.5)2

ui = 4 sin(10πt) + cos(0.5πt)
(18)

In this way, the hysteresis model diagram shown in Figure 1 can be obtained.

Figure 1. PI hysteresis input relation model diagram.
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The hysteresis effect set in this study has an upper and lower limit, as shown in
Figure 1. Here, we use the parameter T to represent the range of the hysteresis effect, which
is T = Hi,j(yi)F [ui]( t). The parameter H represents the last term of the hysteresis effect,
and the parameter h represents the minimum value of the hysteresis effect. Here, H = 20,
h = −20.

Remark 1. The hysteresis phenomenon represents one of the most prevalent nonlinear influences
in real systems. However, the existing literature on hysteresis research, such as the research
in [5,7,9,13,17,23], has not yet proposed efficient solutions. Therefore, this study continues to focus
on hysteresis phenomena as the subject of analysis.

We suggest the following presumptions for the current system to simplify system analysis.

Proposition 1. The output of the theory leaderyr and its derivatives (
.
yr and

..
yr ) are known,

bounded, and smooth functions. The simulation will provide this function’s information.

Proposition 2. Let the parameter λi in the equation of state be a normal integer that can satisfy the
following expression to maintain generality using the Hurwitz Equation (14):

χi(s) = λi,msm + · · ·+ λi,1s1 + λi,0. (19)

Remark 2 [27]. As the polynomial χi(s) = λi,msm + · · ·+ λi,1s1 + λi,0 is a Hurwitz polynomial,
the positivity of coefficients ensures that the real parts of the roots (zeroes) of the system are negative,
thereby guaranteeing system stability.

Proposition 3. The leader transmits at least one directed spanning tree to the follower in the
directed graph G composed of system (7).

Proposition 4. If a smooth and integrable bounded positive function σi(t) exists, the following
expression (20) is fulfilled:

lim
t→+∞

∫ t

0
σi(ρi)dρi ≤ σ∞ ≤ +∞. (20)

3. Controller Design and Derivation
3.1. Design of the Gain Compensation Observer

We devised a number of compensation gain filters in the manner described below to
estimate the unknown state of the nonlinear multi-agent system (7):

.
ε0ij =

(
Ai − liLiqicT

i
)
ε0ij + Fi,j(yi)ε0ij + φ0,i,j(yi) + liLiqiyi

ε0ij =
(

Ai − liLiqicT
i
)
εkij + Fi,j(yi)εkij + φk,i,j(yi)

.
εsij =

(
Ai − liLiqicT

i
)
εsij + Fi,j(yi)εsij + Hi,j(yi)ui(t)

.
εzij =

(
Ai − liLiqicT

i
)
εcij + Fi,j(yi)εcij +

TH
h2+σ2

∞

(21)

The factors in this case have values of i ∈ [1 · · · n], qi = [q1 · · · qn]
T ∈ Ri, and

qi, which correspond to the observer’s design parameters. The dynamic gain of the filter is
li, and its expression is

.
li = −Λil2

i + Λilil0σ2 + liζ(yi), while the dynamic gain at position
Λi denotes a favorable design feature. A function with slick positive elements is represented
by ζ(yi). A positive design parameter, represented by σ∞, will be explained subsequently.
The gain begins with a number of l0.

We estimate the status as

x̂ij = ε0ij +
r

∑
i=1

ak,i,jεkij + biσiεsij + biεzij. (22)
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The definition error is
.
ϵij = xij − x̂ij, and its derivative is expressed as

.
ϵij = (Ai − liLiqicT

i )ϵij + Fi,j(yi)ϵij + biT − bi
TH

h2 + σ2
∞

. (23)

Transformation of this error is achieved as follows:

ϵij = l−∆
i L−1

i ϵij. (24)

We next define the Lyapunov equation as an expression of Vϵ̂ij =
(
ϵij
)T Piϵij and

Ai − liLiqicT
i = liLi

(
Ai − qicT

i
)

L−1
i and combine Formulas (14)–(18):

.
Vϵij = −

.
li
li
(2∆P + DP + PD)ϵ2

ij − liϵ2
ij +

(
ϵij
)T(FT P + PF

)
ϵij

+2l−∆
i L−1

i ϵijbi

(
T − TH

h2+σ2
∞

) . (25)

Remark 3. Compared to the methods described in [28,29], the quadratic form employed in this
study not only exhibits fundamental quadratic characteristics but also offers a simpler form and more
favorable mathematical properties. The convex nature of quadratic functions facilitates easier analysis
and the derivation of system stability and convergence properties, as well as controller design.

