The Yeast-Based Probiotic Encapsulation Scenario: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Study Selection and Assessment of Methodological Quality
2.4. Statistical Analysis
3. Results and Discussion
Study Inclusion
Reference | pH | Experiment Temperature (°C) | Experiment Encapsulation (°C) | Encapsulation Method | Microcapsule Size (µm) | Microcapsule Composition | Encapsulation Efficiency (%) | M.O | Test Type | % Subservience |
---|---|---|---|---|---|---|---|---|---|---|
[38] | 1.0; 1.5; 2.0 | 37 | nr | Spray drying | 3.31–4.08 | Gelatin; milk protein; starch; maltodextrin; pea protein; gum arabic | nr | S. boulardii | Gastric | 13.8–78.6 |
[54] | 2.0; 8.0 | 37; 50; 60; 70; 80 | entry: 120 output: 50 | Spray chilling; spray drying | 24.1–612.5 | Gum Arabic/ß-cyclodextrin; hydrogenated palm oil | 91.4–98.1 | S. boulardii; L. acidophilus | Viability; gastric; thermal resistance | 28.5–99.3 |
[55] | nr | 102 | nr | Pulverization | nr | Arabic gum; B-cyclodextrin | nr | S. boulardii | Food | 67.4 |
[56] | nr | 18; 49 | nr | Pulverization | nr | Skimmed milk/sucrose/carboxymethylcellulose/xanthan gum; skimmed milk/maltodextrin/sucrose/carboxymethylcellulose/xanthan gum; maltodextrin/sucrose/carboxymethylcellulose/xanthan gum | nr | Saccharomyces sp. | Viability | 96.6–97.9 |
[57] | 4.0; 5.0; 6.0; 7.0 | 70; 80; 90 | nr | Pulverization | 8–15 | whey protein | nr | S. boulardii | Viability | 0–40 |
[58] | 2.0 | nr | nr | Extrusion | 1500 | Ca_alginate/potato dextrose/glycerol/xanthan/inulin | nr | S. boulardii ATCC 74068 | Gastrointestinal | nr |
[59] | 2.0; 6.5; 8.0 | 28 | nr | Extrusion | 50–90 | Na_alginate/calcium chloride | nr | S. cerevisiae ATCC 9763 | Gastric; distilled water | nr |
[60] | 2.0; 8.0 | 28 | nr | Extrusion | 50–90 | Na_alginate/calcium chloride | nr | S. boulardii ATCC 74068 | Gastrointestinal | 20–100 |
[61] | 1.5; 5.6; 7.5 | 37 | nr | nr | nr | Agar-agar; Arabic gum; Iota-carrageenan; linseed mucilage; taro mucilage; yam mucilage; okra mucilage | nr | S. cerevisiae | Gastrointestinal | nr |
[62] | 1.0; 7.4 | 37 | nr | Gelation/ emulsification | nr | Na_alginate/NaCl solution/paraffin/chitosan | nr | S. cerevisiae Y235 | Gastrointestinal | nr |
[63] | 2.0; 6.5 | nr | nr | Emulsion | 9.2 | Na_alginate/inulin/mucilage from Opuntia ficus-indica | nr | S. boulardii | Food | 1.7–81.2 |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blatchford, R.; Godoy, M.; Garda-Mazcorro, G.; Goh Hotchkiss, R.A.; Reimer Schotennan, R.A.; Sindeien, V.; Vftielan, K. Prebiotic Mechanisms, Functions and Applications—A Review. Int. J. Probiotics Prebiotics 2013, 8, 109–132. [Google Scholar]
- Chen, Y.; Michalak, M.; Agellon, L.B. Focus: Nutrition and Food Science: Importance of Nutrients and Nutrient Metabolism on Human Health. Yale J. Biol. Med. 2018, 91, 95. [Google Scholar] [PubMed Central]
- Nordhagen, S.; Lambertini, E.; DeWaal, C.S.; McClafferty, B.; Neufeld, L.M. Integrating Nutrition and Food Safety in Food Systems Policy and Programming. Glob. Food Secur. 2022, 32, 100593. [Google Scholar] [CrossRef]
