Study on the Population Balance Dynamics Simulation of Grinding under Impact Crushing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. JK Drop Weight Test [35]
2.2.2. Batch-Grinding Test
2.2.3. Calculation of the Ecs of Particles in Grinding with Throwing State
2.2.4. Calculation of Breakage Distribution Function
2.2.5. Calculation of the Selection Function
3. Results and Discussion
3.1. The Population Balance Dynamics Simulation of Grinding under Impact Crushing of Quartz
3.1.1. Calculate the Cumulative Particle Size Distribution under Sieve txx for Any Sieve Size Based on the Drop Weight Test Results
3.1.2. Calculation of Breakage Distribution Function
3.1.3. Calculation of the Selection Function
3.1.4. Study on Simulation Results of the Population Balance Dynamics of Grinding for Quartz
3.2. The Population Balance Dynamics Simulation of Grinding under Impact Crushing of Pyrrhotite
3.2.1. Calculate the Cumulative Particle Size Distribution under Sieve txx for Any Sieve Size Based on the Drop Weight Test Results
3.2.2. Calculation of Breakage Distribution Function
3.2.3. Calculation of the Selection Function
3.2.4. Study on Simulation Results of the Population Balance Dynamics of Grinding for Pyrrhotite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hashim, S.F.S.; Hussin, H. Effect of grinding aids in cement grinding. J. Phys. Conf. Ser. 2018, 1082, 012091. [Google Scholar] [CrossRef]
- Wang, Z.W.; Liu, Q.S. Failure criterion for soft rocks considering intermediate principal stress. Int. J. Min. Sci. Technol. 2021, 31, 565–575. [Google Scholar] [CrossRef]
- Camalan, M. Correlating common breakage modes with impact breakage and ball milling of cement clinker and chromite. Int. J. Min. Sci. Technol. 2020, 30, 901–908. [Google Scholar] [CrossRef]
- Musa, F.; Morrison, R. A more sustainable approach to assessing comminution efficiency. Miner. Eng. 2009, 22, 593–601. [Google Scholar] [CrossRef]
- Napier-Munn, T. Is progress in energy-efficient comminution doomed. Miner. Eng. 2015, 73, 1–6. [Google Scholar] [CrossRef]
- Norgate, T.; Haque, N. Energy and greenhouse gas impacts of mining and mineral processing operations. J. Clean. Prod. 2010, 18, 266–274. [Google Scholar] [CrossRef]
- Michaux, S.; Djordjevic, N. Influence of explosive energy on the strength of the rock fragments and SAG mill throughput. Miner. Eng. 2005, 18, 439–448. [Google Scholar] [CrossRef]
- Nagaraj, D.R. Reagent selection and optimization the case for a holistic approach. Miner. Eng. 2005, 18, 151–158. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, G.; Feng, Q.; Xiao, S.; Huang, L.; Zhao, X.; Li, Z. The liberation effect of magnetite fine ground by vertical stirred mill and ball mill. Miner. Eng. 2012, 34, 63–69. [Google Scholar] [CrossRef]
- Rabieh, A.; Eksteen, J.; Albijanic, B. Galvanic interaction of grinding media with arsenopyrite and pyrite and its effect on gold cyanide leaching. Miner. Eng. 2018, 116, 46–55. [Google Scholar] [CrossRef]
- Chai, T.Y.; Qin, S.J.; Wang, H. Optimal operational control for complex industrial processes. Annu. Rev. Control 2014, 38, 81–92. [Google Scholar] [CrossRef]
