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Abstract: Carbendazim (CBZ) residues in food are a severe threat to food safety, and their detection
is a challenging problem in food science. We introduce here a new method based on laser desorption
postionization mass spectrometry imaging (LDPI-MSI) for detecting CBZ residues in carrots. In the
novel LDPI-MSI method, two distinct laser beams simultaneously exert dissociation and ionization,
which offers several advantages over traditional techniques based on single-photon matrix-assisted
laser desorption/ionization mass spectrometry imaging (MALDI-MSI), including simplified sample
preparation, streamlined operation workflow, and a lower limit of detection (LOD). The LOD, in
the proposed method, has been lowered to 0.019 ppm. Coupled with mass spectrometry imaging
(MSI), the LDPI-MS method enabled in situ detection of small molecular compounds, such as
chemical pesticides, and provided comprehensive and accurate results. The image obtained from the
characteristic mass spectrometric signature of CBZ at m/z 191 illustrated that most of the CBZ could
not enter the carrot tubers directly, but a small amount of CBZ entered the carrot root and was mainly
concentrated in the central xylem. The results suggest that the proposed method could potentially be
used in pesticide analysis.

Keywords: laser desorption postionization mass spectrometry; pesticide residues; food safety; in-situ
detection; mass spectrometry imaging; carrot

1. Introduction

Excessive or improper use of pesticides adversely affects ecosystems and wildlife,
increasing the level of pesticides in agricultural products and leaking into groundwater
from farmland, which ultimately may altogether endanger human health [1–3]. Among
many types of fungicidal pesticides, carbendazim (CBZ) is a broad-spectrum systemic
fungicide, one widely applied to various crops in China, primarily via foliar spraying and
seed treatment [4,5]. Therefore, to minimize the overuse of pesticides and prevent soil
and water pollution, it is necessary to reassess the pesticide application process and find
its correlation with the process of pesticide absorption in plants [6,7]. This also applies to
contact pesticides deposited on the surface of plants [8,9]. Carrot root rot, a common and
frequent fungal disease, is primarily manifested during the post-harvest storage period,
leading to significant yield and quality losses [10]. Early disease stages can be effectively
mitigated by drenching with a 600-fold diluted solution of 50% CBZ wettable powder [11].
The kinetics of CBZ degradation in plant roots exhibit a typical half-life ranging from 1 to
5 days, potentially causing residue accumulation [12,13].

According to international standards, pesticide residues can be tested by various
methods, mainly including chromatographic (column chromatography and thin-layer
chromatography), electrochemical, and HPLC–MS methods [14–16]. Zhou et al. applied
ultrahigh-performance liquid chromatography (UHPLC–MS) to determine metabolites and
pesticide residues in tea leaves, achieving precision and a low limit of detection (LOD),
better than that in the existing methods; however, these methods comprise several steps,
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which is a time-consuming and labor-intensive procedure that does not provide in situ
information on the distribution of pesticide residues in the tea samples [12]. Hossein et al.
developed a new electrochemical molecularly-imprinted polymer aptasensor, demonstrat-
ing exceedingly high sensitivity and enhanced selectivity in CBZ detection. However,
special and complex preprocessing steps were required, possibly affecting the accuracy of
quantitative results [17].

In addition to traditional chemical analysis methods, laser ionization mass spectrom-
etry analysis methods have been developed in recent years, and these have benefitted
from novel ion source technologies. Secondary ion mass spectrometry (SIMS), thermal
desorption ionization (DART), matrix-assisted laser desorption ionization (MALDI), and
laser desorption postionization (LDPI) have been developed, and they require almost no
sample preparation [18–20]. The applicability of ionization mass spectrometry analysis
methods has been demonstrated for a variety of analytes, e.g., biological and environmental
samples including alkaloids in plants, phospholipids in mammalian tissues, and lipids and
proteins in bacteria [21,22]. Substantial progress was made in the last decade in MALDI-MS
analyses for complex protein samples, especially biomolecules, because innovative “soft
ionization” MS techniques offered advantages in sample-integrity preservation, strong
molecular ion peaks, and high sensitivity [23,24]. However, interference peaks can be gener-
ated from matrices used in the MALDI–MS detection methods in the low-molecular-weight
region, which may adversely affect the detection of target compounds. Consequently,
MALDI is satisfactorily employed for high-molecular-weight molecules, such as proteins,
carbohydrates, and proenzymes, while the results for substances with a relative molecular
weight lower than five hundred, such as amino acids, are often unsatisfactory [25–28].