- Turkmen, N.; Akal, C.; Özer, B. Probiotic Dairy-Based Beverages: A Review. J. Funct. Foods 2019, 53, 62–75. [Google Scholar] [CrossRef]
- Fazilah, N.F.; Ariff, A.B.; Khayat, M.E.; Rios-Solis, L.; Halim, M. Influence of Probiotics, Prebiotics, Synbiotics and Bioactive Phytochemicals on the Formulation of Functional Yogurt. J. Funct. Foods 2018, 48, 387–399. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, G.; Ali, S.A. Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. Fermentation 2022, 8, 425. [Google Scholar] [CrossRef]
- Reissig Soares Vitola, H.; da Silva Dannenberg, G.; de Lima Marques, J.; Völz Lopes, G.; Padilha da Silva, W.; Fiorentini, Â.M. Probiotic Potential of Lactobacillus Casei CSL3 Isolated from Bovine Colostrum Silage and Its Viability Capacity Immobilized in Soybean. Process Biochem. 2018, 75, 22–30. [Google Scholar] [CrossRef]
- Singh, D.; Singh, A.; Kumar, S. Probiotics: Friend or Foe to the Human Immune System. Bull. Natl. Res. Cent. 2023, 47, 126. [Google Scholar] [CrossRef]
- Śliżewska, K.; Markowiak-Kopeć, P.; Śliżewska, W. The Role of Probiotics in Cancer Prevention. Cancers 2021, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- George Kerry, R.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.S.; Das, G. Benefaction of Probiotics for Human Health: A Review. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Nazzaro, F.; Pimentelc, T.C.; Esmerino, E.A.; Cruz, A.G.d. Probiotic Food Development: An Updated Review Based on Technological Advancement. In Encyclopedia of Food Security and Sustainability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 422–428. [Google Scholar] [CrossRef]
- Prasanna, P.H.P.; Grandison, A.S.; Charalampopoulos, D. Bifidobacteria in Milk Products: An Overview of Physiological and Biochemical Properties, Exopolysaccharide Production, Selection Criteria of Milk Products and Health Benefits. Food Res. Int. 2014, 55, 247–262. [Google Scholar] [CrossRef]
- Vasudha, S.; Mishra, H.N. Non dairy probiotic beverages. Int. Food Res. J. 2013, 20, 7–15. [Google Scholar]
- Soccol, C.R.; Porto De Souza Vandenberghe, L.; Spier, M.R.; Bianchi, A.; Medeiros, P.; Yamaguishi, C.T.; De, J.; Lindner, D.; Pandey, A.; Thomaz-Soccol, V. The Potential of Probiotics: A Review. Food Technol. Biotechnol. 2010, 48, 413–434. [Google Scholar]
- Abid, R.; Waseem, H.; Ali, J.; Ghazanfar, S.; Ali, G.M.; Elasbali, A.M.; Alharethi, S.H. Probiotic Yeast Saccharomyces: Back to Nature to Improve Human Health. J. Fungi 2022, 8, 444. [Google Scholar] [CrossRef]
- Czerucka, D.; Piche, T.; Rampal, P. Review Article: Yeast as Probiotics—Saccharomyces boulardii. Aliment. Pharmacol. Ther. 2007, 26, 767–778. [Google Scholar] [CrossRef]
- Dos Santos Martins, F.; da Conceição Pereira Tiago, F.; Henrique Ferreira Barbosa, F.; José Penna, F.; Augusto Rosa, C.; Maria Drummond Nardi, R.; José Neves, M.; Robert Nicoli, J. Utilização de leveduras como probióticos. Rev. Biol. Ciências Terra 2005, 5. Available online: https://www2.ufpel.edu.br/biotecnologia/gbiotec/site/content/paginadoprofessor/uploadsprofessor/0c834688ba8c9324ed45d0517d496b26.pdf (accessed on 28 May 2024).
