Structure, Microbiology and Sensorial Evaluation of Bologna-Style Sausages in a Kilohertz Ohmic Heating Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Meat Emulsion Batter
2.2. Heat Treatments
2.2.1. Conventional Heat Treatment
2.2.2. Ohmic Heating Treatment
2.3. Sample Analysis
2.3.1. L*a*b* Value Determination
2.3.2. Moisture Content
2.3.3. Water Holding Capacity
2.3.4. Texture Profile Analysis
2.3.5. Microbiological Evaluation
2.3.6. Sensorial Evaluation
2.3.7. Confocal Laser Scanning Microscopy
2.3.8. Scanning Electron Microscopy
2.3.9. Statistical Analysis
3. Results and Discussion
3.1. Heat Treatments
3.2. L*a*b* Value Determination
3.3. Moisture Content and Water Holding Capacity
3.4. Texture Profile Analysis
3.5. Microbiological Evaluation
3.6. Sensorial Evaluation
3.7. Microscopic Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Korkeala, H.J.; Björkroth, K.J. Microbiological Spoilage and Contamination of Vacuum-Packaged Cooked Sausages. J. Food Prot. 1997, 60, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Lyng, J.G. Ohmic Heating of Muscle Foods (Meat, Poultry and Fish Products). In Ohmic Heating in Food Processing; Ramaswamy, H.S., Marcotte, M., Sastry, S., Abdelrahim, K., Eds.; CRC Press: Cambridge, MA, USA, 2014; pp. 285–308. [Google Scholar]
- Steven, M.L.; Topel, D.G.; Marple, D.N. Sausage processing and production. In The Science of Animal Growth and Meat Technology; Steven, M.L., Topel, D.G., Marple, D.N., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2019; pp. 229–253. [Google Scholar] [CrossRef]
- Knipes, C.L. Sausages, Types of | cooked. In Encyclopedia of Meat Science; Dikeman, M., Devine, C., Eds.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Sastry, S.K.; Heskitt, B.F.; Sarang, S.; Somavat, R.; Ayotte, K. Why OHmic Heating? Advantages, Applications, Technology and Limitation. In Ohmic Heating in Food Processing; Ramaswamy, H.S., Marcotte, M., Sastry, S., Abdelrahim, K., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 7–16. [Google Scholar]
- Zareifard, M.R.; Marcotte, M.; Ramaswamy, H.S.; Karimi, Y. Electrical conductivity: Importance and methods of measuring. In Ohmic Heating in Food Processing; Ramaswamy, H.S., Marcotte, M., Sastry, S., Abdelrahim, K., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 17–36. [Google Scholar]
- Fasolin, L.H.; Pereira, R.N.; Pinheiro, A.C.; Martins, J.T.; Andrade, C.C.P.; Ramos, O.L.; Vicente, A.A. Emergent food proteins—Towards sustainability, health and innovation. Food Res. Int. 2019, 125, 108586. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, H.; Roth, A.; Toepfl, S.; Holzhauser, T.; Engel, K.H.; Knorr, D.; Vogel, R.F.; Bandick, N.; Kulling, S.; Heinz, V.; et al. Opinion on the use of ohmic heating for the treatment of foods. Trends Food Sci. Technol. 2016, 55, 84–97. [Google Scholar] [CrossRef]
- Shirsat, N.; Brunton, N.P.; Lyng, J.G.; McKenna, B. Water holding capacity, dielectric properties and light microscopy of conventionally and ohmically cooked meat emulsion batter. Eur. Food Res. Technol. 2004, 219, 1–5. [Google Scholar] [CrossRef]
- Shirsat, N.; Lyng, J.G.; Brunton, N.P.; McKenna, B.M. Conductivities and Ohmic heating of meat emulsion batters. J. Muscle Foods 2004, 15, 121–137. [Google Scholar] [CrossRef]
- Shirsat, N.; Brunton, N.P.; Lyng, J.G.; McKenna, B.; Scannell, A. Texture, colour and sensory evaluation of a conventionally and ohmically cooked meat emulsion batter. J. Sci. Food Agric. 2004, 84, 1861–1870. [Google Scholar] [CrossRef]
- Piette, G.; Buteau, M.L.; De Halleux, D.; Chiu, L.; Raymond, Y.; Ramaswamy, H.S.; Dostie, M. Ohmic cooking of processed meats and its effects on product quality. J. Food Sci. 2004, 69, fep71–fep78. [Google Scholar] [CrossRef]