Proposition 5. There exists a smooth non-negative function ζ(yi) that fulfills ∥Fi(yi)∥ ≤ ζ(yi).
The dynamic gain is subjected to the flattening function whose word is 1.6y2

i + 0.1yi + 0.15 accord-
ing to us.

The compensation component and hysteresis effect can be reduced as follows by
combining Lemma 1, Lemma 2, Proposition 5, and the aforementioned theorems:

T − TH
h2 + σ2

∞
=

Th2 + Tσ∞
2 − TH

h2 + σ∞2 =
T
(
h2 − H

)
+ Tσ∞

2

h2 + σ∞2 ≤ H +
H
(
σ∞

2 − H
)

h
(26)

−
.
li
li
(2∆P + DP + PD)ϵ2

ij ≤ −σ1

.
li
li
∥ϵij∥2 (27)

FT P + PF ≤ 2∥ζ(yi)∥∥P∥. (28)

Remark 4. The primary purpose of introducing T is to compensate for the self-interference term in
the traditional high-gain observer, thereby reducing the impact of interference terms and consequently
decreasing observational errors.

On the other hand, M =

(
H +

H(σ∞
2−H)
h

)
2l−∆

i L−1
i ϵij, where M represents a finite

parameter. Finally, we can obtain the following:

.
Vϵij ≤ −

( .
li
li

σ1 + li − 2∥P∥∥ζ(yi)∥
)

ϵij
2 + M. (29)

Remark 5. The value of M is very small due to the influence of observer compensation, dynamic
gains, and related parameters, which are consistently greater than 1. This fact corresponds with the
stability proof content, ensuring the validity of the stability analysis.

Remark 6. The selection criterion for σ∞ is to ensure that the value of this expression is
minimized, ideally approaching the value of

√
H. The purpose of this design is to ensure that the

value of M is sufficiently small, which will be further explained in the stability analysis section.
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3.2. Controller Design

In this section, a controller is constructed by utilizing the adaptive backstepping
method with a gain compensation observer. Subsystems are recursively designed.

Step 1: i = 1
The tracking error is defined as e1j = y1 − yr. The origin of the phrase is

.
e1j = x2j + φ0,1,j(yi) +

ri

∑
k=1

φk,1,j(yi)ak,1,j + F1,j(yi)x1j −
.
yr. (30)

The following changes were made:

Θi =
[

a1,1,j a2,1,j · · · ar1,1,j a1,2,j a2,2,j · · · ar2,2,j bi
]

(31)

Γ =
[
φ1,1,j(yi) φ2,1,j(yi) · · · φr1,1,j(yi) ε12j ε22j · · · εr22j εz2j

]T . (32)

Substituting Equations (31) and (32) into (30) yields

.
e1j = ε02j + biσiεs2j + ϵ2j + φ0,1,j(yi) + ΘiΓ + F1,j(yi)x1j −

.
yr (33)

where γθ and γp are positive design parameters. Then, we synchronously set θ =
max

{
∥ Θi∥2, ∥σi∥2}. Here, θ is an unknown parameter and ρ is a positive design parameter.

Next, we apply Formula (34):

εsij = eij + αi−1. (34)

At the same time, we set the auxiliary controller as

α1 = p̂
¯
α1 (35)

¯
α1 = −c1je1j − ε02j − φ0,1,j(yi) +

.
yr −

ρ

2
θ̂ ∥ Γ ∥2 e1j − ρli

1+2∆e1j (36)

where c1j is the known normal number; θ̂ is the estimated value; and θ̃ = θ − θ̂, θ̂ is the
estimated value of the unknown parameter θ. Additionally, p̃ = p − p̂, p̂ are estimates of
unknown parameter p.