- Gorman, M.R.; Dzombak, D.A. A review of Sustainable mining and resource management: Transitioning from the life cycle of the mine to the life cycle of the mineral. Resour. Conserv. Recycl. 2018, 137, 281–291. [Google Scholar] [CrossRef]
- Leistner, T.; Embrechts, M.; Leißner, T.; Chelgani, S.C.; Osbahr, I.; Mockel, R.; Peuker, U.A.; Rudolph, M. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Miner. Eng. 2016, 96, 94–98. [Google Scholar] [CrossRef]
- Huang, K.Q.; Xiao, C.H.; Wu, Q.M. Application of accurate ball-load-addition method in grinding production of some tailings. Adv. Mat. Res. 2014, 962, 771–774. [Google Scholar] [CrossRef]
- Kotake, N.; Kuboki, M.; Kiya, S.; Kanda, Y. Influence of dry and wet grinding conditions on fineness and shape of particle size distribution of product in a ball mill. Adv. Powder Technol. 2011, 22, 86–92. [Google Scholar] [CrossRef]
- Peng, Y.; Grano, S. Effect of Iron Contamination from Grinding Media on the Flotation of Sulphide Minerals of Different Particle Size. Int. J. Miner. Process. 2010, 97, 1–6. [Google Scholar] [CrossRef]
- Ma, S.J.; Li, H.J.; Shuai, Z.C.; Yang, J.L.; Deng, X.J.; Xu, W.Z. Research on grinding law and grinding parameters optimization of polymetallic complex ores. Minerals 2022, 12, 1283. [Google Scholar] [CrossRef]
- Altintas, Y.; Weck, M. Chatter stability of metal cutting and grinding. Ann. CIRP 2004, 53, 619–642. [Google Scholar] [CrossRef]
- Daito, M. Throughfeed centerless grinding—Issues on size control and its improvement. Tool Eng. 2004, 1, 85–91. [Google Scholar]
- Santosh, T.; Soni, R.K.; Eswaraiah, C.; Rao, D.S.; Venugopal, R. Optimization of Stirred Mill Parameters for Fine Grinding of PGE Bearing Chromite Ore. Part. Sci. Technol. 2020, 39, 663–675. [Google Scholar]
- Yang, J.L.; Shuai, Z.C.; Zhou, W.T.; Ma, S.J. Grinding optimization of cassiterite-polymetallic sulfide ore. Minerals 2019, 9, 134. [Google Scholar] [CrossRef]
- Epstein, B. Logarithmico-Normal distribution in breakage of solid. Ind. Eng. Chem. 1948, 40, 2289–2291. [Google Scholar] [CrossRef]
- Sedlatschek, K.; Bass, L. Contribution to the theory of milling processes. Powder Metal. Bull. 1953, 6, 148–153. [Google Scholar]
- Broadbent, S.R.; Callcott, T.G. Coal breakage processes: I. A new analysis of coal breakage processes. J. Inst. Fuel 1956, 29, 524–528. [Google Scholar]
- Gaudin, A.M.; Meloy, T.P. Minerals beneficiation-model and a comminution distribution equation for repeated fracture. Trans. AIME 1962, 223, 43–56. [Google Scholar]
- Reid, K.J. A solution to the batch grinding equation. Chem. Eng. Sci. 1965, 20, 953–963. [Google Scholar] [CrossRef]
- Kelsall, D.F.; Reid, K.J.; Restarick, C.J. Continuous grinding in a small wet ball mill Part I. A study of the influence of ball diameter. Powder Technol. 1968, 1, 291–300. [Google Scholar] [CrossRef]
- Meloy, T.P.; Gumtz, G.D. The fracture of single, brittle, heterogeneous particle-statistical derivation of the mass distribution equation. Powder Technol. 1969, 2, 207–214. [Google Scholar] [CrossRef]
- Austin, L.G. Introduction to the mathematical description of grinding as a rate process. Powder Technol. 1971, 5, 1–17. [Google Scholar] [CrossRef]
- Morozov, E.F.; Shumailov, V.K. Mathematical modeling of closed cycles of ball grinding. Sov. Min. Sci. 1986, 22, 56–65. [Google Scholar] [CrossRef]