LDPI-MS has a working principle similar to that of MALDI-MS, and yet, there are
some important differences [29]. LDPI-MS utilizes two experimental lasers with different
energies to complete the sample desorption and ionization processes separately. The
method was previously used to detect the distribution of polycyclic aromatic hydrocarbons
in gasoline aerosols and analyze drugs and biomaterials [30,31].

The ionization process in LDPI-MS mainly involves two independent steps: desorp-
tion gasification and ionization after desorption. In the first step, a sample is irradiated with
a desorption laser; typically, a low-energy infrared laser is applied. The laser effectively
vaporizes stable and non-volatile substances within a few microseconds, facilitating the
gasification process [32]. Generally, gaseous particles formed upon the sample’s vaporiza-
tion aggregate into small, electroneutral gaseous clusters which float at a vertical distance
of approximately 1 mm from the sample platform. After the vaporization process is com-
pleted, a second laser beam is applied after a certain delay time. In general, the ionization
laser used in LDPI-MS is a vacuum ultraviolet (VUV) laser, with its photon energy reaching
10.48 eV. This energy level is higher than the ionization energy of most molecules. Therefore,
gasification and ionization of target molecules can be achieved using single-photon energy,
which also helps minimize the generation of abundant ion fragments [33].

LDPI-MS has several unique advantages over other types of ionization sources. First,
fewer fragment peaks form due to the soft VUV-laser single-photon ionization, resulting in
a greater proportion of intact molecular peaks and improved experimental accuracy [34].
Second, the separate utilization of two laser beams provides a basis for optimizing the
experimental operation and makes it more convenient [35]. Finally, the LDPI ionization
method effectively avoids interference effects, like those caused by matrix additives in
MALDI methods, which is advantageous in detecting relatively small molecules such as
CBZ, as discussed in this paper [36]. In addition, this research method can be used in
imaging mode to study the in situ distribution of compounds across the entire sample
area. Previously, it has been widely used in biomedical research, drug metabolism research,
proteomics, lipidomics, materials science, and other fields. It is particularly suitable for
applications that require high sensitivity and rapid spatial imaging of small-molecule com-
pounds, such as the distribution of functional molecules in cell tissues and the distribution
of drugs in organisms [37].
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Keeping in mind the aforementioned elaboration, we propose here a novel method for
the in situ detection of CBZ pesticide residues in plant roots and stems. The method is based
on LDPI combined with TOF-MSI, and it offers advantages such as not requiring sample
preprocessing, enabling single-step in-situ imaging, and performing simultaneous analyses
of multiple datasets, outperforming the existing methods for pesticide residue analysis.

2. Materials and Methods
2.1. LDPI-TOF-MSI Apparatus

The home-built apparatus is shown in Figure 1. The mass spectrometry imaging
system used in this study was integrated and constructed with multiple functional com-
ponents, including a custom-designed linear time-of-flight-mass spectrometer (TOF-MS),
vacuum system, laser system, and delay control system. An X-Y-Z stage was used for
sample transfer during the imaging run [38]. A home-made TOF-MS system was used in
this study. The details of the apparatus have been described previously, and only a brief
introduction is given here [39].
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Figure 1. Schematic drawing of the LDPI-MSI system. Schematic diagram of the laser desorption
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right panel represents the sample chamber.