According to inequality Theorem 1, the two parameters are scaled as follows:{
ΘiΓe1j ≤

ρ
2 θ ∥ Γ ∥2 e1j

2 + 1
2ρ

e1jϵ2j ≤ ρl1+2∆
i e1j

2 + 1
4ρ liϵ2j

2 . (37)

The Lyapunov equation can be changed into the following shape by defining the new
parameter Ξ1. The expression of this function is defined below:

.
V1 ≤ −c1je1j

2 + θ̂e1je2j +
1

2ρ
+

1
4ρ

liϵ2j
2 − 1

γθ
θ̃

( .
θ̂ − Ξ1

)
− biσi

γp
p̃
( .

p̂ + α1e1j

)
+

.
Vϵij (38)

Step 2: i = 2
As above, we set the Lyapunov function under the condition of i = 2 and obtain the

following expression according to Formula (34):

.
V2j =

.
V1j + e2j

.
e2j

=
.

V1j + e2j
( .
εs2j −

.
α1
) .
V1j + e2j

(
εs3j − liLiqiεs1j + F2,j(yi)εs2j −

.
α1
) . (39)
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One can then derive the following equation from the auxiliary controller:

.
α1 = ∂α1

∂θ̂

.
θ̂ + ∂α1

∂ p̂

.
p̂ + ∂α1

∂yr

.
yr +

∂α1
∂

.
yr

..
yr +

∂α1
∂li

.
li +

∂α1
∂φ0,1,j

.
φ0,1,j +

∂α1
∂ε02j

.
ε02j

+ ∂α1
∂εk2j

.
εk2j +

∂α1
∂ Γ Γ + ∂α1

∂y
(

φ0,1,j(yi) + ε02j + ϵ2j + ΘiΓ
) (40)

In addition, we define the expression of the following parameters:

B2 = −liLiqiεs1j + F2,j(yi)εs2j − ∂α1
∂yr

.
yr −

∂α1
∂

.
yr

..
yr −

∂α1
∂li

.
li − ∂α1

∂φ0,1,j

.
φ0,1,j

− ∂α1
∂ε02j

.
ε02j − ∂α1

∂ Γ

( .
εk2j +

.
εz2j +

.
φk2j

)
− ∂α1

∂y
(

φ0,1,j(yi) + ε02j
)
− ∂α1

∂ p̂

.
p̂

(41)

Then, we can obtain the following expression:

.
V2j =

.
V1j + e2j

(
e3j + α2 + B2 −

∂α1

∂θ̂

.
θ̂ − ∂α1

∂yi

(
ϵ2j + ΘiΓ

))
.

At this time, we use inequality Theorem 1 again:
∂α1
∂yi

ϵ2je2j ≤ ρl1+2∆
i

(
∂α1
∂yi

)2
e2j

2 + 1
4ρ liϵ2j

2

∂α1
∂yi

ΘiΓe2j ≤
ρ
2

(
∂α1
∂yi

)2
θ ∥ Γ ∥2 e2j

2 + 1
2ρ

. (42)

This theorem is then substituted into the Lyapunov equation, and the following
parameters are defined:{

Ξ1 = γθ

( ρ
2 ∥ Γ ∥2 e1j

2)
Ξ2 = Ξ1 + γθ

ρ
2

(
∂α1
∂yi

)2
∥ Γ ∥2 e2j

2 + γθe1je2j
. (43)

The expression of the auxiliary controller can be obtained with Formula (44):

α2 = −c2je2j −B2 − ρl1+2∆
i

(
∂α1
∂yi

)2
e2j − θ̂e1j −

ρ
2

(
∂α1
∂yi

)2
θ̂ ∥ Γ ∥2 e2j

+ ∂α1
∂θ̂

(
Ξ2 − γθγ

θ̃
θ̂
) (44)

where γ
θ̃

is positive design parameter.
Substituting Formula (44) into (39), we can obtain the expression of the Lyapunov

equation as

.
V2j ≤ −c2je2

2j − c1je2
1j + e2je3j +

2
2ρ + 2

4ρ liϵ2
2j − 1

γθ
θ̃

( .
θ̂ − Ξ2

)
− biσi

γp
p̃
( .

