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Abstract: Cadmium (Cd) is a key stress factor that affects plant development. To examine the in-
fluence of Cd stress, we analysed the tissue localisation of polysaccharides (Periodic Acid Schiff
reaction), qualitative and quantitative changes in soluble carbohydrates (High-Resolution Gas Chro-
matography), and the expression of the galactinol synthase (PsGolS) and raffinose synthase (PsRS)
genes in 4-week-old Pisum sativum L. ‘Pegaz’. The plants were treated with 10, 50, 100, and 200 µM
CdSO4 for one week and analysed on the 1st, 7th, and 28th days after Cd application. Pea as an
excluder plant accumulated Cd mainly in the roots. Cd induced starch grain storage in the stems
and the accumulation of soluble carbohydrates in roots and shoots after 28 days of Cd treatment. In
controls, soluble carbohydrate levels decreased during the plant growth. In addition, Cd increased
galactinol and raffinose levels, indicating their important role in response to Cd stress in peas. More-
over, the analysis confirmed that the expression of PsGolS was induced by Cd. Overall, the results
of the distribution of carbohydrates in pea plants, together with the inhibition of seed production
by Cd, indicate that plants tend to allocate energy to stress response mechanisms rather than to
reproductive processes.

Keywords: galactinol; high-resolution gas chromatography; PAS reaction; raffinose; translocation
factor; tolerance index

1. Introduction

The concentration of cadmium (Cd) in the air, soil, and waters of the Earth is a result
of natural and human activities such as industrial processes and agricultural practices [1,2].
The rising levels of this highly toxic heavy metal have led to a global environmental
concern, particularly for plants [1,2]. Cd also poses a risk to livestock and human health,
as it can accumulate in plants and subsequently be transferred through the food chain.
Plants developed strategies for the accumulation and tolerance of heavy metals in response
to environmental selection pressures caused by heavy metal pollution. These strategies
enable them to play a crucial role in the bioremediation of heavy metal-contaminated
environments [3]. The bioconcentration factor (BCF, the root-to-soil ratio of heavy metal)
and the translocation factor (TF, the shoot-to-root ratio of heavy metal) are used to determine
the level of phytoremediation in plants. Plants with more than one TF and BCF (TF > 1 and
BCF > 1) are expected to be used in phytoextraction [4,5]. One study [6] showed that Pisum
sativum has phytostabilization potential and exhibits Cd excluder behaviour (a BCF > 1
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and TF < 1) when grown in hydroponics and treated with 50 µM CdSO4. The excluder
plants contribute to environmental sustainability and ecosystem resilience by acting as
natural barriers against the harmful effects of heavy metal contamination [7]. The present
study was carried out to understand the mechanisms underlying the harmful impact of
Cd on plants and to address the ecological and agricultural consequences associated with
Cd pollution.

Although Cd has not been shown to be required for metabolic processes, it is effec-
tively absorbed by plants [8] and can affect plant growth and development at all stages [9].
Cd exerts its detrimental effects on plant development through multiple pathways, affect-
ing physiological and biochemical processes [10–17]. One of the primary targets of Cd
toxicity is the disruption of essential mineral nutrient uptake and homeostasis [14,18–21].
Consequently, this disrupts critical processes such as photosynthesis, respiration, and cellu-
lar metabolism, ultimately impairing plant growth and development [14,22,23]. Studies
showed that exposure to Cd can cause a delay in flowering time and, consequently, in grain
maturation, a smaller number of fruits or pods per plant, and reductions in their weight
and yield [17]. Our previous study indicated that Cd affects the flowering time and the
seed development of peas [14]. Interestingly, the inhibitory effect of Cd on photosynthesis
and transpiration rate was observed later during the experiment [14]. For this study, we
investigated the effect of Cd on changes in carbohydrate profiles over the course of the
experiment. In addition, the study was carried out on fully developed but not flowering
plants to analyse changes in sugar distribution under Cd stress during the transition from
the vegetative to the generative stage of plant development.

Carbohydrates serve as essential energy sources and signalling molecules, and thus
their availability and distribution are critical for developmental processes [24]. The Cd-
induced alteration of total soluble sugar levels and carbohydrate metabolism was previ-
ously described [20,25–30]. The Cd exposure significantly increased soluble and reducing
carbohydrates in summer savory (Satureja hortensis L.) [31], while decreasing the reducing
sugar content in wheat seedlings [20]. Interestingly, Sun et al. [32] showed the pronounced
accumulation of galactinol and raffinose family oligosaccharides (RFOs) during Cd stress
in Arabidopsis thaliana. Here, we analysed the profile and changes of soluble carbohydrates
using the high-resolution gas chromatography (HRGC) method, which allowed us to deter-
mine detailed information about the composition and concentration of individual sugars.
This method overcomes the limitations of some previous techniques and provides more
precise and comprehensive data on the presence and levels of specific sugars.