In this experiment, the laser light sources used included two nanosecond-scale solid-
state lasers. The desorption laser, a 532 nm Nd:YAG solid-state laser (Minilite, Continuum,
Inc., Milpitas, CA, USA) with a 10 Hz repetition rate, was focused on a small spot with
a size of 0.5 mm2 through a reflection and focusing lens. By controlling the pulse energy
range within 0.5–3 mJ (10–60 mW/cm2), desorption of sample molecules can be achieved.
The ionization laser source used in this experiment consisted of vacuum ultraviolet (VUV)
118 nm, 10.5 eV photons generated by nonlinear optical frequency mixing with another
1064 nm laser (INDI-40-10 YAG, Spectra Physics, Inc., Milpitas, CA, USA). Briefly, a 355 nm
laser for ionization is generated through the frequency tripling crystal (FTC) of the funda-
mental frequency light produced by the 1064 nm laser, and the emitted light is focused by
a focusing lens (f = 25 cm) before entering a homemade mixed gas cell. Specifically, this
gas cell was filled with a high-purity nonlinear medium consisting of a phase-matched
1:10 Xe/Ar gas mixture at 160 Torr to generate 118 nm photons by the use of four-wave
mixing and an MgF2 lens (which can cause separation of the ultraviolet and VUV beams
at the YAG third harmonic (n = 1.39 at 355 nm) and ninth harmonic (n = 1.67 at 118 nm)
wavelengths), which are used for the output port. Finally, the 118 nm laser spot generated
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through this process can be focused to approximately 1 mm2 above the sample. Then, the
sample is completely ionized by coordination with the X-Y-Z platform [40]. As shown in
Figure S1, the ion lenses are used to adjust and focus the ion beam so that ions can hit
the detector more accurately. The ion signals were collected by a 22 mm diameter ternary
position-sensitive detector (microchannel plate, MCP). The outputs corresponding to the
ion signals were digitized, averaged, and recorded using a digital storage oscilloscope.

2.2. Material and Reagents

Carrots (Guangzhou local market, approximately 100 g in total) were stored at 20 ◦C
for no more than 15 days. Carbendazim (C9H9N3O2, >97%) was purchased from Aladdin
(Shanghai, China). Alcohol (C2H5OH) was obtained from Guangzhou Chemical Reagent
Factory (Guangzhou, China). Graphite powder (99.85%, Aladdin, Shanghai, China) was
obtained. O.C.T. (optimal cutting temperature, a water-soluble mixture of polyethylene
glycol and polyvinyl alcohol) Compound (SAKULA®, made in Whitestone, NY, USA)
was acquired. All reagents were of analytical grade or higher, and all aqueous solutions
were prepared using high-purity water (≥18 MΩ/cm2), obtained by passing distilled
and deionized water through an ELGA water purification system. Standard solutions
(0.5−10 nmol/mL) were prepared by appropriate dilution of stock carbendazim.

2.3. Experimental Procedure

This study aims to analyze pesticide residues in the underground part of the carrot’s
main root. Therefore, it was necessary to treat the carrot plants to eliminate interference
from other effects. Carrot plants were divided into leaves, fleshy taproots, and roots [41].
The fleshy taproot originates from the lower hypocotyl and the upper part of the root. There-
fore, a portion of the taproot can grow above the soil; the boundaries between aboveground
and underground taproots were marked with string, serving as an experimental target. In
addition, all petioles and leaves of the experimental plants were cut off in advance and
placed in a prepared solution, after which the flask was covered with Parafilm® to inhibit
the translocation by water evapotranspiration [42,43]. An overview of the experimental
procedure is shown in Figure 2. First, before preparing the samples, it was essential to
prepare and cultivate the carrot plants. In the second step, CBZ was added and cot-cultured
with the sample. For the sake of the experiments, carrot plants were cultivated in glass
flasks containing 100 mL of complete nutrient solution in order to maintain the biological
activity; the cultivated portion matched the marked area. In this process, 1.0 g of carben-
dazim was added to the experimental group to form a 10 mg/mL culture solution, while
the control group received the powder equivalent of 1.0 g complete nutrient solution to
balance the concentration. This process simulated the actual conditions of soil spraying
and root irrigation with agricultural pesticides. Three parallel experiments were performed
for each group. The specific culture conditions of carrot tubers sample were as follows:
during the experiment, the carrot root samples were cultured in 100 mL complete nutrient
solution containing 10 mg/mL carbendazim for 2 h at a temperature of about 20 ◦C and
a period of shaking was maintained every 5 min. In the third step, the samples were
sliced and prepared. The complete carrot samples were dried to remove residual solution
from the surfaces using absorbent filter paper. Afterward, the selected tissues (1 cm below
the mark, about 200 mm2) were quickly cut, and then embedded in an O.C.T. compound
freezing medium within 5 min after collection. Tissue sections with a thickness of 100 µm
were obtained at −20 ◦C using a cryostat (Leica’s CM1850, Wetzlar, Hesse, Germany) and
deposited on flat sapphire substrates for LDPI-MS analysis. In the fourth step, after the
completion of sample preparation, with the use of an accurate three-dimensional mobile
platform, and according to the preset 70 µm step size and using the zigzag scanning mode,
the treated sample was gradually scanned and analyzed, in order to ensure the comprehen-
sive coverage of the entire sample surface and efficient analysis. Through the above steps,
which were followed to complete the collection of specific mass spectrum peak signals, the
original mass spectrometry image map was obtained, and then the image was optimized
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by Matlab R2022a and other software, with techniques such as denoising and shadow
removal. Finally, the pesticide residues in the sample could be visually displayed through
color coding.
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3. Results
3.1. LDPI-MS Analysis of the Pure Sample of Carbendazim

The experiment first needs to determine the carbendazim LDPI-MS signal, and because
the experiment uses a mode of two-beam laser action, it also needs to determine whether
this mode will interfere with the quality of the carbendazim spectrum signal.