- Nikolov, S. A performance model for impact crushers. Miner. Eng. 2002, 15, 715–721. [Google Scholar] [CrossRef]
- Shi, F. A review of the applications of the JK size-dependent breakage model part 3: Comminution equipment modelling. Int. J. Miner. Process. 2016, 157, 60–72. [Google Scholar] [CrossRef]
- Deniz, V. Effects of mill speed on kinetic breakage parameters of four different particulate pumices. Part. Sci. Technol. 2013, 31, 101–108. [Google Scholar] [CrossRef]
- Umucu, Y.; Deniz, V.; Cavirli, S. A new model for comminution behavior of different coals in an impact brusher. Energy Sources 2014, 36, 13–16. [Google Scholar]
- JK Tech. JkSimMet User Manual—Steady State Mineral Processing Simulator; JK Tech Pty Ltd.: Brisbane, Australia, 2003. [Google Scholar]
- Sun, R.G.; Gao, Y.; Yang, Y. Leaching of heavy metals from lead-zinc mine tailings and the subsequent migration and transformation characteristics in paddy soil. Chemosphere 2021, 291, 132792. [Google Scholar] [CrossRef] [PubMed]
- Leung, K. An Energy Based Ore Specific Model for Autogenous and Semi-Autogenous Grinding. Ph.D. Thesis, School of Engineering, The University of Queensland, Brisbane, Australia, 1987. [Google Scholar]
- Napier-Munn, T.J.; Morrell, S.; Morrison, R.D.; Kojovic, T. Mineral Comminution Circuits: Their Operation and Optimization; JKMRC and the University of Queensland Publishing: Indooroopilly, Australia, 2005. [Google Scholar]
- Zou, Y.R.; Luo, L.F. Application of JKSimMet software in selection of semi-autogenous grinding mill. Nonferrous Metall. Equip. 2015, 1, 20–25. [Google Scholar]
- Cuhadaroglu, D.; Samanli, S.; Kizgut, S. The effect of grinding media shape on the specific rate of breakage. Part. Part. Syst. Charact. 2008, 25, 465–473. [Google Scholar] [CrossRef]
- Simba, K.P.; Moys, M.H. Effects of mixtures of grinding media of different shapes on milling kinetics. Miner. Eng. 2014, 61, 40–46. [Google Scholar] [CrossRef]
- Narayanan, S.S.; Whiten, W.J. Breakage characteristics for ores for ball mill modeling. Proc. Aust. Inst. Min. Metallurgy 1983, 286, 31–39. [Google Scholar]
- Pauw, O.C.; Mare, M.S. The determination of optimum imact breakage routes for an ore. Powder Technol. 1988, 54, 3–13. [Google Scholar] [CrossRef]
- Bourgeois, F. Micro-Scale Modelling of Comminution Processes. Ph.D. Thesis, University of Utah, Salt Lake City, UT, USA, 1993. [Google Scholar]
- Austin, L.G.; Shoji, K.; Bell, D. Rate equations for non-linear breakage in mills due to material effects. Powder Technol. 1982, 31, 127–133. [Google Scholar] [CrossRef]
- Herbst, J.A.; Fuerstenau, D.W. Mathematical simulation of dry ball milling using specific power information. Trans. AIME 1973, 254, 343–348. [Google Scholar]
- Deniz, V. A new size distribution model by t-family curves for comminution of limestones in an impact crusher. Adv. Powder Technol. 2011, 22, 761–765. [Google Scholar] [CrossRef]
- Genç, Ö.; Benzer, A.H. Single particle impact breakage characteristics of clinkers related to mineral composition and grindability. Miner. Eng. 2009, 22, 1160–1165. [Google Scholar] [CrossRef]
- Genç, Ö. Analysis of grinding media effect on specific breakage rate function of particles in a full-scale open circuit three-compartment cement ball mill. Miner. Eng. 2015, 81, 10–17. [Google Scholar] [CrossRef]