The accumulation of Cd also altered the levels of starch in plants, a source of en-
ergy that contributes to the overall growth and development of plants [20,25,33–35]. The
previous research [33,34,36] demonstrated that plants respond differently in this regard.
Cd-induced changes in the mesophyll cells of cotton leaf included an increase in the number
and size of starch grains [34], while in Ceratophyllum demersum plants had no effect on starch
accumulation [33], and in Avicennia schaueriana plants led to a decrease in starch grains [36].
In the present study, we analysed the starch accumulation using the Periodic acid Schiff
(PAS) reaction. Bouzon et al. [37] and Simioni et al. [38] showed that this method is suitable
not only to demonstrate changes in the number but also the location of starch grains in
specific tissues.

In contrast to previous studies, we also analysed the level of soluble carbohydrates
not only after the Cd-treatment but also during the Cd-treatment to gain insight into
the strategies of pea plants in response to heavy metal contamination. To examine the
role of Cd in long-term effects on carbohydrate dynamics, the 4-week plants of Pisum
sativum L. ‘Pegaz’ after 1, 7, and 28 days of Cd treatment were analysed. We examined
the location of polysaccharides (PAS method) and soluble carbohydrate alterations (using
a gas chromatography method, HRGC). Furthermore, the results of the galactinol and
raffinose content in the shoots led us to perform an expression analysis of the raffinose
synthase (PsRS) and galactinol synthase (PsGolS) after the Cd treatment to determine the Cd
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involvement in this process. This knowledge enhances the understanding of the metabolic
adaptations and regulatory networks that underlie plant responses to Cd-induced stress.

2. Materials and Methods
2.1. Plant Material

The seeds of Pisum sativum L. ‘Pegaz’ were seeded in a wet perlite and grown in a
glasshouse at 22–26 ◦C, watered with distilled water, and with ½ MS medium without
sucrose [39]. The 4 weeks-old fully grown, but not flowering plants were treated with 10,
50, 100, and 200 µM CdSO4 or water (control) for one week (three times a week—30 mL,
30 mL, and 40 mL, control plants received equal quantities of distilled water, with a total
100 mL of solution per pot—ø 15 cm, each pot with 5 plants) as previously described [14].
The plants were cultivated for another 28 days after treatment. For individual analysis,
aboveground (shoots or leaves and stems) and/or underground (roots) parts of plants were
collected on the 1st, 7th, and 28th days since the first application of Cd. The experiment
was carried out in three replicates.

2.2. Periodic Acid Schiff (PAS) Reaction

The leaves and stems were analysed using a modified method, using periodic acid
and Schiff’s reagent [40]. The middle pea leaves were collected after 7 days of Cd treatment
(control, 50 and 200 µM Cd), and the youngest fully developed leaves and the oldest leaves
(not senescence) after 28 days of the experiment (control, 50 and 200 µM Cd). The stems
were analysed after 7 and 28 days of Cd treatment (control, 50 and 200 µM Cd). Carnoy’s
fixed (ethanol/acetic acid, 3:1) pea leaves, stems, and roots were placed in 0.5% periodic
acid (at 4 ◦C) for 12 h, then rinsed with distilled water (30 min, at room temperature, RT)
and 70% ethanol (2 × 10 min, RT) and transferred to Schiff’s Reagent (Stamar, Dąbrowa
Górnicza, Poland) for 12 h, at RT. The tissues were placed in the reducing rinse (1 g
potassium iodide, 1 g sodium thiosulfate pentahydrate in 20 mL of H2O, and 0.5 mL of 20%
hydrochloric acid) for 24 h. Before embedding (Spurr, Polysciences Inc.; Warrington, PA,
USA) and sectioning (Ultracut R, Leica; Wetzlar, Germany) probes were rinsed with H2O
for 30 min and dehydrated in a series of ethanol. The tissue sections were analysed under
an optical microscope (Nikon Eclipse 80i; Melville, NY, USA).

