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Abstract: This paper examines the energy efficiency of three variations of the two-degree-of-freedom
transverse galloping energy harvester. These variants differ in the number and placement of elec-
tromechanical transducers. By utilizing the harmonic balance method, the limit cycles of mathematical
models of the devices were determined. Analytical expressions derived from the models were then
used to formulate the efficiency of the systems. It was demonstrated that efficiency depends on flow
speed and can be comprehensively characterized by the following criteria parameters: peak efficiency,
denoting the maximum efficiency of the system, and high-efficiency bandwidth, which describes
the range of flow speeds within which the efficiency remains at no less than 90% of peak efficiency.
The values of these parameters are heavily reliant on two other parameters: the speed at which the
system achieves peak efficiency, referred to as the nominal speed, and also the flow speed at which
the system undergoes Hopf bifurcation, namely the critical speed. Comparative analysis revealed
that only the device equipped with two electromechanical transducers can potentially outperform a
simple one-degree-of-freedom system. For selected parameters, this gain reached nearly 10%.

Keywords: energy harvesting; transverse galloping; harmonic balance method; nonlinear dynamics;
flow-induced vibration

1. Introduction

The ongoing energy crisis and burgeoning concept of the Internet of Things (IoT) [1]
are continually motivating factors for researchers from various scientific fields to develop
newer technologies that enable cheaper and more efficient generation of usable energy.
Among the most innovative of these technologies are those that allow energy recovery
from vibrations induced by flow. A commercial example of this is the Vortex Bladeless
power plants [2], whose vibrations are excited by von Karman vortices. According to the
manufacturer, the cost of energy production using these turbines is only 70% of the cost
associated with traditional wind turbines of comparable size [2]. Moreover, their sleek,
bladeless design allows for closer placement than standard turbines, facilitating more
efficient use of wind farm space.

The discussed advantages of vortex-induced vibration energy harvesters may be
partially overshadowed by a significant limitation. Due to their reliance on resonance
with the vortex frequency, these devices can generate energy only within a narrow flow
speed range. An alternative type of power plant without this limitation is the galloping
energy harvester (GEH). Transverse galloping [3] is a phenomenon where vibrations are
induced due to the flow separation from a bluff body with an appropriate shape, leading to
negative, speed-dependent aerodynamic (hydrodynamic) damping. When the flow speed
exceeds a critical value, the negative aerodynamic (hydrodynamic) damping surpasses
structural damping, resulting in the overall damping in the system becoming negative.
In this situation, the damping will supply energy to the system rather than dissipate it,
causing the system to become unstable.
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The key advantage of using transverse galloping as an excitation mechanism for
energy harvesters is that, beyond the critical speed, the amplitude of oscillation increases
indefinitely with the flow speed and remains independent of the frequency or the presence
of von Karman vortices.

Early studies [4] explore its potential for energy harvesting, emphasizing the crucial
role of aerodynamic coefficients in its efficiency. Subsequent research [5] delves into
analytical, numerical, and experimental analyses of GEHs, indicating the detrimental
impact of structural damping on the performance of the device.

Due to the critical importance of the aerodynamics of the flowing body, many subse-
quent works have been devoted to examining the efficiency provided by GEHs of various
shapes. Building on this trend, it has been demonstrated, for instance in [6], that rhomboidal
shapes exhibit a significant propensity for galloping. The article [7] is dedicated to the study
of the properties of a device equipped with a bluff body in the shape of various variants of
an isosceles triangle. Furthermore, research [8,9] shows that adding a stream splitter favors
power generation. The studies [10–12] have also demonstrated the benefits of employing
non-typical shapes. According to the reports presented in [13–16], the efficiency of a GEH
can also be increased by giving its surface an appropriate geometric metastructure.