- Deniz, V. The effect of mill speed on kinetic breakage parameters of clinker and limestone. Cem. Concr. Res. 2004, 34, 365–1371. [Google Scholar] [CrossRef]
- Mulenga, F.K.; Moys, M.H. Effects of slurry filling and mill speed on the net power draw of a tumbling ball mill. Miner. Eng. 2014, 56, 45–56. [Google Scholar] [CrossRef]
Component | SiO2 | Fe2O3 | MgO | Al2O3 | S | CaO |
Content/% | 99.15 | 0.49 | 0.12 | 0.081 | 0.065 | 0.062 |
Component | Mn | Cr | Ni | Cu | Zn | Others |
Content/% | 0.0059 | 0.0047 | 0.0038 | 0.0035 | 0.0022 | 0.0119 |
Component | SiO2 | CaO | Fe | Zn | S | Pb |
Content/% | 29.41 | 0.18 | 37.76 | 0.94 | 25.94 | 0.18 |
Component | Al2O3 | As | K2O | Pb | Others | |
Content/% | 1.85 | 3.34 | 0.20 | 0.18 | 0.02 |
Product Particle Size/mm | Nominal Particle Size/mm | Nominal Particle Size/mm | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.8118 | 2.003 | 1.4163 | 1.0015 | 0.7141 | 0.5050 | 0.3571 | 0.2522 | 0.1783 | 0.1261 | 0.0892 | 0.0630 | 0.0449 | 0.0195 | ||
−3.35 + 2.36 | 2.8118 | t1.0 | |||||||||||||
−2.36 + 1.7 | 2.003 | t1.4 | t1.0 | ||||||||||||
−1.7 + 1.18 | 1.4163 | t2.0 | t1.4 | t1.0 | |||||||||||
−1.18 + 0.85 | 1.0015 | t2.8 | t2.0 | t1.4 | t1.0 | ||||||||||
−0.85 + 0.60 | 0.7141 | t3.9 | t2.8 | t2.0 | t1.4 | t1.0 | |||||||||
−0.6 + 0.425 | 0.5050 | t5.6 | t4.0 | t2.8 | t2.0 | t1.4 | t1.0 | ||||||||
−0.425 + 0.3 | 0.3571 | t7.9 | t5.6 | t4.0 | t2.8 | t2.0 | t1.4 | t1.0 | |||||||
−0.3 + 0.212 | 0.2522 | t11.1 | t7.9 | t5.6 | t4.0 | t2.8 | t2.0 | t1.4 | t1.0 | ||||||
−0.212 + 0.15 | 0.1783 | t15.8 | t11.2 | t7.9 | t5.6 | t4.0 | t2.8 | t2.0 | t1.4 | t1.0 | |||||
−0.15 + 0.106 | 0.1261 | t22.3 | t15.9 | t11.2 | t7.9 | t5.7 | t4.0 | t2.8 | t2.0 | t1.4 | t1.0 | ||||
−0.106 + 0.075 | 0.0892 | t31.5 | t22.5 | t15.9 | t11.2 | t8.0 | t5.7 | t4.0 | t2.8 | t2.0 | t1.4 | t1.0 | |||
−0.075 + 0.053 | 0.0630 | t44.6 | t31.8 | t22.5 | t15.9 | t11.3 | t8.0 | t5.7 | t4.0 | t2.8 | t2.0 | t1.4 | t1.0 | ||
−0.053 + 0.038 | 0.0449 | t62.6 | t44.6 | t31.5 | t22.3 | t15.9 | t11.2 | t8.0 | t5.6 | t4.0 | t2.8 | t2.0 | t1.4 | t1.0 | |
−0.038 + 0.013 | 0.0195 | t144.2 | t102.8 | t72.7 | t51.4 | t36.6 | t25.9 | t18.3 | t12.9 | t9.15 | t6.5 | t4.6 | t2.0 | t1.4 | t1.0 |
txx | Fitting Equation | R2 |
---|---|---|
t1.4 | t1.4 = 50.3655 + 3.9373t10 − 0.0976t102 + 7.6231 × 10−4t103 | 0.9582 |
t2.0 | t2.0 = 11.5492 + 5.0587t10 − 0.0988t102 + 6.4790 × 10−4t103 | 0.9584 |
t2.8 | t2.8 = 6.7042 + 3.3822t10 − 0.0311t102 | 0.9953 |
t3.9 | t3.9 = −0.0723 + 2.8244t10 − 0.0213t102 | 0.9991 |
t5.6 | t5.6 = −1.7103 + 1.97t10 − 0.0097t102 | 0.9958 |
t7.9 | t7.9 = −0.53 + 1.33t10 − 0.0028t102 | 0.9999 |
t11.1 | t11.1 = 0.1882 + 0.8837t10 + 8.0415 × 10−4t102 | 1 |
t15.8 | t15.8 = 0.9599 + 0.5256t10 + 0.0033t102 | 0.9969 |
t22.3 | t22.3 = 0.2401 + 0.514t10 − 6.9004 × 10−4t102 + 3.1204 × 10−5t103 | 0.9991 |
t31.5 | t31.5 = 0.8033 + 0.3217t10 + 0.0023t102 | 0.9980 |
t44.6 | t44.6 = 1.0755 + 0.2106t10 + 0.0027t102 | 0.9952 |
t62.6 | t62.6 = 0.7647 + 0.2124t10 + 0.0018t102 | 0.9945 |
t144.2 | t144.2 = 0.7007 + 0.1579t10 + 0.0013t102 | 0.9877 |
Particle Size/mm | Nominal Particle Size/mm | M/kg | Ecs/kWh/t | t10/% |