2.3. Soluble Carbohydrate Analysis

The carbohydrate level was analysed in the plants (shoot and root system) 24 h, 7,
and 28 days after Cd treatment. The 28 days after Cd application control plants and plants
treated with 10 µM CdSO4 produced pods with seeds which were collected separately
from the shoots. The freshly collected plant material was frozen in liquid nitrogen and
then lyophilised. The dry material was pulverised in a mixer mill (MM 200, Retsch, Verder
Group, The Netherlands), and soluble carbohydrates were extracted from the dry flour
(40–42 mg for each biological repetition) with 800 µL of 50% ethanol: water (1:1, v/v),
containing 100 µg of xylitol (as an internal standard) at 90 ◦C for 30 min. After cooling to
room temperature, the homogenate was centrifuged at 14,000 rpm (21,000× g for 30 min at
4 ◦C), and the 400 µL of the supernatant was transferred to the ultra-spin filters (0.22 µm
pore size) and centrifuged again (for 10 min). A clear filtrate (200 µL) was brought to dryness
in a speed vacuum rotary evaporator (JWElectronic, Warszawa, Poland). The dry residues
were derivatised with 200 µL of a mixture of TMSI/pyridine (1:1, v/v, Sigma-Aldrich, St.
Louis, MO, USA) at 80 ◦C for 45 min. The TMS derivatives of carbohydrates were analysed
with the high-resolution gas chromatography (HRGC) method on a capillary column (Rtx-1,
15 m length, 0.25 mm diameter, 0.1 µm thickness of 100% dimethyl polysiloxane layer,
Restek, Anchem Plus, Warsaw, Poland) in a gas chromatograph (GC2010, Shimadzu, Kyoto,
Japan), under conditions described previously [41]. The results were calculated using the
internal standard method. Soluble carbohydrates were quantified from the standard curves;
the ratios of the area of signals for each known compound to the area of the signal for xylitol,
the internal standard, were plotted against known amounts (over the range of 10–250 µg)
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of each compound [41]. Standards of xylitol, myo-inositol, and soluble carbohydrates were
obtained from Sigma-Aldrich (St. Louis, MO, USA).

2.4. Gene Expression Analysis

Total RNA was extracted from three biological replicates, each consisting of shoots
pooled from at least 5 plants. Plant tissue stored in an ultra-freezer was ground in liquid
nitrogen and extracted with modified methods described by Wang et al. [42]. At the same
time, RNA extraction buffer (100 mM Tris-HCl pH 9.0, 2% β-mercaptoethanol, 1% SDS)
and Tri-Reagent were added to the samples homogenised in liquid nitrogen. The isolated
RNA (5 µg) was treated with DNase (DNA-free, Promega, Madison, WI, USA) and the
synthesis of cDNA was performed with Superscript II Reverse Transcriptase (Invitrogen,
Waltham, MA, USA) at 42 ◦C for 1 h using an oligo dT primer, according to the manu-
facturer’s protocol. Oligonucleotides for PsGolS mRNA (AJ243815: GenBank) were for-
ward 5′CACGAAACTGAAACGTGCAT3′/reverse 5′-TCAGTTAAGCTGCCGAAGGT3′;
for PsRS mRNA (AJ426475: GenBank): forward 5′GGAACAAACGGACACGAACT3′/
reverse 5′AACTGGTCCACCAGAGATGG3′; and for the EF1α (X96555: GenBank)
an internal standard, forward 5′TTCCCTTCGTTCCCATCTCTG3′/reverse
5′TACAAGCATACCGGGCTTCA3′ [43,44]. Semiquantitative PCR was performed on
2 µL cDNA (equivalent to approximately 0.5 µg starting RNA), 1 µM each primer, 0.2 mM
of each dNTP, 2.0 mM MgCl2, GoTaq buffer, and 0.75 U of GoTaq polymerase (Promega) in
30 µL total volume. The following conditions were used for the PCR amplification of PsGolS
(962 bp) and PsRS (1287 bp): initial denaturation at 94 ◦C (4 min); touchdown cycles [94 ◦C
(30 s), 68 to 61 ◦C (30 s), 72 ◦C (60 s)] (one cycle for each temperature) and 25 cycles at 94 ◦C
(30 s), 61 ◦C (30 s) and 72 ◦C (60 s) followed by extension at 72 ◦C (10 min). Amplification
of EF1α mRNA (236 bp) was carried out with 2 µL of cDNA with the following conditions
set for PCR: initial denaturation at 94 ◦C (4 min); touchdown cycles [94 ◦C (15 s), 68 to
61 ◦C (15 s), 72 ◦C (30 s)] (one cycle for each temperature) and 20 cycles at 94 ◦C (15 s),
61 ◦C (15 s) and 72 ◦C (30 s) followed by extension at 72 ◦C (5 min). The intensity of
bands was evaluated in a gel image analysis system (Gene Tools, Syngene, Cambridge,
UK). Expression levels of PsGolS and PsRS were normalised with EF expression.