p̂ + α1e1j

)
− e2j

∂α1
∂θ̂

( .
θ̂ − Ξ2 + γθγ

θ̃
θ̂

)
+

.
Vϵij

(45)

Step 3: i ∈ [3, z).
The following formula can be obtained using the same inversion calculation method:

αi = −cijeij − e(i−1)j −Bi − ρl1+2∆
i

(
∂αi−1

∂yi

)2
ezj −

ρ

2

(
∂αi−1

∂yi

)2
θ̂ ∥ Γ ∥2 eij

2

+
∂αi−1

∂θ̂

(
Ξi − γθγ

θ̃
θ̂
)
+ γθ

i−1
∑

q=2
eq

∂αq−1

∂yi

[
ρ

2

(
∂αi−1

∂yi

)2
∥ Γ ∥2 eij

] (46)

Ξi = Ξi−1 + γθ
ρ

2

(
∂α1

∂yi

)2
∥ Γ ∥2 eij

2 (47)
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.
Vij ≤ −

i
∑

a=1
c2

ae2
a + e(i−1)jeij +

i
2ρ

+
i

4ρ
liϵ2

2j −
1

γθ
θ̃

( .
θ̂ − Ξi

)
− biσi

γp
p̃
( .

p̂ + α1e1j

)
−

i
∑

b=2
ebj

∂αb−1

∂θ̂

( .
θ̂ − Ξb + γθγ

θ̃
θ̂

)
+

.
Vϵij

(48)

Step 4: i ∈ [z, n].
This section adds the Hi,j function and hysteresis input environment. The input is

defined as follows:
ui(t) =

1
Hi,j(yi)

(
αi − εs(i+1)j

)
. (49)

The expression of αi is the same as that in Formula (46). Next, we set the Lyapunov
function to (50)

Vij =
1
2

eij
2 + V(i−1)j. (50)

The expression can be obtained by substituting the above parameters into the following
calculation:

.
Vnj ≤ −

n
∑

i=1
c2

i e2
i +

n
2ρ

+
n
4ρ

liϵ2
2j −

biσi
γp

p̃
( .

p̂ + α1e1j

)
− 1

γθ
θ̃

( .
θ̂ − Ξn

)
−

n
∑

i=2
eij

∂αi

∂θ̂

( .
θ̂ − Ξn + γθγ

θ̃
θ̂

)
+

.
Vϵij

(51)

Let the parameter value be

.
θ̂ = Ξn − γθγ

θ̃
θ̂

.
p̂ = −α1e1j

. (52)

In combination with Equation (51), the final expression of the Lyapunov equation can
be obtained as follows:

.
Vnj ≤ −

n

∑
i=1

c2
i e2

i +
n
2ρ

+
n
4ρ

liϵ2j
2 + γ

θ̃
θ̃θ̂ −

( .
li
li

σ1 + li − 2∥P∥∥ζ(yi)∥
)

ϵij
2 + M. (53)

4. Stability Analysis

This section is dedicated to analyzing the stability and tracking performance of the
proposed control scheme. The globally stable operation and precise tracking capabilities
of the closed-loop, decentralized, adaptive control system are ensured by incorporating a
specially designed high-gain compensation observer.

Remark 7. Consider a closed-loop system composed of the controlled system (7), the hysteresis
signal (11), the compensation filter (14), the update law (24), and Equations (31) and (33). Next,
select appropriate values for the gain’s positive design parameters ci, γ

θ̃
, Λi, l0, and ζ(yi). The

tracking error of each subsystem within the closed-loop decentralized control system converges to an
arbitrarily small residual set, while all signals remain globally uniformly bounded.

Remark 8. Notably, the proposed approach can effectively handle a wider range of interference
signals, and system (7) encompasses more interference factors than systems in the existing literature.
Thus, this system represents a broader category of multi-agent systems. The following are the key
certification elements.