Figure 3 shows the LDPI-MS of the pure CBZ sample that covered the plate. After irra-
diation with the 532 nm infrared laser, the CBZ sample was desorbed, and gaseous clusters
were formed. Figure 3b,c show no significant MS signals when solely the desorption laser
or the ionization laser was used, since their separate application cannot generate a complete
mass spectrum; the characteristic peaks of the target molecule can be generated only when
both lasers work simultaneously. These gaseous clusters, containing several neutral CBZ
molecules, automatically float toward the ionization base and undergo ionization with
the 118 nm VUV laser after a delay of approximately 25 µs. The ionized species are then
focused, accelerated, repulsed, and deflected by the electric field force before they cross
the mass spectrometer’s free-flight tube, and they are ultimately detected by the MCP,
producing experimental signals. Here, single-photon ionization using a 118 nm VUV laser
was used as a soft ionization process. The experimental requirement for soft ionization is an
ionization energy of the substance molecules of less than 10.48 eV. Theoretical calculations
and previous experimental studies showed that the ionization energy of CBZ is lower than
10.48 eV, so the selected target pesticide molecules fully met the experimental requirements.
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As shown in Figure 3a, two dominant peaks, with relative molecular masses of 191
and 160, appear in the mass spectrum. In order to verify that this mass spectrum is
being obtained under the combined action of desorption light and ionization light, we
use desorption light and ionization light to perform separate experiments on the sample.
Figure 3b,c show the mass spectra under separate photoionization and electron ionization
effects, respectively. Figure 3a presents the mass spectrum resulting from the combined
action of both laser sources, further indicating that the CBZ mass spectrum cannot be
obtained solely by desorption or ionization laser operations. The characteristic signal peaks
of the target compound can only be successfully detected when both the desorption laser
and ionization laser work together, emphasizing the importance of combined desorption
and ionization processes. The peak at m/z 191 is assigned to the CBZ molecular ion
with a relative molecular mass of 191 and is referred to as the parent ion peak. The peak
at m/z 160 is plausibly attributed to the CBZ fragment ion [C8H6N3O]+, because the
desorption ionization stage of molecular clusters is a continuous process in which the
internal energy of some molecules continuously increases, leading to fragmentation. The
main bond-cleavage types for possible molecular fragmentation are depicted in Figure 4,
with the predominant fragment having a relative molecular mass of 160. In subsequent
experiments, the fragments at m/z 191 and m/z 160 were taken as the characteristic mass
signals of CBZ [44].
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3.2. LDPI-MS Analysis of Carbendazim in Carrot Tissue

To validate the feasibility of the experimental procedure, we conducted a comparative
study to verify whether the applied LDPI-MS method can be used to detect CBZ within
carrot tuber tissues. Figure 5a,b compare the MS signals of pure CBZ samples and carrot
tuber samples after cultivation in CBZ, while Figure 5b,c compare the MS signals of
carrot tuber samples after cultivation in CBZ with those of clean carrot tuber samples.
These findings demonstrate that the carrot tuber samples cultivated in CBZ exhibit two
characteristic peaks, at m/z 191 and m/z 160, well-matching with the mass spectrometry
signals of pure CBZ samples. In the low m/z range below 100, we also observe a series
of background peaks. Comparing them with the MS data of carrot tuber samples without
pesticides, it can be concluded that these peaks could originate from fragments of cellulose,
sugars, cellular enzymes, and other molecules in the carrot tubers. Additionally, there are no
characteristic MS peaks at m/z 191 or m/z 160 in the carrot samples without CBZ, further
confirming that these two peaks are derived from CBZ molecules. Since the MS peaks
solely generated by carrot tubers are mainly concentrated below m/z 100, this indicates
that the plant background itself does not interfere with the targeted molecule. Furthermore,
it is possible to scan the characteristic peaks at m/z 191 and m/z 160 to obtain the desired
intensity information for the CBZ molecular signals. These results further validate the
applicability of the proposed experimental method for pesticide residue detection on the
surface of carrot tubers.
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3.3. Signal Linearity and Limit of Detection