2.5. Accumulation of Cd Concentration in Pea Plants

After 28 days of Cd treatment, the shoots and roots of the pea were harvested for Cd
accumulation analysis. The oven-dried samples were mineralised for 4–5 h in a 3:1 (v/v)
mixture of HNO3 and HClO4 using a temperature step gradient (maximum of 200 ◦C) (DK
20, VELP Scientifica, Usmate, Italy). Digests were diluted to 25 mL with deionised water. A
flame atomic absorption iCE 3000 Series spectrometer (Thermo Fisher, Waltham, MA, USA)
was used to measure the Cd content.

2.6. Calculation of the Tolerance Index (TI) and Translocation Factor (TF)

The tolerance index (TI) was calculated to assess the plant’s ability to grow in the
presence of a specific concentration of Cd [45,46]. TI was calculated as follows:

TI =
Dry weight (DW) of the plants grown in Cd solution

Dry weight (DW) of the plants grown in control solution
× 100

The translocation factor (TF) measures the plant’s ability to move accumulated metal
from its roots to its aerial portions. The following is how TF was calculated [7,47]:

TF =
C aerial parts

C roots

where “C aerial parts” is the concentration (µg/g DW) of metal in the above-ground tissues
and “C roots” is the concentration (µg/g DW) of metal in the roots.
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2.7. Statistical Analysis

All data shown in the figures are mean ± standard deviation (SD). The results were
subjected to analysis of variance (ANOVA) and Tukey’s post-hoc test with the level of sig-
nificance set at p < 0.05 (lower case letters in the figures) or p < 0.01 (upper case letters in the
figures). STATISTICA (ver. 13.1 Dell Inc., Tulsa, OK, USA) was used for statistical analysis.

3. Results
3.1. Accumulation, Translocation Factor, and Tolerance Index of Cd in Pea Plants

Cd accumulation, TF, and TI in pea plants were measured 28 days after Cd treatment
(Figure 1). Roots accumulated more Cd than shoots (Figure 1A,B). Furthermore, the largest
amounts of Cd were found in the roots and shoots of plants treated with 100 and 200 µM
CdSO4 (Figure 1A,B). Except for plants treated with 50 µM CdSO4, the TF (Figure 1C)
was comparable for all Cd treatments. The TF of plants treated with 50 µM CdSO4 was
25.7, 22.9, and 30.5% higher than that of plants treated with 10, 100, and 200 µM CdSO4,
respectively. Interestingly, although the TI analysis (Figure 1C) did not reveal significant
differences across treatments, the TI values of the plants treated with 10 and 50 µM CdSO4
were greater than the TI values of the plants treated with 100 and 200 µM CdSO4.
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Figure 1. Cd accumulation in roots (A) and shoots (B), translocation factor, and tolerance index (C) of
Cd after 28 days in P. sativum of the plants treated with Cd (10, 50, 100 and 200 µM CdSO4). Each
value is the mean of three replicates ± SD. Different letters represent significant differences (p < 0.05).

3.2. PAS-Reactive Elements and Tissue Structure Analysis after Cd Treatment

The localisation and amount of the PAS-reactive elements were analysed during the
experiment (Figures 2–6). The PAS reaction resulted in purple staining of starch and the
cell wall polysaccharides. Figure 2 shows the cross-sections of the leaves of control, 50,
and 200 µM Cd-treated plants 7 days after treatment (Figure 2A–C) and the cross-sections
of young leaves (Figure 2D–F) and old leaves (Figure 2G–I) 28 days after treatment. The
number of PAS-positive deposits was highest in the leaves 28 days after Cd treatment
(Figure 2D–I) followed by those after 7 days of treatment (Figure 2A–C).
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treatment. The upper and lower parts of the leaf cross-section are denoted by “1” and “2”, respec-
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ophyll, vb—vascular bundle, ue—upper epidermis, le—lower epidermis. Scale bar 10 µm. 

Figure 2. Cross-sections of the leaves of control (A1,A2,D1,D2,G1,G2), 50 (B1,B2,E1,E2,H1,H2) and
200 µM CdSO4 (C1,C2,F1,F2,I1,I2) treated P. sativum plants. Images show leaves 7 days after Cd-
treatment (A1,A2,B1,B2,C1,C2), young leaves (D1,D2,E1,E2,F1,F2) and older leaves 28 days after Cd
treatment. The upper and lower parts of the leaf cross-section are denoted by “1” and “2”, respectively.
The purple colour shows the PAS-reactive elements, arrows indicate starch grains. The dotted arrows
show plasmolysis. Abbreviations: st—stomata, pm—palisade mesophyll, sm—spongy mesophyll,
vb—vascular bundle, ue—upper epidermis, le—lower epidermis. Scale bar 10 µm.
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The distribution of the starch grains in the leaves and stems of P. sativum during the
experiment was depicted in Table 1. Many starch grains were observed in the young leaves
(Figure 2D,E) but not in the old leaves of the control plants and those treated with 50 µM
Cd (Figure 2G,H). In contrast to this, the number of starch grains in the leaf mesophyll
of 200 µM Cd-treated plants was higher in old leaves than in young ones (Figure 2I,F,
accordingly).