- Pataro, G.; Barca, G.M.J.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A.; Ferrari, G. Quantification of metal release from stainless steel electrodes during conventional and pulsed ohmic heating. Innov. Food Sci. Emerg. Technol. 2014, 21, 66–73. [Google Scholar] [CrossRef]
- Pereira, R.N.; Rodrigues, R.M.; Machado, L.; Ferreira, S.; Costa, J.; Villa, C.; Barreiros, M.P.; Mafra, I.; Teixeira, J.A.; Vicente, A.A. Influence of ohmic heating on the structural and immunoreactive properties of soybean proteins. LWT 2021, 148, 111710. [Google Scholar] [CrossRef]
- Cappato, L.P.; Ferreira, M.V.S.; Guimaraes, J.T.; Portela, J.B.; Costa, A.L.R.; Freitas, M.Q.; Cunha, R.L.; Oliveira, C.A.; Mercali, G.D.; Marzack, L.D.; et al. Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends Food Sci. Technol. 2017, 62, 104–112. [Google Scholar] [CrossRef]
- Pereira, R.N.; Teixeira, J.A.; Vicente, A.A.; Cappato, L.P.; da Silva Ferreira, M.V.; da Silva Rocha, R.; da Cruz, A.G. Ohmic heating for the dairy industry: A potential technology to develop probiotic dairy foods in association with modifications of whey protein structure. Curr. Opin. Food Sci. 2018, 22, 95–101. [Google Scholar] [CrossRef]
- Samaranayake, C.P.; Sastry, S.K. In-situ activity of α-amylase in the presence of controlled-frequency moderate electric fields. LWT-Food Sci. Technol. 2018, 90, 448–454. [Google Scholar] [CrossRef]
- Rodrigues, R.M.; Avelar, Z.; Vicente, A.A.; Petersen, S.B.; Pereira, R.N. Influence of moderate electric fields in β-lactoglobulin thermal unfolding and interactions. Food Chem. 2020, 304, 125442. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Wu, J.; Shu, Y.; Wang, H.; Rao, W.; Xu, H.; Zhang, Z. Microstructure and physiochemical properties of meat sausages based on nanocellulose-stabilized emulsions. Int. J. Biol. Macromol. 2020, 152, 567–575. [Google Scholar] [CrossRef] [PubMed]
- DIN EN ISO 4833-2 2022-05; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 °C by the Surface Plating Technique (ISO 4833-2:2013 + Cor. 1:2014 + Amd 1:2022); German Version EN ISO 4833-2:2013 + AC:2014 + A1:2022. Deutsches Institut für Normung e.V.: Berlin, Germany, 2022.
- DIN EN ISO 21528-2 2019-05; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique (ISO 21528-2:2017, Corrected Version 2018-06-01); German Version EN ISO 21528-2:2017. Deutsches Institut für Normung e.V.: Berlin, Germany, 2019.
- DIN ISO 16649-2 2020-12; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of β-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 °C Using 5-bromo-4-chloro-3-indolyl β-D-glucuronide (ISO 16649-2:2001). Deutsches Institut für Normung e.V.: Berlin, Germany, 2020.
- DIN EN ISO 6888-1 2022-06; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus Aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium (ISO 6888-1:2021); German Version EN ISO 6888-1:202. Deutsches Institut für Normung e.V.: Berlin, Germany, 2022.
- BVL L 06.00-39:1994-5; Investigation of Foods—Determination of Mesophilic Sulfite-Reducing Clostridia in Meat and Meat Products. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL): Berlin, Germany, 1994.
- DIN EN ISO 6579 2020-08; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. (ISO 6579-1:2017 + Amd.1:2020); German Version EN ISO 6579-1:2017 + A1:2020. Deutsches Institut für Normung e.V.: Berlin, Germany, 2019.
- DIN EN ISO 11290-1 2017-09; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.—Part 1: Detection Method (ISO 11290-1:2017); German Version EN ISO 11290-1:2017. Deutsches Institut für Normung e.V.: Berlin, Germany, 2017.