Another extensively investigated area in the development of GEHs is the examination
of the impact of nonlinear elasticity on its performance. Studies [17,18] propose a method
for analyzing the effect of the nonlinear elasticity coefficient on the characteristics of Hopf
bifurcation. The study [19] focuses on improving the energy harvesting performance
of galloping systems through the use of magnetic coupling. Conversely, the work [20]
presents modeling and experimental investigations of asymmetric distances using magnetic
coupling based on a galloping piezoelectric energy harvester, aiming to enhance the stability
of the generated power. In the articles [21,22], it has been demonstrated that incorporating
nonlinear stiffness into the system can significantly increase its efficiency. Research [23]
demonstrates that a GEH composed of two oscillators coupled by a nonlinear magnetic
interaction can exhibit a lower critical speed. Furthermore, an appropriate selection of
the distance between the magnetic segments can contribute to an increase in the system’s
efficiency. A similar coupling, but in reference to a single-degree-of-freedom system, was
discussed in [24]. This approach resulted in a tristable system, which exhibited an efficiency
over 35% greater than that of a standard GEH.

According to the literature, enhancing the energy extraction efficiency of a GEH can be
also achieved by extending its mechanical structure with an additional degree of freedom.
In [25], two variants of GEHs with two degrees of freedom (GEH2Ds), differing in the
location of the applied aerodynamic force, were compared to a single-degree-of-freedom
device. Experimental comparisons of the electric voltage generated by the variants were
presented in [26] and extended to numerical studies of systems with up to three additional
masses in [27]. Comprehensive analytical studies of the voltage generated by a GEH2D,
considering the possibility of two different vibration modes, were presented in [28]. A
two-mass system, whose segments are magnetically coupled, was discussed in [29]. It was
demonstrated that such a system can exhibit both a reduced critical speed and enhanced
efficiency.

The literature review clearly indicates that extending the mechanical structure to
include an additional degree of freedom is seen as a potential way to increase the efficiency
of a GEH. However, the literature does not discuss the fact that within the family of two-
mass systems, three device variants can be distinguished, differing in the placement of the
electromechanical transducer: it can be located between the stationary base and the first
mass, between the masses, or in both of these places.

The aim of this work is therefore to analytically examine the efficiency of all three
GEH2D variants, compare them, and assess whether any of them can exhibit greater
efficiency than the device of basic design.
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2. Efficiency of Reference Variant

While the primary focus of this study lies in analyzing the efficiency of systems with
two degrees of freedom, understanding the characteristics of this class of devices can be
facilitated by comparing them with a system possessing well-established properties—a
linear device with one degree of freedom, hereafter referred to as the reference device
(Figure 1). Therefore, it is justified to conduct an analysis of the efficiency of this system,
particularly as we aim to highlight a certain intriguing feature of this variant, which has not
been previously addressed in the literature. According to articles [3,4], the mathematical
model of a GEH takes the form shown in Equation (1) with parameters detailed in Table 1.

m̂
..
z + ĉ

.
z + k̂z − θξ = F̂L(û) = −1

2
ρ̂û2ĥ

(
a1

.
z
û
+ a3

( .
z
û

)3)
, (1a)

Ĉp
.
ξ +

ξ

R̂
+ θ̂

.
x = 0. (1b)
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Table 1. List of GEH parameters.

Symbol Parameter Unit

m̂ Mass kg
k̂ Stiffness coefficient N/m
ĉ Damping coefficient kg/s
û Flow speed m/s
ρ̂ Planar fluid density kg/m2

ĥ Characteristic dimension m
θ̂ Piezoelectric coefficient N/V

Ĉp Equivalent capacity F
R̂ Circuit electrical resistance Ω
τ Time s

z = z(τ) Vibration vs. time function m
ξ = ξ(τ) Voltage vs. time function V

The efficiency η of such a system is defined as the ratio of the average power generated
by the device P̂g over a time period equal to the period T̂ of the voltage function ξ(τ) to the
surface flow power density P̂f :

ηL =
P̂g

P̂f
=

1
T̂

∫ T̂
0

ξ2(τ)

R̂
dτ

1
2 ρ̂ĥû3

, (2)

By introducing the following dimensionless quantities:

y = z
ĥ

, v = ξ θ̂
m̂ ĥ ω̂2

n
, ω̂n =

√
k̂
m̂ , c = ĉ

m̂ω̂n
, u = û

ĥω̂n
, ρ = ρ̂ ĥ2

2m̂ , r = ĈpR̂ω̂n,

κ = θ̂2

Ĉp m̂ ω̂2
n

, t = τω̂n,
(3)
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the device dimensionless mathematical model can be written as