Table 1. Distribution of starch grains in the tissues of P. sativum.

LEAVES STEM

0 µM CdSO4
50 µM
CdSO4

200 µM
CdSO4

0 µM CdSO4
50 µM
CdSO4

200 µM
CdSO4

1 week after
Cd-treatment + + + + + −

4 weeks after
Cd-treatment

Young leaves + + −
− + +

Old leaves − − +

“+” starch grains: present, “−” starch grains: low number or absent.

The distribution scheme of PAS-positive cell wall polysaccharides was similar. Moreover,
excessive plasmolysis in the cells of the young leaves (Figure 2(F1)—dotted arrows) and alter-
ation of the phloem in the old leaves of 200 µM Cd-treated plants (Figures 2I and 3—arrows,
dotted arrows) compared to control plants were observed.
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sativum plants. Images show a vascular bundle structure (arrow—companion cell, dotted arrow—
sieve tube). Abbreviations: x—xylem, ph—phloem, pm—palisade mesophyll, sm—spongy meso-
phyll. Scale bar 10 µm.

The cell walls of both the sieve tubes (dotted arrows) and companion cells (arrows) of
these leaves were folded when compared to the other analysed variants of the experiment
(Figure 3).
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Figure 4. Cross-sections of the epidermis and stem cortex parenchyma (A–F) and the stem vascular
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Abbreviations: c—cambium, e—epidermis, p—stem cortex parenchyma, ph—phloem, st—stomata,
x—xylem. Scale bar: 10 µm (A–F,J,K) and 50 µm (G–I,L).

After 7 days of 50 and 200 µM Cd treatment, the cells of the stem parenchyma were
damaged (Figure 4B,C—dashed arrows). However, after 28 days of treatment, some tissue
damage was also observed in the control plants (Figure 4D—dashed arrows). Surprisingly,
the location of starch granules in stem tissues varied over the experiment (Figure 4—arrows,
Table 1). After 7 days of Cd application, the number of starch granules in the chloroplasts
of the stem parenchyma (Figure 4A–F—arrows) and the vascular bundle (Figure 4G–L—
arrows) was higher in control plants than in plants treated with 200 µM CdSO4. In contrast,
28 days following Cd treatment, the effect was reversed (Figure 4E,F,K,L—arrows). Inter-
estingly, during the experiment, the same large number of starch grains in the stem cortex
parenchyma and the stem vascular bundle parenchyma of 50 µM CdSO4 treated plants was
noticed (Figure 4B,E,H,K; Table 1).
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3.3. Soluble Carbohydrate Content Analysis in the Roots and Shoots of P. sativum

Seven soluble carbohydrates (fructose, glucose, sucrose, myo-inositol, maltose, galacti-
nol, and raffinose) were detected in the shoot system and six in the root system (galactinol
was not detected) after HRGC analysis (Figure 5). In the roots of control plants, the content
of monosaccharides (fructose and glucose) and myo-inositol decreased during 28 days of
the experiment, while in shoots temporarily increased (until the seventh day) and later
also decreased but remained at a higher level than in the roots (Figure 5). Similar trends
in changes in the contents of sucrose and maltose were found in both shoots and roots
(Figure 5). The plant treatment with Cd caused a significant change in the content of all
identified carbohydrates in both the root and shoot tissues. Generally, Cd increased levels
of sugars in both roots and shoots at each time point of the experiment along with the
increasing concentration of Cd (in the case of myo-inositol, sucrose, and maltose).
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Moreover, the increasing concentration of Cd had a significant effect on the expression
of enzymes responsible for the synthesis of galactinol and raffinose (Figure 6) and the
accumulation of both galactinol and raffinose during the first 7 days after plant treatment
with Cd.