- DIN EN ISO 8586:2014-05; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors (ISO 8586:2012); German Version EN ISO 8586:2014. Deutsches Institut für Normung e.V.: Berlin, Germany, 2014.
- de Oliveira Paula, M.M.; Massingue, A.A.; de Moura, A.P.R.; de Deus Souza Carneiro, J.; de Lemos Souza Ramos, A.; Ramos, E.M. Temporal dominance of sensations and check-all-that-apply analysis of restructured cooked hams elaborated with different salt content and pork quality meats. Food Sci. Technol. Int. 2021, 27, 73–83. [Google Scholar] [CrossRef] [PubMed]
- de Souza Paglarini, C.; Vidal, V.A.S.; dos Santos, M.; Coimbra, L.O.; Esmerino, E.A.; Cruz, A.G.; Pollonio, M.A. Using dynamic sensory techniques to determine drivers of liking in sodium and fat-reduced Bologna sausage containing functional emulsion gels. Food Res. Int. 2020, 132, 109066. [Google Scholar] [CrossRef] [PubMed]
- Baune, M.-C.; Schroeder, S.; Witte, F.; Heinz, V.; Bindrich, U.; Weiss, J.; Terjung, N. Analysis of protein—Network formation of different vegetable proteins during emulsification to produce solid fat substitutes. J. Food Meas. Charact. 2021, 15, 2399–2416. [Google Scholar] [CrossRef]
- Marcotte, M.; Piette, J.P.G.; Ramaswamy, H.S. Electrical conductivities of hydrocolloid solutions. J. Food Process Eng. 1998, 21, 503–520. [Google Scholar] [CrossRef]
- Wang, W.C.; Sastry, S.K. Changes in electrical conductivity of selected vegetables during multiple thermal treatments. J. Food Process Eng. 1997, 20, 499–516. [Google Scholar] [CrossRef]
- Joeres, E.; Drusch, S.; Töpfl, S.; Loeffler, M.; Witte, F.; Heinz, V.; Terjung, N. Influence of oil content and droplet size of an oil-in-water emulsion on heat development in an Ohmic heating process. Innov. Food Sci. Emerg. Technol. 2021, 69, 1–10. [Google Scholar] [CrossRef]
- Deleu, L.J.; Luyts, A.; Wilderjans, E.; Van Haesendonck, I.; Brijs, K.; Delcour, J.A. Ohmic versus conventional heating for studying molecular changes during pound cake baking. J. Cereal Sci. 2019, 89, 102708. [Google Scholar] [CrossRef]
- Pujol, A.; Ospina-e, J.C.; Alvarez, H.; Muñoz, D.A. Myoglobin content and oxidative status to understand meat products’ color: Phenomenological based model. J. Food Eng. 2023, 348, 111439. [Google Scholar] [CrossRef]
- Baeumker, D. Richtig Umröten—Die Fleischerei. 2020. Available online: https://www.fleischerei.de/richtig-umroeten-324173/ (accessed on 5 May 2024).