..
y + c

.
y + y − v = ρ

(
a1u

.
y + a3

.
y3

u

)
, (4a)

.
v +

v
r
+ κ

.
y = 0. (4b)

Assuming that Tc is the period of the function v(t), efficiency in terms of dimensionless
parameters can be expressed as

ηL =
1
Tc

∫ Tc
0

v2(t)
κ r dt

ρu3 . (5)

To characterize the efficiency ηL of the system, it is essential to derive the voltage
function v(t) generated by it, which can be accomplished using the harmonic balance
method. Consequently, it was assumed that the limit cycle of the system would be described
by a set of solutions in the following form:

y = Aycos(ωt), (6a)

v = Avcos(ωt + φ), (6b)

where the four unknown quantities Ay, Av, ω = ω̂
ω̂n

, and φ represent the dimensionless
vibration amplitude, dimensionless voltage amplitude, dimensionless vibration frequency,
and the phase shift between the oscillator vibrations and voltage oscillations, respectively.
The parameter ω̂ denotes the unknown dimensional frequency of the system’s vibrations.
Substituting solutions of the form Equation (6) into the model Equation (1) leads to the
transformation of the system of differential equations into a system of algebraic equations:

Ay
(
1 − ω2)cos(ωt) + A3

y
ρω3a3

u sin3(ωt) + Ayω(uρa1 − c)sin(ωt)− Av cos(ωt + φ) = 0, (7a)

Av

(
cos(ωt + φ)

r
− ωsin(ωt + φ)

)
− Ayκ ωsin(ωt) = 0. (7b)

This condition will be satisfied for every moment of time t if and only if the sum of
the coefficients with corresponding time functions equals zero. From Equation (7b), the
following was deduced:

Av(cos(φ)− rω sin(φ))

r
= 0, (8a)

Av (rωcos(φ) + sin(φ)) + Ayκrω

r
= 0. (8b)

Equation (8a) shows that

tg(φ) =
1

ωr
, sin(φ) =

1√
(ωr)2 + 1

, cos(φ) =
ωr√

(ωr)2 + 1
. (9)

Based on Equation (8b) and Equation (9), the expression describing the relationship
between the vibration amplitude and the voltage amplitude can be derived:

Av = −Ay
rκω√

1 + r2ω2
. (10)

By balancing the harmonics of Equation (7a), the remaining two algebraic equations
necessary to determine an approximate solution of the device model are obtained. After
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the previously derived relations Equations (9) and (10) are taken into account, they take
the form

Ay kL
e ω − Ay

(
ω2 − 1

)
= 0, (11a)

Ayuρωa1 + A3
y

3ρω3a3

4u
− Aycω − AyeLω = 0, (11b)

where kL
e = κ r2ω2

1+r2ω2 and eL = κ r
1+r2ω2 are the piezoelectric stiffness and electrical damping

of the linear system. Based on the above system of equations, it can be shown that

ω2
1

ω2
2
=

r2(1 + κ)− 1 ±
√

4r2 + (r2(1 + κ)− 1)2

2r2 (12a)

Ay
2 =

4u
(
c + eL − uρa1

)
3ρω2a3

. (12b)

Equation (12a) shows that ω2
2 < 0, regardless of the system parameters. Therefore, in

the following part of the work, the notation ω1 = ω has been adopted. Returning now to
the general definition of efficiency Equation (5) and substituting the expressions Equations
(6b), (10), and (12) into it, we obtain

ηL =
2eL(c + eL − uρa1

)
3u2ρ2a3

. (13)

Figure 2 illustrates the efficiency characteristics of the system. The efficiency is depicted
as the ratio ηL/ηL

p , and this representation is maintained throughout the study. The
figure also includes the analogous characteristic obtained numerically for initial conditions
y(0) = 0.1,

.
y(0) = 0, n(0) = 0, utilizing the fourth-order Runge–Kutta method.
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In this figure, it can be observed that the system undergoes Hopf bifurcation at a
certain speed, from now on referred to as the critical flow speed ucr. Its value results
directly from Equation (13):