3.4. Analysis of the Accumulation of the Galactinol and Raffinose and the Expression of the PsGolS
and PsRS after Cd-Treatment

Galactinol was not detected in the roots and shoots of control plants and those after
one day of Cd treatment (Figure 6). Galactinol was detected solely in Cd-treated shoots,
and its content was found to be positively associated with the Cd concentration used
during the experiment. After 28 days of Cd treatment, the lowest amount of galactinol
was found in the 10 µM Cd-treated shoot while the highest was in the 50, 100, and 200 µM
Cd-treated shoots. Similarly to galactinol, raffinose in the roots was exclusively detected in
Cd-treated plants, with the largest level of raffinose observed after 7 days of Cd treatment
in the 100 µM Cd-treated root and after 28 days of Cd treatment in the 200 µM Cd-treated
roots. The raffinose content in the shoot was nearly five times greater than in the root. The
raffinose level in the 100 µM Cd-treated shoot was higher after 7 days of Cd treatment
than in the 10, 200, 50, and control shoots, respectively. Nevertheless, after 28 days of Cd
treatment, the maximum amount of raffinose was observed in the 50, 100, and 200 µM
treated shoots (Figure 6A).
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Following the finding of Cd-dependent changes in raffinose and galactinol levels in
pea shoots, we examined the expression of PsGolS and PsRS after 1 day of Cd treatment
(Figure 6B). The results of semiquantitative RT-PCR demonstrated that the relatively low
level of PsGolS mRNA in the control increased in Cd-treated samples, reaching at least a
level threee-fold higher than detected in the control sample. Cd treatment, on the other
hand, had a relatively minor effect on PsRS expression (Figure 6B,C). Cd stress, 50 and
100 µM, induced a 1,4-fold increase in the level of PsRS transcript. These findings agree
with the quantities of galactinol and raffinose detected by GC in shoots after 7 days of Cd
treatment (Figure 6).

3.5. Soluble Carbohydrate Content Analysis in the Pods and Seeds of P. sativum

The pea pods (Figure 7) and seeds (Figure S1) were analysed after 28 days of Cd
treatment. Although all plants produced flowers and pods, only control and 10 µM Cd-
treated plants produced seeds that could be analysed using HRGC (Figure S1). The amount
of all seven detected soluble carbohydrates (fructose, glucose, sucrose, myo-inositol, maltose,
raffinose, and galactinol) was higher in the pods of the Cd-treated plants (Figure 7).
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The levels of fructose, glucose, and myo-inositol increased along with increasing
concentrations of CdSO4. Sucrose and maltose amounts were higher in the pod tissues
of the 50, 100, and 200 µM CdSO4-treated plants, whereas in pods of control and 10 µM
Cd-treated plants they were significantly (p < 0.01) lower (Figure 7). Galactinol was not
detected in control, 10, and 200 µM Cd-treated pea pods, while raffinose was not detected
only in the 200 µM Cd-treated tissues. The significantly highest level of both galactinol and
raffinose was observed in the 50 µM Cd-treated pea pods.

The plants treated with 50, 100, and 200 µM Cd did not produce seeds; thus, only
seeds of the control plants and plants treated with 10 µM Cd were examined (Figure S1).
Nine soluble carbohydrates (fructose, glucose, sucrose, myo-inositol, maltose, raffinose,
galactinol, stachyose, and verbascose) were detected. Except for the levels of sucrose and
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verbascose, which were greater in the seeds of Cd-treated plants, the levels of all identified
sugars were identical to one another. In contrast, the seeds of the control plants had larger
quantities of myo-inositol and raffinose (Figure S1).

4. Discussion

In the presented paper, the PAS staining technique was coupled with HRGC for the
precise measurement and profiling of individual monosaccharides, oligosaccharides, and
polysaccharides. This integration clarified the complex carbohydrate changes induced by
Cd stress, including changes in the sugar content, starch accumulation, and the dynamics
of specific carbohydrate compounds, such as galactinol and raffinose. The experiment was
conducted 1, 7, and 28 days after the treatment with Cd on pea plants during the transition
from the vegetative phase to the generative phase of plant development. During this
transition, plants undergo significant changes in their growth and development, shifting
from producing leaves and stems to producing flowers and fruits. Our previous studies
showed that after the fourth week of growth, pea plants start to produce flowers [14].
The present study confirmed the inhibitory effect of Cd on seed production when plants
were treated with 50, 100, and 200 µM CdSO4. As described in Section 3, these plants had
accumulated 11.35, 23.68, and 34.57 µg/g of Cd in the DW of the shoots and 73.50, 208.89,
and 317.68 µg/g of Cd in the DW of the roots, respectively. This confirms the results of
previous studies suggesting most plants show visible symptoms of Cd toxicity when the
Cd concentration in the plant tissue reaches 3 to 30 mg/kg, the total Cd concentration in
the soil exceeds 8 mg/kg, or the bioavailable Cd concentration becomes >0.001 mg/kg [48].
Furthermore, both the results of Cd concentration and TF (TF < 1) showed that the majority
of Cd absorbed by pea plants was stored in the root system. Consistent with prior research,
our findings support the classification of pea plants as excluder plants [6]. This suggests
that pea plants exhibit a strategy for the accumulation of Cd within the roots or to inhibit
the translocation of Cd to the above-ground parts. Interestingly, the analysis of the TI
showed that the Cd stress does not have a significant impact on the biomass production
of pea plants. However, as previously confirmed, Cd influences the vegetative stage of
development by increasing the number of internodes per shoot length and by disturbing
the root growth but also affects the transition from the vegetative to the generative stage of
the development of pea plants [14].