- Rodrigues, R.M.; Martins, A.J.; Ramos, O.L.; Malcata, F.X.; Teixeira, J.A.; Vicente, A.A.; Pereira, R.N. Influence of moderate electric fields on gelation of whey protein isolate. Food Hydrocoll. 2015, 43, 329–339. [Google Scholar] [CrossRef]
- Pereira, R.N.; Rodrigues, R.M.; Ramos, Ó.L.; Xavier Malcata, F.; Teixeira, J.A.; Vicente, A.A. Production of Whey Protein-Based Aggregates under Ohmic Heating. Food Bioprocess Technol. 2016, 9, 576–587. [Google Scholar] [CrossRef]
- Joeres, E.; Schölzel, H.; Drusch, S.; Töpfl, S.; Heinz, V.; Terjung, N. Ohmic vs. conventional heating: Influence of moderate electric fields on properties of egg white protein gels. Food Hydrocoll. 2022, 127, 107519. [Google Scholar] [CrossRef]
- Joeres, E.; Drusch, S.; Töpfl, S.; Juadjur, A.; Bindrich, U.; Völker, T.; Heinz, V.; Terjung, N. Ohmic vs. conventional heating: Influence of moderate electric fields on properties of potato protein isolate gels. Innov. Food Sci. Emerg. Technol. 2023, 85, 103333. [Google Scholar] [CrossRef]
- Joeres, E.; Drusch, S.; Töpfl, S.; Juadjur, A.; Psathaki, O.E.; Heinz, V.; Terjung, N. Formation of amyloid fibrils from ovalbumin under Ohmic heating. Heliyon 2023, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Barbut, S. Determining water and fat holding. In Methods of Testing Protein Functionality; Hall, G.M., Ed.; Blackie Academic & Professional: London, UK, 1996; pp. 186–225. [Google Scholar]
- Kneifel, W.; Paquin, P.; Abert, T.; Richard, J.P. Water-Holding Capacity of Proteins with Special Regard to Milk Proteins and Methodological Aspects—A Review. J. Dairy Sci. 1991, 74, 2027–2041. [Google Scholar] [CrossRef]
- Ternes, W. Naturwissenschaftliche Grundlagen der Lebensmittelzubereitung, 1st ed.; Ternes, W., Ed.; Behr’s Verlag: Hamburg, Germany, 1990. [Google Scholar]
- Pero, M.; Kiani, H.; Askari, G. A novel numerical approach for modeling the coagulation phenomenon in egg white. J. Food Process Eng. 2019, 42, 1–11. [Google Scholar] [CrossRef]
- Van der Linden, E.; Foegeding, E.A. Gelation. Principles, Models and Applications to Proteins; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar] [CrossRef]
- Samaranayake, C.P.; Sastry, S.K. Molecular dynamics evidence for nonthermal effects of electric fields on pectin methylesterase activity. Phys. Chem. Chem. Phys. 2021, 23, 14422–14432. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.M.; Avelar, Z.; Machado, L.; Pereira, R.N.; Vicente, A.A. Electric field effects on proteins—Novel perspectives on food and potential health implications. Food Res. Int. 2020, 137, 109709. [Google Scholar] [CrossRef]
- Makroo, H.A.; Rastogi, N.K.; Srivastava, B. Ohmic heating assisted inactivation of enzymes and microorganisms in foods: A review. Trends Food Sci. Technol. 2020, 97, 451–465. [Google Scholar] [CrossRef]
- Müller, W.A.; Ferreira Marczak, L.D.; Sarkis, J.R. Microbial inactivation by ohmic heating: Literature review and influence of different process variables. Trends Food Sci. Technol. 2020, 99, 650–659. [Google Scholar] [CrossRef]
- Somavat, R.; Mohamed, H.M.H.; Sastry, S.K. Inactivation kinetics of Bacillus coagulans spores under ohmic and conventional heating. LWT-Food Sci. Technol. 2013, 54, 194–198. [Google Scholar] [CrossRef]
- Yoon, S.W.; Lee, C.Y.J.; Kim, K.-M.; Lee, C.-H. Leakage of Cellular Materials from Saccharomyces cerevisiae by Ohmic Heating. J. Microbiol. Biotechnol. 2002, 12, 183–188. [Google Scholar]