Based on the previous assessment, CBZ molecules are ionized through the combined
action of two laser beams, so the relevant operating parameters of the two laser beams are
directly related to the experimentally obtained MS signal intensity and resolution. There is
a trade-off between achieving a desirable sensitivity and achieving a reasonable spectral
resolution. We first studied the effects related to the instrument construction, specifically,
the spatial distance, Z, between the sample surface and the VUV ionization laser, and the
time delay control, T, between the two laser beams. According to previous experimental
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findings, there is a critical value for the MS resolution, above which the intensity of MS
signals may decrease. Therefore, we optimized both the resolution and signal intensity
of the mass spectrometer used. To achieve this, we adjusted the time delay, T, between
the two laser beams, and the distance, Z, between the entry alumina rod and the VUV
ionization laser, and then measured the spatial resolution of the m/z 191 characteristic peak
of the MS spectrum. Based on the experimental results shown in Figure 6a, the optimal
resolution of the CBZ molecular MS signal is achieved when the time delay between the
two laser beams, T, is 25 µs and the distance between the entry alumina rod and the VUV
ionization laser, Z, is 2.5 mm. Similarly, the optimal signal intensity of the CBZ molecular
mass spectrometry signal is obtained when the time delay between the two laser beams, T,
is 22.5 µs and the distance between the entry alumina rod and the VUV ionization laser,
Z, is 2.0 mm, as shown in Figure 6b. Considering both factors, we selected the following
experimental conditions: a time delay of 22 µs between the two laser beams and a distance
of 2.0 mm between the alumina rod and the ionization laser; these achieved an optimal
effect of more than 80%.
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In this study, the experimental intensity and resolution of the multi-residue signal
were also influenced by sample preparation conditions. The concentration of multiple
residues, the temperature of the water bath, the frequency of agitation during cultivation,
and the thickness of the slices all influenced the detection results. To investigate the effects
of sample preparation on CBZ residue detection in carrot tubers, it is necessary to discuss
the influence of these factors on final residue distribution during sample cultivation. Table 1
lists the effects of cultivation temperature, agitation frequency during cultivation, and slice
thickness during sample preparation on the multi-residue content of the samples. All other
experimental conditions remained constant, and the multi-residue content was indicated
by a signal intensity at m/z 191. Based on the results in Table 1, the water bath temperature
(15–25 ◦C) exhibits a minor impact on the residual level of multiple residues in the carrot
tubers under the selected experimental conditions, with a variation of approximately 5%
when the water bath temperature increases. Therefore, a temperature of 20 ◦C, which
closely approximates the temperature at which carrots grow, was chosen as the water bath
temperature for the experiment. In terms of agitation frequency, little difference exists
between agitation every 5 or every 10 min.; only the presence of agitation has a significant
impact, which may be related to the water solubility of multiple residues, since agitation can
enhance the adsorption of multiple residues onto the surface of carrot tubers. On the other
hand, theoretically, the thickness of slices should be positively correlated with the signal
intensity. However, considering the actual laser efficiency, excessively thick slices may result
in incomplete sample vaporization, e.g., a thickness of 50 µm leads to difficulties in sample
preparation, sample breakage, and issues related to secondary ionization. Considering
the above data, the optimal experimental conditions for this experiment were chosen as
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follows: a thickness of all slices of 100 µm, and all the samples were placed in a water bath
at 20 ◦C, and shaken every 5 min.

Table 1. The impacts of different experimental conditions on residual carbendazim in carrot tubers.

Condition CBZ (m/z 191) Signal Intensity (a.u.)