- Kim, J.; Atkinson, C.; Miller, M.J.; Kim, K.H.; Jin, Y.-S. Microbiome Engineering Using Probiotic Yeast: Saccharomyces boulardii and the Secreted Human Lysozyme Lead to Changes in the Gut Microbiome and Metabolome of Mice. Microbiol. Spectr. 2023, 11, e00780-23. [Google Scholar] [CrossRef]
- Sen, S.; Mansell, T.J. Yeasts as Probiotics: Mechanisms, Outcomes, and Future Potential. Fungal Genet. Biol. 2020, 137, 103333. [Google Scholar] [CrossRef]
- Misra, S.; Pandey, P.; Dalbhagat, C.G.; Mishra, H.N. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: A Review. Food Bioprocess Technol. 2022, 15, 998–1039. [Google Scholar] [CrossRef]
- Pasqualin Cavalheiro, C.; Ruiz-Capillas, C.; Herrero, A.M.; Jiménez-Colmenero, F.; Ragagnin de Menezes, C.; Martins Fries, L.L. Application of Probiotic Delivery Systems in Meat Products. Trends Food Sci. Technol. 2015, 46, 120–131. [Google Scholar] [CrossRef]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in Food Systems: Significance and Emerging Strategies towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef]
- Han, S.; Lu, Y.; Xie, J.; Fei, Y.; Zheng, G.; Wang, Z.; Liu, J.; Lv, L.; Ling, Z.; Berglund, B.; et al. Probiotic Gastrointestinal Transit and Colonization after Oral Administration: A Long Journey. Front. Cell. Infect. Microbiol. 2021, 11, 609722. [Google Scholar] [CrossRef]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health Benefits of Probiotics: A Review. Int. Sch. Res. Not. 2013, 2013, 481651. [Google Scholar] [CrossRef]
- Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar] [CrossRef]
- Markowiak, P.; Ślizewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Salminen, S.J. The Health Effects of Cultured Milk Products with Viable and Non-Viable Bacteria. Int. Dairy J. 1998, 8, 749–758. [Google Scholar] [CrossRef]
- Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of Probiotic Living Cells: From Laboratory Scale to Industrial Applications. J. Food Eng. 2011, 104, 467–483. [Google Scholar] [CrossRef]
- Haji, F.; Cheon, J.; Baek, J.; Wang, Q.; Tam, K.C. Application of Pickering Emulsions in Probiotic Encapsulation—A Review. Curr. Res. Food Sci. 2022, 5, 1603–1615. [Google Scholar] [CrossRef]
- Koh, W.Y.; Lim, X.X.; Tan, T.C.; Kobun, R.; Rasti, B. Encapsulated Probiotics: Potential Techniques and Coating Materials for Non-Dairy Food Applications. Appl. Sci. 2022, 12, 10005. [Google Scholar] [CrossRef]
- Silva, M.P.; Tulini, F.L.; Matos, F.E., Jr.; Oliveira, M.G.; Thomazini, M.; Fávaro-Trindade, C.S. Application of Spray Chilling and Electrostatic Interaction to Produce Lipid Microparticles Loaded with Probiotics as an Alternative to Improve Resistance under Stress Conditions. Food Hydrocoll. 2018, 83, 109–117. [Google Scholar] [CrossRef]
- Rodrigues, F.J.; Cedran, M.F.; Bicas, J.L.; Sato, H.H. Encapsulated Probiotic Cells: Relevant Techniques, Natural Sources as Encapsulating Materials and Food Applications—A Narrative Review. Food Res. Int. 2020, 137, 109682. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, R.; Chawla, S.; Gauba, P.; Singh, M.; Tiwari, R.K.; Upadhyay, S.; Sharma, S.; Chanda, S.; Gaur, S. Natural Sources and Encapsulating Materials for Probiotics Delivery Systems: Recent Applications and Challenges in Functional Food Development. Front. Nutr. 2022, 9, 971784. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Saúde, M.D.A. Brasília-DF 2020 Diretrizes Metodológicas: Elaboração de Revisão Sistemática e Meta-Análise de Ensaios Clínicos Randomizados. 2020. Available online: www.saude.gov.br (accessed on 31 August 2023).