ηL =
2eL(c + eL − uρa1

)
3u2ρ2a3

= 0 ⇒ u = ucr =
c + eL

ρa1
, (14)

Another noteworthy observation from the same set of graphs is that irrespective of the
parameter set, there exists a specific nominal flow speed u = uL

p for which the efficiency ηL
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attains a maximum value, denoted as the peak efficiency ηL
p . These quantities are given by

the expressions
δηL

δu
= 0 ⇒ u = uL

p = 2
c + eL

ρa1
= 2ucr, (15)

ηL
p = ηL

(
uL

p

)
=

−a2
1eL

6a3(c + eL)
. (16)

The aforementioned identities were previously derived in [3,4]. However, the remain-
der of the article discusses entirely original content. An unexplored property of GEHs,
which can be inferred from Figure 2 or deduced from the identity uL

p = 2ucr, is noteworthy.
A system with a low critical speed ucr will experience a more pronounced decline in effi-
ciency due to the deviation of the flow speed u at which it operates from the nominal speed
uL

p . Let the measure of this phenomenon be the flow speed bandwidth in which the system
efficiency ηL does not fall below 90% of the maximum efficiency ηL

p , hereafter referred to as
the high-efficiency band BL. According to the definition, BL is given as

ηL = 0.9ηL
p ⇒ u2

u1
=

20 ± 4
√

10
9

(
c + eL)

ρa1
, (17)

BL = u2 − u1 =
4
√

10
9

(
c + eL)

ρa1
≈ 1.4ucr ≈ 0.7uL

p . (18)

The quantities critical speed ucr, nominal speed uL
p , peak efficiency ηL

p , and high-
efficiency bandwidth BL (Figure 2) will be further referred to as the criterion parameters.

3. Efficiency of Two-Degree-of-Freedom System

According to the information provided in Section 1, the presence of additional mass
in systems with two degrees of freedom implies the necessity to consider the placement
of the electromechanical transducer. It may be positioned between the main mass and the
stationary base (Figure 3a), between the masses (Figure 3b), or in both locations (Figure 3c).
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𝑐ଶෝ    𝑘ଶ෢   
𝑘ଵ෢   𝑐ଵෝ  

𝑧ଶ  

𝑧ଵ   𝑢 ෝ   
𝐶௣ଶ෢ , 𝑅ଶ෢, 𝜃ଶ෢  𝑚ଶ  ෞ  
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𝐶௣ଵ෢ , 𝑅ଵ෢, 𝜃ଵ෡   
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𝑘ଵ෢   𝑐ଵෝ    

𝑧ଶ  

𝑧ଵ  𝑢ො   

Figure 3. Subvariants of two-degree-of-freedom system: (a) transducer between base and lower mass,
(b) transducer between masses, (c) two transducer.

To evaluate the influence of piezoelectric placement on efficiency, the efficiency charac-
teristics of the variant with both transducers will be derived. Subsequently, the consequence
of the absence of one of them will be examined.
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The dynamics of devices within the discussed category can be described by a general
dimensionless mathematical model of the form Equation (20). In addition to the identities
in Equation (3), the following also holds:

yi =
zi
ĥ

, vi = ξ θ̂i
m̂i ĥ ω̂2

n
, ci =

ĉi
m̂1ω̂n

, k2 = k̂2
k̂1

, κ = θ̂i
2

ˆCp i m̂1 ω̂2
n

,

θ = θ̂1
θ̂2

, M = m̂2
m̂1

, i = 1, 2
(19)

..
y1 + y − k2(y2 − y1) + c1

.
y1 − c2

( .
y2 −

.
y1
)
− v1 + v2 = ρ

(
a1u

.
y1 + a3

.
y3

1
u

)
, (20a)

κ1
.
v1 +

v1

r1
+

.
y1, (20b)

M
..
y2 + k2(y2 − y1) + c2

( .
y2 −

.
y1
)
− v2 = 0, (20c)

κ2
.
v2 +

v2

r2
+

.
y2 −

.
y1 = 0. (20d)