To summarize, let the Lyapunov function of the whole be Vnj = V(n−1)j +
1
2 e2

nj, where
the value is [2, · · · , n].
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Next, use Young’s inequality, inequality Theorem 1, to extend and reduce Formula (55),
as shown below:

γ
θ̃
θ̃θ̂ ≤

γ
θ̃

2
θ2 −

γ
θ̃

2
θ̃2. (54)

Because of the universal existence of n
4ρ liϵ2j

2 ≤ n
4ρ li∥ϵij∥2, parameter ρ = n and the

following equations are designed:

LR =

.
li
li

σ1 + li −
1
4

li − 2∥P∥∥ζ(yi)∥ (55)

◦

M = M +
1
2
+

γ
θ̃

2
θ2. (56)

Combining (55)–(58), we can obtain Formula (59):

.
Vnj ≤ −

n

∑
i=1

c2
i e2

i −
γ

θ̃

2
θ̃2 − (LR)ϵij

2 +
◦

M. (57)

Then, set the parameters in dynamic gain
.
li = −Λil2

i + Λilil0σ2 + liζ(yi) as follows:

σ1 = 2∥P∥, σ2 = σ1 + 0.2, Λi =
1

2σ2
, l0 = 1 (58)

where ∥P∥ is set to 0.5 in the simulation. The following outcomes can be obtained using
this setting technique, which effectively reduces the interference of parameter variables:

LR =

(
3
4
− σ1

2(σ1 + 0.2)

)
li + ∥P∥∥l0∥. (59)

For Formula (59), we selected the design parameters to meet the standard requirements:

ci ≥ Ωγ
θ̃
≥ 2Ω

γθ
LR ≥ Ω (60)

where Ω is the positive term parameter designed in this study. Combining this formula
with Formula (59), we can obtain

.
Vnj ≤ −2ΩVnj +

◦

M. (61)

Next, solve the integral inequality:

0 ≤ Vnj(t) ≤

◦

M
2Ω

+

Vnj(0)−

◦

M
2Ω

e−2ΩT . (62)

In addition, when t → ∞ , the limit value can be obtained:

lim
t→∞

Vnj(t) =

◦

M
2Ω

. (63)
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Here, the parameters ϵij, eij, θ̃, and p̃ are bounded. Through the design process of
Formulas (22)–(34), we can obtain expressions of the following main variables:

.
ϵij = xij − x̂ij
e1j = y1 − yr
e2j = εs2j − α1
...
eij = εsij − αi−1

. (64)

The adjusted observer parameter ϵij is also bounded, as both the expected value yr and
dynamic gain li are bounded according to our theoretical framework. Once the parameters
of the compensatory observer, such as ε0ij, εkij, εsij, and εzij, are confirmed to be finite, it can
be demonstrated that the state variable xij and the auxiliary controller αi are also bounded.
As a result, the integral discrepancy shown in Equation (62) can be resolved as follows:

lim
t→∞

∣∣e1j
∣∣ = lim

t→∞

√
2Vnj(t) =

√√√√ ◦

M
Ω

. (65)

Ultimately, variables
◦

M and Ω are unrelated to one another. Through properly increas-
ing ci , γ

θ̃
, γθ , LR , and l0 , the larger value of Ω in Formula (59) can be selected. This step

provides all remaining evidence.

Remark 9. The compensation-based control strategy effectively reduces errors by lowering the

key system parameters
◦

M. With appropriately chosen design parameters, the system errors can be
reduced to zero under specific conditions.

5. Simulation Examples and a System Analysis of Control Strategies

This section presents two cases to illustrate the feasibility of our design strategy using
numerical examples and gear system models. The objective of this control strategy is to
progressively align each subsystem’s actual output yi with its desired output yr by utilizing
an adaptive control law ui(t), developed through a compensatory observer control scheme.
In this context, the differential equation

..
yr + 2

.
yr + yr = sin t defines the optimal output yr.

5.1. Numerical Example

We consider the following second-order numerical system:{ .
x11 = x12.
x12 = 0.2 sin(2y1) + f1,2x2 + b1H12w1

y1 = x11

(66)

where f1,2 = −2, b1 = 1, H12 = 0.1. The remaining parameters are all set to zero.
To validate the effectiveness of the control strategy, we set the initial state of the control

system to zero and compare the simulation results between the compensation observer
control scheme and the traditional observer control scheme.