---|---|---|---|---|
−3.35 + 2.36 | 2.8118 | 3.0830 × 10−5 | 1.3994 | 46.3585 |
−2.36 + 1.7 | 2.003 | 1.1145 × 10−5 | 3.8713 | 64.6617 |
−1.7 + 1.18 | 1.4163 | 3.9399 × 10−6 | 10.9505 | 67.3277 |
−1.18 + 0.85 | 1.0015 | 1.3931 × 10−6 | 30.9705 | 67.3350 |
−0.85 + 0.60 | 0.7141 | 5.0501 × 10−7 | 85.4327 | 67.3350 |
−0.6 + 0.425 | 0.5050 | 1.7861 × 10−7 | 241.5610 | 67.3350 |
−0.425 + 0.3 | 0.3571 | 6.3153 × 10−8 | 683.1742 | 67.3350 |
−0.3 + 0.212 | 0.2522 | 2.2246 × 10−8 | 1.9394 × 103 | 67.3350 |
−0.212 + 0.15 | 0.1783 | 7.8610 × 10−9 | 5.4884 × 103 | 67.3350 |
−0.15 + 0.106 | 0.1261 | 2.7808 × 10−9 | 1.5515 × 104 | 67.3350 |
−0.106 + 0.075 | 0.0892 | 9.8428 × 10−10 | 4.3834 × 104 | 67.3350 |
−0.075 + 0.053 | 0.0630 | 3.4677 × 10−10 | 1.2442 × 105 | 67.3350 |
−0.053 + 0.038 | 0.0449 | 1.2554 × 10−10 | 3.4369 × 105 | 67.3350 |
−0.038 + 0.010 | 0.0195 | 1.0273 × 10−11 | 4.1998 × 106 | 67.3350 |
Particle Size/mm | Nominal Particle Size/mm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.8118 | 2.003 | 1.4163 | 1.0015 | 0.7141 | 0.5050 | 0.3571 | 0.2522 | 0.1783 | 0.1261 | 0.0892 | 0.0630 | 0.0449 | |
−3.35 + 2.36 | 0.0001 | ||||||||||||
−2.36 + 1.7 | 0.0012 | 0.0000 | |||||||||||
−1.7 + 1.18 | 0.0096 | 0.0012 | 0.0001 | ||||||||||
−1.18 + 0.85 | 0.0858 | 0.0096 | 0.0012 | 0.0000 | |||||||||
−0.85 + 0.60 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0002 | ||||||||
−0.6 + 0.425 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0001 | |||||||
−0.425 + 0.3 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0000 | ||||||
−0.3 + 0.212 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0000 | |||||
−0.212 + 0.15 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0002 | ||||
−0.15 + 0.106 | 0.1007 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0000 | |||
−0.106 + 0.075 | 0.0835 | 0.1007 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0000 | ||
−0.075 + 0.053 | 0.0540 | 0.0835 | 0.1007 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0001 | |
−0.053 + 0.038 | 0.0427 | 0.0540 | 0.0835 | 0.1007 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0000 |
−0.038 + 0.013 | 0.0600 | 0.0427 | 0.0540 | 0.0835 | 0.1007 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 |
txx | Fitting Equation | R2 |
---|---|---|
t1.4 | t1.4 = 33.3753 + 7.1239t10 − 0.3162t102 + 0.007t103 − 7.4178 × 10−5t104 + 3.0379 × 10−7t105 | 0.9496 |
t2.0 | t2.0 = 15.8714 + 4.2643t10 − 0.0713t102 + 3.9037 × 10−4t103 | 0.9771 |
t2.8 | t2.8 = −0.7524 + 3.9874t10 − 0.0546t102 + 2.5608 × 10−4t103 | 0.9939 |
t3.9 | t3.9 = −3.8249 + 2.9503t10 − 0.0283t102 + 9.2259 × 10−5t103 | 0.9982 |
t5.6 | t5.6 = −2.5216 + 1.8573t10 − 0.0082t102 − 5.1016 × 10−6t103 | 0.9995 |
t7.9 | t7.9 = −1.2380 + 1.3254t10 − 0.0028t102 | 0.9999 |
t11.1 | t11.1 = 0.5161 + 0.8799t10 + 8.9764 × 10−4t102 | 1 |
t15.8 | t15.8 = 0.997 + 0.6198t10 + 0.0019t102 | 0.9948 |
t22.3 | t22.3 = 0.5455 + 0.6105t10 − 0.0027t102 + 4.3588 × 10−5t103 | 0.9954 |
t31.5 | t31.5 = 2.8650 + 0.3002t10 + 0.0027t102 | 0.9865 |
t44.6 | t44.6 = 2.6921 + 0.2635t10 + 0.0017t102 | 0.9689 |
t62.6 | t62.6 = 2.8678 + 0.2178t10 + 0.0016t102 | 0.9443 |
t144.2 | t144.2 = 0.2106 + 0.4458t10 − 0.0064102 + 5.2529 × 10−5t103 | 0.8515 |