- Baglioni, C.; Nissen, C.; Schweinoch, A.; Riemann, D.; Spiegelhalder, K.; Berger, M.; Weiller, C.; Sterr, A. Polysomnographic Characteristics of Sleep in Stroke: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0148496. [Google Scholar] [CrossRef]
- Long, H.A.; French, D.P.; Brooks, J.M. Optimising the Value of the Critical Appraisal Skills Programme (CASP) Tool for Quality Appraisal in Qualitative Evidence Synthesis. Res. Methods Med. Health Sci. 2020, 1, 31–42. [Google Scholar] [CrossRef]
- Arslan, S.; Erbas, M.; Tontul, I.; Topuz, A. Microencapsulation of Probiotic Saccharomyces cerevisiae var. boulardii with Different Wall Materials by Spray Drying. LWT 2015, 63, 685–690. [Google Scholar] [CrossRef]
- Suryabhan, P.; Lohith, K.; Anu-Appaiah, K.A. Sucrose and Sorbitol Supplementation on Maltodextrin Encapsulation Enhance the Potential Probiotic Yeast Survival by Spray Drying. LWT 2019, 107, 243–248. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An Evolving Term within the Functional Foods Field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in Microencapsulation of Probiotics: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 857–874. [Google Scholar] [CrossRef]
- Rajam, R.; Subramanian, P. Encapsulation of Probiotics: Past, Present and Future. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 46. [Google Scholar] [CrossRef]
- Rodrigues, D.; Sousa, S.; Rocha-Santos, T.; Silva, J.P.; Sousa Lobo, J.M.; Costa, P.; Amaral, M.H.; Pintado, M.M.; Gomes, A.M.; Malcata, F.X.; et al. Influence of L-Cysteine, Oxygen and Relative Humidity upon Survival throughout Storage of Probiotic Bacteria in Whey Protein-Based Microcapsules. Int. Dairy. J. 2011, 21, 869–876. [Google Scholar] [CrossRef]
- Sun, Q.; Yin, S.; He, Y.; Cao, Y.; Jiang, C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. Nanomaterials 2023, 13, 2185. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Oliver, M.; Ponce-Alquicira, E. The Role of Microencapsulation in Food Application. Molecules 2022, 27, 1499. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.T.; Fries, L.L.M.; de Menezes, C.R.; Holkem, A.T.; Schwan, C.L.; Wigmann, F.; Bastos, J.d.O.; Silva, C.d.B.d. Microencapsulation: Concepts, Mechanisms, Methods and Some Applications in Food Technology. Ciênc. Rural. 2014, 44, 1304–1311. [Google Scholar] [CrossRef]
- Safeer Abbas, M.; Afzaal, M.; Saeed, F.; Asghar, A.; Jianfeng, L.; Ahmad, A.; Ullah, Q.; Elahi, S.; Ateeq, H.; Shah, Y.A.; et al. Probiotic Viability as Affected by Encapsulation Materials: Recent Updates and Perspectives. Int. J. Food Prop. 2023, 26, 1324–1350. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low PH. Microbiol. Mol. Biol. Rev. 2003, 67, 429. [Google Scholar] [CrossRef]
- González-Ferrero, C.; Irache, J.M.; González-Navarro, C.J. Soybean Protein-Based Microparticles for Oral Delivery of Probiotics with Improved Stability during Storage and Gut Resistance. Food Chem. 2018, 239, 879–888. [Google Scholar] [CrossRef]
- Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D.L.; Hoorfar, M. Nanomaterial-Based Encapsulation for Controlled Gastrointestinal Delivery of Viable Probiotic Bacteria. Nanoscale Adv. 2021, 3, 2699–2709. [Google Scholar] [CrossRef]