The compensatory observer control scheme proposed in this design introduces a
compensation term TH

h2+σ∞2 into the traditional observer. Consequently, the traditional
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observer control scheme follows the observer structure shown in Equation (67), but without
the compensation term. To ensure a fair comparison, all other parameters remain identical:

.
ε0ij =

(
Ai − liLiqici

T)ε0ij + Fi,j(yi)ε0ij + φ0,i,j(yi) + liLiqiyi
.
εkij =

(
Ai − liLiqici

T)εkij + Fi,j(yi)εkij + φk,i,j(yi)
.
εsij =

(
Ai − liLiqici

T)εsij + Fi,j(yi)εsij + Hi,j(yi)ui(t)
.
εzij =

(
Ai − liLiqici

T)εcij + Fi,j(yi)εcij

(67)

Figure 2 presents the compensation observer control strategy, while Figure 3 illus-
trates the traditional controller control strategy. The error range in Figure 2b is smaller,
indicating better tracking performance. This result further validates the superiority of the
compensation observer control strategy.

Figure 2. Results under the compensation control strategy. (a) Trajectory tracking diagram of System 1.
(b) System 1 output error.

Figure 3. Results under the traditional control strategy. (a) Trajectory tracking diagram of System 1.
(b) System 1 output error.

Comparing the input waveforms between Figures 4 and 5 indicates that under both
control strategies, the input waveform of the overall system exhibits periodic variations.
However, under the compensation strategy, the system input presents localized oscillations.
This result represents a drawback of the control scheme, indicating a limitation in its ability
to mitigate localized oscillations in the system input.

The dynamic behavior depicted in Figure 6, showing periodic states of the system
output in three-dimensional state space, indicates the stable periodic responses of the
system to certain inputs or initial conditions, indirectly suggesting a degree of stability in
the system.
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Figure 4. Input to System 1 under the compensation control strategy.

Figure 5. Input to System 1 under the traditional control strategy.

Figure 6. State space tracking performance of System 1.



Appl. Sci. 2024, 14, 5406 14 of 20

As shown in Figure 7a, the derivative of the dynamic gain exhibits periodic oscillations.
This phenomenon is similar to observations in Figure 7b. Additionally, the waveforms

of
.
θ̂i and

.
p̂ trend towards zero, indicating that the integrated values of these parameters

are bounded. This characteristic may reflect the stability of the system dynamics, as the
integrated values of the parameters are constrained, leading to limited variations in the
system state within a finite range.

Figure 7. Results under the compensation control strategy. (a) Derivation of three parameters of Sys-

tem 1. (b) Waveform diagram of parameter li. (c) Waveform diagram of parameter
.
θ̂i. (d) Waveform

diagram of parameter
.
p̂.

Based on the results shown in Figure 8, the waveforms of xi and x̂i are nearly identical,
indicating that the observer can accurately track and predict the system’s state variables.
This result demonstrates that the observer effectively estimates the system state in dy-
namic environments, thereby providing a necessary foundation for the performance of the
stringent controller.

Figure 8. Comparison of observer performance. (a) x1 and x̂1 in System 1; (b) x2 and x̂2 in System 1.
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5.2. Pratical Example

In this section, we employ a dual-motor coupled control system as an example of the
simulation. The instance model of this control system is illustrated in Figure 9. Here, we
treat the two motors as independent agents within a multi-agent system. Each agent is
independently controlled, and overall stability is achieved by coordinating the two agents
via controllers or information transmission.

Figure 9. A dual-motor coupled control system.

The physical meanings of the parameters are as follows: θ2 is the drive rotation angle,
and θ3 is the load rotation angle, which are represented by x21 and x31, respectively. J1 is
the moment of inertia of the load, Jd is the moment of inertia of the driver, gr is the gear
tooth ratio, k1 is the damping of the driver, k2 is the load damping, and k is the torsional
elastic constant.