The present study focused on the effect of Cd on the starch distribution and solu-
ble carbohydrates concentration after 1, 7, and 28 days of Cd treatment in pea plants.
Furthermore, we analysed soluble carbohydrates in the seeds and pots of control plants
and plants treated with 10 µM CdSO4. We showed that Cd stress had a great impact on
starch distribution patterns in leaves and stems. The PAS reaction, which is based on the
oxidation of carbohydrates by periodic acid followed by their subsequent reaction with
Schiff reagents, allows for the visualisation and quantification of polysaccharides such
as starch and cellulose in plants during development or stress [40,49]. To the best of our
knowledge, this is the first study of Cd-induced alterations in PAS-positive deposits in
higher plants (P. sativum leaves and stems). However, this method was used for the analysis
of Cd’s effect on apical segments of Hypnea musciformis [37] and young gametophytes of
Gelidium floridanum [38]. Similarly to Bouzon et al. [37], we observed accumulation of starch
grains in the leaves of control and Cd-treated plants and also in the stems of the control and
50 µM Cd-treated plants after 1 week of the treatment. Moreover, the increased number
of starch grains was observed in young leaves of control and 50 µM CdSO4-treated plants
4 weeks after Cd treatment. However, it is important to notice the differences in the starch
accumulation in the stems between control and Cd-treated plants after 4 weeks of Cd treat-
ment. This characteristic accumulation of starch in the stems may suggest the disturbance
of the translocation of carbon from the stems to flowers and then fruits since these plants
did not produce seeds. It was shown that the starch is required for pollen maturation [50].
Verna and Dubey [51] showed no definitive pattern of changes in the starch content in
the two rice cultivars, while Biswas and Pal [30] showed a significant accumulation of
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starch in three rice cultivars after Cd treatment. Moreover, Cd-induced starch accumulation
was also observed in the common reed [52], Phyllanthus amarus [53], and Lemna minor [54].
Higuchi et al. [52] proposed that the common reed may preferentially allocate absorbed
carbon as the carbon source for the synthesis of Cd and α-glucan complexes in its stem,
followed by the suppression of Cd transfer to the leaves, which operate as the photosyn-
thetic organ. These responses may allow the common reed to grow successfully even in
conditions of severe Cd stress. Starch–sugar interconversion in source and sink tissues
plays a substantial physiological role in all plants [24]. The presented results confirmed
that the inhibitory effect of Cd stress may be caused by energy allocation. During abiotic
stress, plants prioritise energy allocation towards stress response mechanisms rather than
reproductive processes [55]. These results and our previous study [14] showed that 50,
100, and 200 µM Cd-treated plants do not produce seeds. This indicates that the shift in
resource allocation can affect the supply of sugars to develop flowers and seeds, potentially
impacting the seed development and yield.

The accumulation of starch in the stems and changes in soluble carbohydrates in
Cd-treated plants suggest that the impact of Cd is critical for the transport of sugars from
leaves to flowers and the development of seeds. Cd-induced accumulation or steady
concentrations of fructose, glucose, myo-inositol, sucrose, and maltose were observed in
plants 4 weeks after Cd treatment at concentrations greater than 50 µM CdSO4, while
in control plants and plants treated with 10 µM CdSO4, they decreased. This can be a
confirmation that, in plants producing flowers and pods, soluble sugars are transferred
to the flowers/fruits. The effect of sugar on vegetative development and floral transition
has been discussed [56–58]. Previous studies showed Cd-induced increases in the levels
of soluble and reducing carbohydrates [31,59] or a decrease in the content of reducing
sugars [20,60]. Analysis of the Cd effect on maize varieties suggests that sucrose metabolism
may be a secondary Cd response, and that the Cd-sensitive variety used more carbohydrates
to defend against Cd stress rather than to support the growth of the Cd-tolerant variety [59].
Moreover, similar to the presented results, the effect of Cd and the accumulation of sucrose
or fructose changed during the Cd treatment [61]. Li et al. [61] also suggested that changes
in the sucrose metabolism were induced to maintain the osmotic balance in damaged cells
and to protect the plant from Cd stress. The decrease in the water content is described as
one of the effects of Cd stress on plants [60,62].