To derive the solutions of the GEH2D mathematical model, the procedure outlined
in [28] was adapted. It was assumed that the approximate solution of the model Equation (20)
will have the following form:

y1 = A1cos(ω1t) + B1sin(ω1t) + G1cos(ω2t) + H1sin(ω2t), (21a)

v1 = n1cos(ω1t) + n2sin(ω1t) + n3cos(ω2t) + n4sin(ω2t), (21b)

y2 = A2cos(ω1t) + B2sin(ω1t) + G2cos(ω2t) + H2sin(ω2t), (21c)

v2 = ϑ1cos(ω1t) + ϑ2sin(ω1t) + ϑ3cos(ω2t) + ϑ4sin(ω2t), (21d)

Substituting the above identities into Equations (20b) and (20d) and then balanc-
ing the harmonics cos(ω1t), sin(ω1t), cos(ω2t), sin(ω2t) allows for the derivation of the
relationships between the amplitudes of voltage and the amplitudes of vibration.

n1 = B1ω1εD11 − A1δD11, n2 = −A1ω1εD11 − B1δD11,
n3 = H1ω2εD12 − G1δD12, n4 = −G1ω2εD12 − H1δD12,

(22a)

ϑ1 = θ(εD21(θB2 − B1)ω1 + δD21(A1 − θA2)),
ϑ2 = θ(εD21(A1 − θA2)ω1 + δD21(B1 − θB2)),
ϑ3 = θ(εD22(θH2 − H1)ω2 + δD22(G1 − θG2)),
ϑ4 = θ(εD22(G1 − θG2)ω2 + δD22(H1 − θH2)).

(22b)

where δDij = κi
r2ω2

j

1+r2ω2
j

and εDij = κi
r

1+r2ω2
j

represent the piezoelectric stiffness and electric

damping of the i-th piezoelectric for vibration with the j-th frequency.
Harmonic balancing of cos(ω1t) and sin(ω1t) of the algebraic equation obtained by

substituting the solutions of Equation (21) into Equation (20c) and using the identities
Equation (22) leads to the following system of equations:

A2 = B1 p1 + A1q1, (23a)

B2 = B1q1 − A1 p1, (23b)

where

p1 =
(k2 + θδD21)

(
c2 + θ2εD21

)
ω1 − (c2 + θεD21)

(
k2 + θ2δD21 − Mω2

1
)
ω1

(c2 + θ2εD21)
2
ω2

1 +
(
k2 + θ2δD21 − Mω2

1
)2 , (23c)
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q1 =
(c2 + θεD21)

(
c2 + θ2εD21

)
ω2

1 + (k2 + θδD21)
(
k2 + θ2δT21 − Mω2

1
)

(c2 + θ2εD21)
2
ω2

1 +
(
k2 + θ2δD21 − Mω2

1
)2 . (23d)

By substituting the above identities into the harmonic balance equations for cos(ω1t)
and sin(ω1t) of expression (20a), the following identities can be formulated:

A1α1 + B1β1 − A1
3ρa3ω1

((
A2

2 + B2
2
)
ω2

1 + 2
(
G2

2 + H2
2
)
ω2

2
)

4u
= 0, (24a)

A1β1 − B1α1 + B1
3ρa3ω1

((
A2

2 + B2
2
)
ω2

1 + 2
(
G2

2 + H2
2
)
ω2

2
)

4u
= 0, (24b)

where

α1 =
(

p1

(
k2 + θ2δD21

)
+ (c1 + εT11 + (c2 + εD21)(1 − θq1))ω1 − uρω1a1

)
, (25a)

β1 = 1 + δT11 + (δD21θ + k2)(1 − θq1)− ω1

(
p1

(
c2 + θ2εD21

)
+ ω1

)
. (25b)

Adapting the above procedure to balance the harmonics cos(ω2t) and sin(ω2t) of
Equations (20c) and (20a) allows for the derivation of the following identities:

G2 = H1 p2 + G1q2, (26a)

H2 = H1q2 − G1 p2, (26b)

G1α2 + H1β2 − G1
3ρa3ω2(2(A2

1+B2
1)ω2

1+(G2
1+H2

1)ω2
2)