The state equation of the system is{ .
x21 = x22 + φ0,2,1.
x22 = φ0,2,2 + f2,2x2 + ak,2,2 φk,2,2 + b2H2,2w2

y2 = x22

(68)

{ .
x31 = x32 + φ0,3,1.
x32 = φ0,3,2 + f3,2x2 + ak,3,2 φk,3,2 + b3H3,2w3

y3 = x32

. (69)

In Formula (68) of subsystem 2,

f2,2 = − k1
Jd

, b2 = 1, H22 = 0.1, ak,2,2 = 1

φ0,2,1 = 0.05 cos(3y2)− 0.02 sin(y2 − 0.5)

φ0,2,2 = 0.5 sin(2y2 − 0.5), φk,2,2 = kA
Jd
(Ay2 − y3).

(70)

In Formula (69) in subsystem 3,

f3,2 = − k1
Jd

, b3 = 1, H32 = 0.1, ak,3,2 = 1

φ0,3,1 = 0.02 cos(y3)− 0.02 sin(y3 − 0.5)

φ0,3,2 = 0.5 tan(2y3), φk,3,2 = k
J1
(Ay2 − By3)

. (71)

Next, we set the parameter values as follows:

A = 1
gr , k = 1, k1 = 0.8, k2 = 0.6, J1 = 1.2,

Jd = 1, gr = 0.8, B = 1, ∆ = 1, γ
θ̃
= 2, γθ = 4

c1 = c2 = 20, q1 = 2, q2 = 1, ρ = 2,.
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To summarize, the simulation operation effect of the system can be obtained as follows:
Comparing Figure 10 with Figure 11 yields a consistent conclusion, indicating that

employing the compensation observer control strategy can further reduce tracking errors.
This finding underscores the efficacy of the compensation observer control strategy in
enhancing the system’s tracking performance.

Figure 10. Results under the compensation control strategy. (a) Trajectory tracking diagram of System
2 and 3. (b) System 2 and 3 output error.

Figure 11. Results under the traditional control strategy. (a) Trajectory tracking diagram of System
2 and 3. (b) System 2 and 3 output error.

A comparative analysis of Figures 12 and 13 similarly reveals an inherent flaw in the
compensation observer control strategy: the exacerbation of input oscillations. This obser-
vation highlights a limitation of the compensational observer control strategy, indicating its
tendency to amplify input oscillations. However, the degree of oscillation amplification is
relatively mild and remains within an acceptable range.

Figure 14 graphically depicts the trajectories of Systems 2 and 3 within the state space,
indicating a nearly complete overlap between them. This significant overlap not only
underscores the high effectiveness of the control strategy in tracking the desired trajectory
but also confirms the existence of a stable periodic response in both systems. The results
from the comparative experiments further support these findings.
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Figure 12. Input to System 2 and 3 under the compensation control strategy.

Figure 13. Input to System 2 and 3 under the traditional control strategy.

Figure 14. State space tracking performance of system 2 and 3.
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Figure 15 presents the actual and estimated values of the first state variable. Here,
the overlap between x21 and x̂21, as well as that between x31 and x̂31, indicates that the
observer can closely match the true state of the system. The superior fitting accuracy of the
second state variable can be observed in Figure 16, as indicated by the minimal deviation
between x22 and x̂22, as well as x32 and x̂32. This level of precision in estimating the second
state variable highlights the enhanced performance of the observer in multi-dimensional
settings, which is crucial to effectively control multi-agent systems.

Figure 15. The comparison of observer performance.

Figure 16. The comparison of observer performance.

6. Conclusions and Further Research

This study introduced a modified compensatory observation scheme that markedly
differs from traditional observation methods and was specifically designed for a class of
nonlinear multi-agent systems influenced by an unknown hysteresis signal loop. This
innovative approach not only significantly reduces tracking errors but also substantially
enhances overall system tracking performance. However, we observed that under certain
conditions, the compensatory observer control strategy may inadvertently increase input
oscillations. Although these oscillations are relatively mild, it is essential to consider their
potential impacts on overall system control and stability.

Future research will focus on further optimizing the system’s design. This includes
detailed studies on parameter adjustments, structural enhancements, sensor layout op-
timization, and other aspects. These efforts aim to refine the compensatory observation
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scheme, minimize any adverse effects, and improve the robustness and reliability of the
control strategy. Ultimately, such advancements will contribute to significant technological
progress and development in related fields.
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