Variate Duplicate Experimental Data Average

Temperature (◦C)
15 46.3 45.8 46.6 47.1 45.5 46.3
20 46.8 49.2 48.5 46.1 50.2 48.2
25 47.3 46.7 48.0 51.1 54.2 49.4

Shaking
frequency (/min)

0 38.2 41.0 38.5 37.6 38.1 38.7
5 46.8 49.2 48.5 46.1 50.2 48.2

10 45.8 47.3 50.0 48.9 46.3 47.7

Thickness (µm)
50 25.3 24.8 23.9 24.1 23.9 24.4

100 46.8 49.2 48.5 46.1 50.2 48.2
150 55.2 51.6 54.5 55.3 54.0 54.1

The standard experimental conditions were as follows: a thickness of all slices of 100 µm, and all of the samples
were placed in a water bath at 20 ◦C and shaken every 5 min. The conditions are consistent with the standard
conditions, with the exception of the control variable conditions.

To establish a relationship between the MS signal intensity and the actual concentration
of CBZ, systematic experiments were performed. Since the signal measurement of CBZ
molecules involves absorption from a 532-nm laser, only the content of CBZ molecules at a
single point needs to be calculated in the experiment. The sample has an approximately
rectangular shape, with dimensions of 20 mm in length and 10 mm in width. The surface
concentration of CBZ was calculated by evenly spreading 1 µL of 15.7 pmol/L standard
sample solution over an area of approximately 200 mm2. The 532 nm laser was used; it had
a diameter of ~200 µm and an area of ~0.314 mm2.

As shown in Figure 7a,b, the CBZ concentration of the sample ranges from 0.25 to
50 nmol/mm2 (0.0785–15.7 pmol/L). The concentration is estimated based on the aver-
age value of at least five measurements. The linear regression equation is represented
as Y = −0.11811 + 0.92533X, with R2 = 0.99488. Y denotes the electrical signal intensity
detected for the m/z 191 target, expressed in millivolts (mV), and X represents the CBZ
concentration on the sample slice. The lowest detected CBZ concentration in the present
study is 0.157 pmol/mm2, indicating that the LOD (S/N = 3) for residual CBZ in carrot tu-
bers, using this experimental method, reaches 3.14 pmol/sampling point. Herein, the LOD
is estimated to be 0.019 ppm. Specific calculations are given in the Supporting Information.
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3.4. LDPI-MS Imaging of Carbendazim Residue in Carrot Tubers

In the LDPI-MSI experiments, carrot tuber samples were cultivated underwater, and
a section approximately 1 cm from the cross-section was taken for histological LDPI-MSI
analyses. Figure 8 shows optical images and LDPI-MSI maps of sample sections treated
with a CBZ solution of 15.7 pmol/L for different durations. Based on these images, the
dynamic process through which CBZ enters carrot tubers from the solution can be inferred.
As illustrated in Figure 8, the left panel shows an optical image of the sectioned sample, in
which the structural features of the carrot tuber tissue are well preserved. The red dashed
box in Figure 8a represents the sample area scanned by the sample stage in the y-direction.
The sample stage moves at a speed of 250 µm/s in the y-direction and in steps of 200 µm in
the x-direction. The MS data collected at each corresponding point were used to construct
the MS imaging map in Figure 8b through an integrated analysis of peak intensities at
specific points. The right panel of Figure 8 shows an MS image of the scanned spectrum of
the m/z 191 characteristic peak of CBZ residues in carrot tubers. The blue color represents
the background, while different colors in the MS image indicate different levels of CBZ
pesticide residues at different positions. The color differences clearly reveal variations in
the residue distribution within different tissue regions, showing a strong correlation with
the distinct tissue regions observed in Figure 8a. As can be seen from Figure 8b, even if the
surface has been cleaned, the content of carbendazim is higher on the surface of the carrot
tubers (the bottom edge of the figure), which may be due to the direct contact with the
culture medium. A small portion of the CBZ molecules form a close bond with the cortical
cells through adsorption and other ways, which is difficult to simply clean. Secondly, less
phloem remains. The contamination of the phloem may be due to the absorption of CBZ to
the cortex, which is too thin (about 125 µm) to prevent inward diffusion, and carbendazim
molecules enter the interior through structures such as vascular bundles. The residues of
CBZ in the center of the image were the highest. This may be caused by the continued
diffusion of the highly adsorbed CBZ into the internal tissues, and the gradient of CBZ
diffusion rate in different tissues is very different. Because CBZ is a weakly lipophilic
molecule (log P = 1.52), its diffusion rate in the hydrophilic xylem is much higher than that
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in the hydrophobic phloem. Most of the CBZ molecules passing through the epidermis are
transported rapidly and accumulate in the xylem, and almost no tissue retention occurs in
the phloem. This is reflected in all panels of Figure 9.
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Figure 9. LDPI-MS images of carrot tubers cultured with carbendazim for different durations. In
each graphic, the image on the left is the optical image of the sample, and the image on the right is
the LDPI-MSI image at m/z 191. Graphics (a–h) represent cultivation durations of 0, 10, 15, 30, 60, 90,
and 120 min, and more than 24 h, respectively.