- Ma, L.; Tu, H.; Chen, T. Postbiotics in Human Health: A Narrative Review. Nutrients 2023, 15, 291. [Google Scholar] [CrossRef] [PubMed]
- Szydłowska, A.; Sionek, B. Probiotics and Postbiotics as the Functional Food Components Affecting the Immune Response. Microorganisms 2023, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M. Single and Double Layered Microencapsulation of Probiotics by Spray Drying and Spray Chilling. LWT 2017, 81, 160–169. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M.; Gorgulu, A. The Use of Probiotic-Loaded Single- and Double-Layered Microcapsules in Cake Production. Probiotics Antimicrob. Proteins 2019, 11, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Cayra, E.; Dávila, J.H.; Villalta, J.M.; Rosales, Y. Evaluación de La Estabilidad y Viabilidad de Dos Cepas Probióticas Microencapsuladas Por Lecho Fluidizado. Inf. Tecnol. 2017, 28, 35–44. [Google Scholar] [CrossRef]
- Duongthingoc, D.; George, P.; Katopo, L.; Gorczyca, E.; Kasapis, S. Effect of Whey Protein Agglomeration on Spray Dried Microcapsules Containing Saccharomyces boulardii. Food Chem. 2013, 141, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Cardinale, F.; Russo, I.; Iuliano, C.; Tremonte, P.; Coppola, R.; Nazzaro, F. Ability of Synbiotic Encapsulated Saccharomyces cerevisiae boulardii to Grow in Berry Juice and to Survive under Simulated Gastrointestinal Conditions. J. Microencapsul. 2014, 31, 299–305. [Google Scholar] [CrossRef]
- Ghorbani-Choboghlo, H.; Zahraei-Salehi, T.; Ashrafi-Helan, J.; Yahyaraeyat, R.; Pourjafar, H.; Nikaein, D.; Balal, A.; Khosravi, A.-R. Microencapsulation of Saccharomyces cerevisiae and Its Evaluation to Protect in Simulated Gastric Conditions. Iran. J. Microbiol. 2015, 7, 338. [Google Scholar]
- Ghorbani-Choboghlo, H.; Nikaein, D.; Khosravi, A.-R.; Rahmani, R.; Farahnejad, Z. Effect of Microencapsulation on Saccharomyces Cerevisiae var. Boulardii Viability in the Gastrointestinal Tract and Level of Some Blood Biochemical Factors in Wistar Rats. Iran. J. Microbiol. 2019, 11, 160. [Google Scholar] [CrossRef]
- Laurenti, E.; Garcia, S. Eficiência de Materiais Encapsulantes Naturais e Comerciais Na Liberação Controlada de Probiótico Encapsulado. Braz. J. Food Technol. 2013, 16, 107–115. [Google Scholar] [CrossRef]
- Song, H.; Yu, W.; Liu, X.; Ma, X. Improved Probiotic Viability in Stress Environments with Post-Culture of Alginate-Chitosan Microencapsulated Low Density Cells. Carbohydr. Polym. 2014, 108, 10–16. [Google Scholar] [CrossRef]
- Zamora-Vegal, R.; Montañez-Soto, J.L.; Venegas-González, J.; Bernardino-Nicanor, A.; Cruz, L.G.; Martínez-Flores, H.E. Development and Characterization of a Symbiotic Cheese Added with Saccharomyces boulardii and Inulin. Afr. J. Microbiol. Res. 2013, 7, 2828–2834. [Google Scholar] [CrossRef]
- Coradello, G.; Tirelli, N. Yeast Cells in Microencapsulation. General Features and Controlling Factors of the Encapsulation Process. Molecules 2021, 26, 3123. [Google Scholar] [CrossRef] [PubMed]
- Pengkumsri, N.; Sivamaruthi, B.S.; Sirilun, S.; Peerajan, S.; Kesika, P.; Chaiyasut, K.; Chaiyasut, C. Extraction of β-Glucan from Saccharomyces cerevisiae: Comparison of Different Extraction Methods and In Vivo Assessment of Immunomodulatory Effect in Mice. Food Sci. Technol. 2017, 37, 124–130. [Google Scholar] [CrossRef]