4u = 0 (26c)

G1β2 − H1α2 + H1
3ρa3ω2

(
2
(

A2
1 + B2

1
)
ω2

2 +
(
G2

1 + H2
1
)
ω2

2
)

4u
= 0 (26d)

where

p2 =
(k2 + θδD22)

(
c2 + θ2εD22

)
ω2 − (c2 + θεD22)

(
k2 + θ2δD22 − Mω2

2
)
ω2

(c2 + θ2εD22)
2
ω2

2 +
(
k2 + θ2δD22 − Mω2

2
)2 , (27a)

q2 =
(c2 + θεT22)

(
c2 + θ2εD22

)
ω2

2 + (k2 + θδD22)
(
k2 + θ2δD22 − Mω2

2
)

(c2 + θ2εD22)
2
ω2

2 +
(
k2 + θ2δD22 − Mω2

2
)2 , (27b)

α2 =
(

p2

(
k2 + θ2δD22

)
+ (c1 + εT12 + (c2 + εT22)(1 − θq2))ω2 − uρω2a1

)
, (27c)

β2 = 1 + δD12 + (δD22θ + k2)(1 − θq2)− ω2

(
p2

(
c2 + θ2εD22

)
+ ω2

)
. (27d)

By adding Equation (24a) multiplied by B1 to Equation (24b) multiplied by A1, an
expression was obtained that allows the frequency ω1 to be explicitly formulated:

1 + k2 + δD11 − k2q1 + δD21θ(1 − θq1)− p1

(
c2 + θ2εD21

)
ω1 − ω2

1 = 0. (28)

Similarly, by adding Equation (26c) multiplied by H1 to Equation (26d) multiplied by
G1, an equation was obtained from which the frequency ω2 can be derived:

1 + k2 + δD12 − k2q2 + δD22θ(1 − θq2)− p2

(
c2 + θ2εD22

)
ω2 − ω2

2 = 0. (29)

Note that in each pair of parameters (p1, p2), (q1, q2), (εD21, εD22), (δD11, δD12),
(δD21, δD22), the only difference is the frequency in their definition—ω1 or ω2. Consid-
ering the similarity between Equations (28) and (29), one can conclude that the frequencies
ω1 and ω2 must be equal, thereby excluding the possibility of polymodal vibrations in
the system. The expression describing the vibration frequency ω2 = ω1 can therefore be
derived by solving only one of the above equations.
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The relationship between the vibration amplitude and the system frequency remains
unknown. The first of the equations necessary to determine this relationship was obtained
by subtracting Equation (24b) multiplied by B1 from Equation (24a) multiplied by A1.
The second one is the difference of Equation (26c) multiplied by G1 and Equation (26d)
multiplied by H1:

p1
(
k2 + θ2δD21

)
+ (c1 + c2(1 − q1) + εD11 + εD21θ(1 − θq1))ω1

−uρω1a1 −
3ρω1(A2

yω2
1+2G2

yω2
2)a3

4u = 0,
(30a)

p2
(
k2 + θ2δD22

)
+ (c1 + c2(1 − q1) + εD12 + εD22θ(1 − θq2))ω2

−uρω2a1 −
3ρω2(2A2

yω2
1+G2

yω2
2)a3

4u = 0,
(30b)

where A2
y = A2

1 + B2
1 and G2

y = G2
1 + H2

1 . The set of Equation (30) has three non-trivial
solutions in terms of A2

y and G2
y, which, after recalling the ω2 = ω1 identity, take the

following form:

A2
y =

4u(p1(k2+θ2δD21)+(c1+c2(1−q1)+εD11+εD21θ(1−θq1))−uρa1)
3ρω1

3a3
,

G2
y = 0

(31a)

A2
y = 0,

A2
y = 0,

G2
y =

4u(p1(k2+θ2δD21)ω1+(c1+c2(1−q1)+εD11+εD21θ(1−θq1))−uρa1)
3ρω1

3a3
,

(31b)