As seen in Figure 9, a pattern appears between the residue levels of CBZ in carrot
tubers and the cultivation time. Obviously, a large amount of CBZ cannot easily penetrate
the carrot epidermis, and it accumulates on the outer surface of the epidermis, and can be
removed by washing with water. The removal of leaves has inhibited the transpiration
process of the carrots, and the entry of CBZ is most likely related to the permeability of
the epidermis. As the cultivation time increased, a small amount of CBZ entered and
aggregated in the central xylem of the cross-section, while CBZ remained scarce in the
cambium layer between the epidermis and xylem. This difference may be attributed
to differences in hydrophobicity among different tissues in carrot tubers [45]. More in-
depth structural information is required to reveal the affinity of CBZ to different tissues
in plant bodies [46]. This may involve research on the binding mode of CBZ molecules
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with tissue cells, physicochemical properties, and molecular dynamics to provide a deeper
understanding of the plant’s interaction with CBZ.

4. Conclusions

This study reported the application of LDPI-MS (Laser Desorption Ionization Mass
Spectrometry) for in situ detection of CBZ pesticide residues in carrot tubers. The method
offered several advantages, such as simplified sample preparation, minimal matrix inter-
ference, and rapid and convenient analysis, having a particular advantage in detecting
both endogenous and exogenous compounds, particularly small molecules. The LOD
of the present method reached 0.019 ppm. The LDPI-MS imaging results demonstrated
viable visual differentiation of the levels of CBZ residues using distinct colors, effectively
providing in situ molecular information on pesticide absorption within the tissues. The
distribution of CBZ in carrot tubers was closely related to the tissue structure and morphol-
ogy of carrot itself. Most CBZ molecules could not penetrate the epidermis of carrot, and
mainly accumulated on the outer surface of the epidermis after washing. Since the leaves
of the carrot were removed in the experiment, the transpiration of the carrot was inhibited,
so the entry of CBZ is likely related to the permeability of the epidermis. With prolonged
culturing time, we found that small amounts of CBZ molecules were able to enter and
accumulate in the central xylem of the cross section, while relatively small amounts of
CBZ were present in the cambium between the epidermis and the xylem. This difference
in distribution may be related to differences in hydrophobicity among different tissues in
carrot tubers. Furthermore, by analyzing images at different stages of slicing, dynamic
information regarding the distribution of drug molecules within tissues was obtained,
supporting theoretical investigations of exogenous drug metabolism. Clearly, LDPI-MS can
be considered an effective and promising method, providing significant insight into plant
metabolomics and pesticide residue analysis.

Compared with traditional MSI, LDPI-MSI greatly improves the sensitivity of the anal-
ysis through postionization technology and can detect more molecules that are not ionized
under conventional conditions. It is particularly suitable for applications that require high
sensitivity and rapid spatial imaging of small-molecule compounds, such as determining
the distribution of functional molecules in cell tissues and the distribution of drugs in
organisms. Despite multiple advantages offered by this technique, laboratory equipment
used in our experiments currently exhibits a lower imaging resolution, compared to ex-
isting commercial devices. Additionally, the analysis of experimental data has yet to be
refined to the level of absolute quantification. However, the integration of novel machine-
learning techniques has the potential to overcome these challenges. Addressing these
limitations would further enhance the application spectrum of LDPI-MS and contribute to
its advancement in the fields of plant metabolomics and pesticide residue analysis.
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in this experiment; Figure S3: Spatial distribution of carbendazim dominate ion at m/z 160. The MSI
data of this image and Figure 7b were obtained at the same time; Figure S4: Comparison of carrot
sample LDPI-MS with or without carbendazim residue; Figure S5: Mass spectrum of Carbendazim
by ESI-MS and carbendazim possible fragmentation pathways in LDPI-MS; Table S1: Effect of delay
T between two laser beams and distance Z between the sample surface and ionization laser on mass
spectrometry resolution; Table S2: Effect of delay T between two laser beams and distance Z between
the sample surface and ionization laser on mass spectrometry peak relative intensity.
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