- Somavat, R.; Mohamed, H.M.H.; Chung, Y.; Yousef, A.E.; Sastry, S.K. Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating. J. Food Eng. 2012, 108, 69–76. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, S.; Kang, D. Effect of Frequency and Waveform on Inactivation of Escherichia coli O157: H7 and Salmonella enterica Serovar Typhimurium in Salsa by Ohmic Heating. Appl. Environ. Microbiol. 2013, 79, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, W.; Kang, D. Application of low frequency pulsed ohmic heating for inactivation of foodborne pathogens and MS-2 phage in buffered peptone water and tomato juice. Food Microbiol. 2017, 63, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Braghieri, A.; Piazzolla, N.; Galgano, F.; Condelli, N.; De Rosa, G.; Napolitano, F. Effect of preservative addition on sensory and dynamic profile of Lucanian dry-sausages as assessed by quantitative descriptive analysis and temporal dominance of sensations. MESC 2016, 122, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practice, 3rd ed.; Stone, H., Sidel, J.L., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Pineau, N.; Schilch, P. Temporal dominance of sensation (TDS) as a sensory profiling technique. In Rapid Sensory Profiling Techniques and Related Methods: Applications in New Product Development and Consumer Research; Delarue, J., Lawlor, J.B., Rogeaux, M., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2015; pp. 269–306. [Google Scholar] [CrossRef]
- Lett, A.M.; Yeomans, M.R.; Norton, I.T.; Norton, J.E. Enhancing expected food intake behaviour, hedonics and sensory characteristics of oil-in-water emulsion systems through microstructural properties, oil droplet size and flavour. Food Qual. Prefer. 2016, 47, 148–155. [Google Scholar] [CrossRef]
Moisture (%) | Water Holding Capacity (%) | Color (L*a*b* Value Determination) | |||
---|---|---|---|---|---|
OH | 67.28 ± 0.66 b | 73.38 ± 1.18 b | L: 71.29 ± 0.4 b | a: 7.08 ± 0.14 a | b: 8.69 ± 0.19 a |
COV | 66.55 ± 0.91 a | 68.03 ± 1.70 a | L: 70.71 ± 0.64 a | a: 7.42 ± 0.04 b | b: 8.95 ± 0.20 b |
Hardness (N) | Adhesiveness (Ns) | Cohesiveness (/) | Springiness (%) | Gumminess (N) | Chewiness (N) | Resilience (/) | |
---|---|---|---|---|---|---|---|
OH | 9.64 ± 1.83 a | 0.26 ± 0.12 a | 0.56 ± 0.00 a | 91.62 ± 3.86 a | 5.40 ± 1.02 a | 15.65 ± 2.54 a | 0.42 ± 0.02 b |
COV | 11.53 ± 1.24 b | 0.27 ± 0.04 a | 0.56 ± 0.01 a | 93.08 ± 2.90 b | 6.46 ± 0.70 b | 19.33 ± 2.82 b | 0.42 ± 0.01 a |
Parameter | Unit | OH | COV |
---|---|---|---|
Aerobic total bacteria count | (cfu/g) | 1.7 × 101 | 3.0 × 101 |
Enterobacteriaceae | (cfu/g) | <1.0 × 101 | <1.0 × 101 |
Escherichia coli | (cfu/g) | <1.0 × 101 | <1.0 × 101 |
Coagulase-positive Staphylococci | (cfu/g) | <1.0 × 101 | <1.0 × 101 |
Sulfite-reducing mesophilic Chlostridia | (cfu/g) | <1.0 × 101 | <1.0 × 101 |
Salmonella spp. | in 25 g sample | 0 | 0 |
Listeria spp. | in 25 g sample | 0 | 0 |
Listeria monocytogenes | in 25 g sample | 0 | 0 |
Listeria spp. | (cfu/g) | <1.0 × 101 | <1.0 × 101 |
Listeria monocytogenes | (cfu/g) | <1.0 × 101 | <1.0 × 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joeres, E.; Ristic, D.; Tomasevic, I.; Smetana, S.; Heinz, V.; Terjung, N. Structure, Microbiology and Sensorial Evaluation of Bologna-Style Sausages in a Kilohertz Ohmic Heating Process. Appl. Sci. 2024, 14, 5460. https://doi.org/10.3390/app14135460
Joeres E, Ristic D, Tomasevic I, Smetana S, Heinz V, Terjung N. Structure, Microbiology and Sensorial Evaluation of Bologna-Style Sausages in a Kilohertz Ohmic Heating Process. Applied Sciences. 2024; 14(13):5460. https://doi.org/10.3390/app14135460
Chicago/Turabian StyleJoeres, Eike, Dusan Ristic, Igor Tomasevic, Sergiy Smetana, Volker Heinz, and Nino Terjung. 2024. "Structure, Microbiology and Sensorial Evaluation of Bologna-Style Sausages in a Kilohertz Ohmic Heating Process" Applied Sciences 14, no. 13: 5460. https://doi.org/10.3390/app14135460
APA StyleJoeres, E., Ristic, D., Tomasevic, I., Smetana, S., Heinz, V., & Terjung, N. (2024). Structure, Microbiology and Sensorial Evaluation of Bologna-Style Sausages in a Kilohertz Ohmic Heating Process. Applied Sciences, 14(13), 5460. https://doi.org/10.3390/app14135460