A2
y =

4u(3p1(k2+θ2δD21)ω1+c1+c2(1−q1)+εD11+εD21θ(1−θq1))−uρa1

9ρω1
2a3

,

G2
y =

4u(−3p1(k2+θ2δD21)ω1+c1+c2(1−q1)+εT11+εD21θ(1−θq1))−uρa1

9ρω1
2a3

.
(31c)

These expressions, along with the previously derived identities, enable the explicit
formulation of solutions for the system Equation (20) in the form Equation (21). It should
be noted that the identities given by Equations (31a) and (31b) correspond to the same
solution in the form of Equation (21); thus, only one of them, namely Equation (31a), will
be further analyzed. Moreover, no set of system parameters and initial conditions has
been found that would lead to the excitation of vibrations with amplitude Equation (31c).
Therefore, this solution was considered unstable, and the efficiency has been derived based
only on Equation (31a):

ηD =

1
Tc

∫ Tc
0

(
v1

2(t)
r1κ1

+ v2
2(t)

r2κ2

)
dt

ρu3 =
2λ(µ − uρa1)

3u2ρ2a3
, (32)

where
λ =

(
εD11 + εD12θ2

(
1 − 2θq1 + θ2

(
p1

2 + q1
2
)))

, (33a)

µ = (c1 + (c2 + θεD11)(1 − θq1)) +
p1
(
k2 + θ2δTD21

)
ω1

. (33b)

The critical speed uD
cr and nominal speed uD

p of the GEH2D are given by the following
expressions:

ηD = γ1
2λ(µ − uρa1)

3u2ρ2a3
= 0 ⇒ u = uD

cr =
µ

ρa1
, (34)

δηD
δu

= 0 ⇒ u = uD
p = 2

µ

ρa1
= 2uD

cr. (35)
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Now it is possible to derive the peak efficiency of the system:

ηD
p = ηD

(
uD

p

)
=

−λ a2
1

6γ2a3
. (36)

To fully determine the features of the analyzed variant, it is necessary to define its
high-efficiency bandwidth BD. It is

ηD = 0.9ηD
p ⇒ u2

u1
=

2
0.9 ρa1µ ±

√
0.4

0.9 ρa1µ

(ρa1)
2 , (37)

BD = u2 − u1 =

√
160
81

µ

ρa1
≈ 1.4uD

cr ≈ 0.7uD
p . (38)

Figure 4 depicts the relationship between efficiency ηD and flow speed u, represented
by the function Equation (32), compared with an analogous relationship obtained through
numerical integration of the model Equation (20) for the following initial conditions:
y1(0) = 0.1,

.
y1(0) = 0, n1(0) = 0, y2(0) = 0,

.
y2(0) = 0, n2(0) = 0. Moreover, the figure

shows the values characterizing the efficiency of the variant—uD
cr, uD

p , ηD
p , and BI .
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Table 2. GEH2D system parameter values.

Parameter Value

M 0.5
k2 0.3
c1 0.1
c2 0.25
κ1 0.9
κ2 1.8
r1 3
r2 2
θ 1.3
a1 2.3
a3 −18
ρ 0.02

4. Comparison and Discussion

As suggested by Equations (34), (35), and (38), critical speeds, nominal speed, and
high-efficiency bandwidths are interrelated in the same manner in both analyzed GEH
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variants. Consequently, comparing the efficiency of these systems can only be achieved
by comparing their peak efficiencies. Since the efficiency of both devices depends on their
nominal speeds, it is necessary to compare systems with the same nominal speeds. The
electrical damping of the linear system eL will therefore be selected in such a way that this
condition is satisfied. In the following derivation, it is assumed that the structural damping
of the linear system c is equal to the structural damping c1 of the damper connecting
the lower mass of the GEH2D with the base, i.e., c = c1. The shape of the flowing body,
represented by the coefficients a1 and a3, and the density of the fluid remain the same for
all variants.

uI
p = uL

p , (39a)

2
µ + γ2

ρa1
= 2

eL + c1

ρa1
, (39b)

eL = γ2 + µ − c1. (39c)

According to Equations (16) and (39c), the efficiency of a system with one degree of
freedom with a nominal speed equal to the nominal speed of the GEH2D is equal to