Particle Size/mm | Nominal Particle Size/mm | M/kg | Ecs/kWh/t | t10/% |
---|---|---|---|---|
−3.35 + 2.36 | 2.8118 | 5.3517 × 10−5 | 0.8062 | 55.2683 |
−2.36 + 1.7 | 2.003 | 1.9346 × 10−5 | 2.2302 | 74.3688 |
−1.7 + 1.18 | 1.4163 | 6.8392 × 10−6 | 6.3085 | 76.5951 |
−1.18 + 0.85 | 1.0015 | 2.4182 × 10−6 | 17.8417 | 76.5986 |
−0.85 + 0.60 | 0.7141 | 8.7662 × 10−7 | 49.2166 | 76.5986 |
−0.6 + 0.425 | 0.5050 | 3.1003 × 10−7 | 139.1602 | 76.5986 |
−0.425 + 0.3 | 0.3571 | 1.0962 × 10−7 | 393.5678 | 76.5986 |
−0.3 + 0.212 | 0.2522 | 3.8616 × 10−8 | 1.1173 × 103 | 76.5986 |
−0.212 + 0.15 | 0.1783 | 1.3645 × 10−8 | 3.1618 × 103 | 76.5986 |
−0.15 + 0.106 | 0.1261 | 4.8271 × 10−9 | 8.9381 × 103 | 76.5986 |
−0.106 + 0.075 | 0.0892 | 1.7086 × 10−9 | 2.5252 × 104 | 76.5986 |
−0.075 + 0.053 | 0.0630 | 6.0195 × 10−10 | 7.1675 × 104 | 76.5986 |
−0.053 + 0.038 | 0.0449 | 2.1791 × 10−10 | 1.9799 × 105 | 76.5986 |
−0.038 + 0.013 | 0.0195 | 1.7833 × 10−11 | 2.4194 × 106 | 76.5986 |
Particle Size/mm | Nominal Particle Size/mm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.8118 | 2.003 | 1.4163 | 1.0015 | 0.7141 | 0.5050 | 0.3571 | 0.2522 | 0.1783 | 0.1261 | 0.0892 | 0.0630 | 0.0449 | |
−3.35 + 2.36 | 0.0001 | ||||||||||||
−2.36 + 1.7 | 0.0012 | 0.0000 | |||||||||||
−1.7 + 1.18 | 0.0096 | 0.0012 | 0.0001 | ||||||||||
−1.18 + 0.85 | 0.0858 | 0.0096 | 0.0012 | 0.0000 | |||||||||
−0.85 + 0.60 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0002 | ||||||||
−0.6 + 0.425 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0001 | |||||||
−0.425 + 0.3 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0000 | ||||||
−0.3 + 0.212 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0000 | |||||
−0.212 + 0.15 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0002 | ||||
−0.15 + 0.106 | 0.1007 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0000 | |||
−0.106 + 0.075 | 0.0835 | 0.1007 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0000 | ||
−0.075 + 0.053 | 0.0540 | 0.0835 | 0.1007 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0001 | |
−0.053 + 0.038 | 0.0427 | 0.0540 | 0.0835 | 0.1007 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 | 0.0000 |
−0.038 + 0.013 | 0.0600 | 0.0427 | 0.0540 | 0.0835 | 0.1007 | 0.1202 | 0.1299 | 0.1063 | 0.0657 | 0.0010 | 0.0858 | 0.0096 | 0.0012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Yang, X.; Li, H.; Li, Z.; Zhu, P.; Yang, J. Study on the Population Balance Dynamics Simulation of Grinding under Impact Crushing. Appl. Sci. 2024, 14, 5455. https://doi.org/10.3390/app14135455
Ma S, Yang X, Li H, Li Z, Zhu P, Yang J. Study on the Population Balance Dynamics Simulation of Grinding under Impact Crushing. Applied Sciences. 2024; 14(13):5455. https://doi.org/10.3390/app14135455
Chicago/Turabian StyleMa, Shaojian, Xiaojing Yang, Hengjun Li, Zongyu Li, Pengyan Zhu, and Jinlin Yang. 2024. "Study on the Population Balance Dynamics Simulation of Grinding under Impact Crushing" Applied Sciences 14, no. 13: 5455. https://doi.org/10.3390/app14135455
APA StyleMa, S., Yang, X., Li, H., Li, Z., Zhu, P., & Yang, J. (2024). Study on the Population Balance Dynamics Simulation of Grinding under Impact Crushing. Applied Sciences, 14(13), 5455. https://doi.org/10.3390/app14135455