- Ribeiro, R.A.; Bourbon-Melo, N.; Sá-Correia, I. The Cell Wall and the Response and Tolerance to Stresses of Biotechnological Relevance in Yeasts. Front. Microbiol. 2022, 13, 953479. [Google Scholar] [CrossRef] [PubMed]
- Frehner, A.; De Boer, I.J.M.; Muller, A.; Van Zanten, H.H.E.; Schader, C. Consumer Strategies towards a More Sustainable Food System: Insights from Switzerland. Am. J. Clin. Nutr. 2022, 115, 1039. [Google Scholar] [CrossRef] [PubMed]
- Niño-Vásquez, I.A.; Muñiz-Márquez, D.; Ascacio-Valdés, J.A.; Contreras-Esquivel, J.C.; Aguilar, C.N.; Rodríguez-Herrera, R.; Flores-Gallegos, A.C. Co-Microencapsulation: A Promising Multi-Approach Technique for Enhancement of Functional Properties. Bioengineered 2022, 13, 5168–5189. [Google Scholar] [CrossRef]
- Rawat, M.; Varshney, A.; Rai, M.; Chikara, A.; Pohty, A.L.; Joshi, A.; Binjola, A.; Singh, C.P.; Rawat, K.; Rather, M.A.; et al. A Comprehensive Review on Nutraceutical Potential of Underutilized Cereals and Cereal-Based Products. J. Agric. Food Res. 2023, 12, 100619. [Google Scholar] [CrossRef]
Keyword | Platforms—No. of Articles | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Science Direct | PubMed | Scielo | Cochrane | TripDatabase | Lilacs | |||||||
Total | Included | Total | Included | Total | Included | Total | Included | Total | Included | Total | Included | |
Yeast + Probiotic + Microencapsulation | 131 | 11 | 12 | 6 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
Probiotic + Microencapsulation | 537 | 11 | 11 | 0 | 14 | 1 | 15 | 0 | 26 | 0 | 7 | 0 |
Probiotic + Encapsulation | 1180 | 12 | 5 | 0 | 12 | 2 | 17 | 0 | 37 | 0 | 9 | 0 |
Saccharomyces + Probiotic + Microencapsulation | 40 | 9 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
TOTAL | 1888 | 42 | 28 | 6 | 27 | 3 | 33 | 1 | 66 | 0 | 16 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, W.d.C.; Brito, L.P.d.; Souza, E.A.G.d.; Lopes, I.L.; Oliveira, C.A.d.; Calaça, P.R.d.A.; Oliveira, M.B.P.P.; Costa, E.D. The Yeast-Based Probiotic Encapsulation Scenario: A Systematic Review and Meta-Analysis. Appl. Sci. 2024, 14, 5461. https://doi.org/10.3390/app14135461
Oliveira WdC, Brito LPd, Souza EAGd, Lopes IL, Oliveira CAd, Calaça PRdA, Oliveira MBPP, Costa ED. The Yeast-Based Probiotic Encapsulation Scenario: A Systematic Review and Meta-Analysis. Applied Sciences. 2024; 14(13):5461. https://doi.org/10.3390/app14135461
Chicago/Turabian StyleOliveira, Wemerson de Castro, Leandro Paes de Brito, Edson Antônio Gonçalves de Souza, Isabelle Lima Lopes, Cristiane Alves de Oliveira, Priscilla Régia de Andrade Calaça, Maria Beatriz Prior Pinto Oliveira, and Eduardo Damasceno Costa. 2024. "The Yeast-Based Probiotic Encapsulation Scenario: A Systematic Review and Meta-Analysis" Applied Sciences 14, no. 13: 5461. https://doi.org/10.3390/app14135461
APA StyleOliveira, W. d. C., Brito, L. P. d., Souza, E. A. G. d., Lopes, I. L., Oliveira, C. A. d., Calaça, P. R. d. A., Oliveira, M. B. P. P., & Costa, E. D. (2024). The Yeast-Based Probiotic Encapsulation Scenario: A Systematic Review and Meta-Analysis. Applied Sciences, 14(13), 5461. https://doi.org/10.3390/app14135461