ηL
(

uD
p

)
= −

(µ − c1)a2
1

6µa3
. (40)

The ratio of peak efficiencies of compared systems with the same nominal speed is
therefore given by

ηL
(

uD
p

)
ηD
(

uD
p

) =
s1 + s2

s1 + s3
, (41)

where

s1 = εT11

((
k2 + θ2δD21

)(
k2 + θ2δT21 − 2Mω1

2
)
+
(

c2 + θ2εD21

)2
ω1

2 + M2ω1
4
)

, (42a)

s2 = Mω1
2
(
(k2εD21 − c2δD21)(θ − 1)θ + Mω1

2(c2 + θεD21)
)

, (42b)

s3 = θ2εD21

(
Mω1

2
(

2k2(θ − 1) + Mω1
2
)
+
(

c2
2ω1

2 + k2
2
)
(θ − 1)2

)
. (42c)

Clearly, according to Equation (41), the discussed system with two degrees of freedom
will have greater efficiency than the reference system if and only if s3 > s2. For variant
with only one lower transducer (Figure 3a), where εD21 = δD21 = 0, this inequality takes
the form

0 ≯ c2M2ω1
4, (43)

which implies that such a device cannot be more efficient than the reference system, regard-
less of its parameters. This conclusion contradicts the results presented in [25]. The reason
for this discrepancy lies in the fact that in the cited work, the operating conditions of the
compared systems were not standardized—the devices had different critical speeds and,
consequently, different nominal speeds. Despite the unquestionable value of this article,
the conclusion stated therein can be subject to questioning. In the case of the variant with
only the upper transducer (Figure 3b), where εT11 = δT11 = 0, the condition for efficiency
improvement takes the following form:

εD21 ≯ εD21 + c2, (44)

which indicates that this variant does not offer efficiency enhancement. Similarly, an
identical and impossible-to-satisfy requirement is associated with the special case of the
third variant, where there are two identical transducers, meaning εD11 = εT21, δD11 = δD21,
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and θ = 1. However, the inequality s3 > s2 can be satisfied for the most general variant—the
one equipped with two different transducers. In this case, it can be reduced to the condition

(θ − 1)θ
(

εD21k2
2(θ − 1)θ + c2δD21Mω1

2 + c2
2εD21ω1

2(θ − 1)θ + εD21k2Mω1
2(2θ − 1)

)
> M2ω1

4(c2 − εD21(θ − 1)θ),
(45)

which, after substituting the solution of Equation (27), can be solved numerically for a
chosen parameter. For the parameters presented in Table 2, solving the above inequality
for θ results in obtaining a threshold value of approximately θ ≈ 1.13. An example of the
efficiency characteristics of the GEH with eL given by Equation (39c) and GEH2D is shown
in Figure 5, where condition Equation (45) has been met by adopting parameters according
to Table 2, with θ = 1.3 > 1.13. It should be noted that parametric analysis does not allow
one to indicate the optimal gain that the discussed system can provide. Determining this
fact can be considered as a potential direction for further research.
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5. Conclusions

The aim of the study was to investigate the efficiency of a galloping energy harvester
with two degrees of freedom, considering its three variants, which differ in the number and
location of electromechanical transducers. The realization of this objective commenced with
the analysis of the reference variant with one degree of freedom. Utilizing the harmonic
balance method, an approximate solution of the mathematical model of the system was
derived, followed by the formulation of an expression describing the efficiency of the
variant. Based on this, key criteria parameters were defined, providing comprehensive
information about the variant’s efficiency: peak efficiency, high-efficiency bandwidth,
critical speed, and nominal speed.

Subsequent sections of the study delineated the multitude of configurations that
a system with two degrees of freedom can adopt. Three different subvariants of the
device were characterized, differing from each other by the location and number of the
electromechanical transducers. Parameters characterizing the efficiency of all subvariants
were derived, demonstrating that the critical speed, nominal speed, and high-efficiency
bandwidth are related to each other in the same manner as in the case of the reference
system. It was then demonstrated that among the three indicated subvariants of the two-
degree-of-freedom system, only the one with two transducers can be more efficient than
the reference system.
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