Interestingly, the Cd-induced accumulation of galactinol in the shoots and raffinose
in the shoots and roots was also observed. Raffinose accumulation after Cd treatment
was first noted by Costa and Spitz [26] in in vitro cultured Lupinus albus. Sun et al. [32]
also observed an increased level of raffinose in two-week-old Arabidopsis thaliana seedlings
after exposure to Cd. Since then, similarly to our results, Cd-induced expression of genes
encoding galactinol synthase (GolS) and raffinose synthase (RS) has also been noted in
rice [63]. The involvement of the galactinol synthase gene (GolS) in heavy metal stress
was reported recently by Ranjan et al. [64]. There are numerous data showing stress-
induced expression of GolS and/or RS. Induction of the expression of the PsGolS and PsRS
genes during dehydration and osmotic stress in pea seedlings was also observed [44,65].
Moreover, Koning et al. [66] showed that the genes GolS1, GolS3, and stachyose synthase
were significantly upregulated in the leaves of the Phaseolus vulgaris cv. CIAP7247F under
drought stress. Transcriptional analysis indicated that most Citrus sinensis GolS (CsGolS)
genes show a stress-inducible expression in response to drought and salt stress treatments,
as well as to ‘Candidatus Liberibacter asiaticus’ infection [67]. The comprehensive analysis
of RS and GolS gene families in kiwifruit (Actinidia chinensis and Actinidia eriantha) revealed
that abiotic stresses strongly induced AcGolS1/2/4/8 and AcRS2/4/8/11 expression [68].
Similarly, the analysis conducted on potato (Solanum tuberosum L.) showed that StGolS4
exhibited significantly high expression levels after PEG-6000, and abscisic acid (ABA)
treatments, and under salt stress [69]. Furthermore, it was found that all four isoforms of
CsGolS in the cucumber genome were also upregulated by salt, drought, cold, and heat [70].
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Transcriptome analysis carried out on rice reveals that Cd stress signalling controls
the expression of genes in the drought stress signal pathway [63]. Exposure to Cd mediates
gene expression by transcription factors such as DREB/CBS, WRKY, HSF, MYB, bHLH,
bZIP, ERF, and NAC [63,71]. Most of these transcription factors have been described as
upstream regulators of genes that encode GolS and RS [72]. The presence of putative
cis-regulatory elements recognised by some of these transcription factors has been noticed
in promoter regions of PsGolS as well as PsRS genes [65]. Nonetheless, the knowledge of
the Cd-induced signalling pathway that leads to an increase in galactinol and raffinose
levels is still limited. Data show that ABA or reactive oxygen species (ROS) mediate the
activity of GolS on an mRNA or protein basis [69,73–76]. The role of ABA in Cd response is
not well-established [77]. ABA can induce or reduce the accumulation of Cd and mitigate
its toxicity, which can vary among species [61,77]. On the other hand, Cd induces oxidative
stress in plants, including ROS production [78]. The role of galactinol and raffinose due to
ROS-scavenging ability has been discussed [79,80]. Recently, Salvi et al. [81] also showed
that Arabidopsis CaGolS transgenic lines, with increasing levels of galactinol and raffinose,
accumulate less ROS and are more resistant against various abiotic stresses. Moreover,
it has been shown that raffinose could prevent cellular leakage during dehydration by
membrane stabilisation and fusion after rehydration [82]. Additionally, the location of
raffinose in chloroplast allows it to protect thylakoids and stabilise photosystem II [83,84].

It is important to note that galactinol synthase (GolS) catalyses the first step in the
biosynthetic pathway of the raffinose family of oligosaccharides (RFOs), producing galacti-
nol from UDP-galactose and myo-inositol. Galactinol plays a crucial role as a major donor
of galactosyl residues moieties in the synthesis of raffinose (from sucrose and galactinol)
and later on stachyose (from raffinose) and verbascose (from stachyose). RFOs are believed
to play a pivotal role in the tolerance to seed desiccation [85]. They are also the predomi-
nant transport carbohydrates in some plant families (i.e., Cucurbitaceae), act as signalling
molecules after pathogen attack and wounding, and accumulate in vegetative tissues in
response to a variety of abiotic stresses [85]. It has been shown that stress-inducible GolS
plays a key role in the accumulation of galactinol and raffinose, which may function as
osmoprotectants in drought, osmotic, a salt stress tolerance of plants [86,87]. The root and
epicotyl of the winter vetch seedlings accumulated elevated amounts of galactinol and
raffinose as the osmotic potential was lowered [88]. The elevated levels of galactinol and
raffinose could also be the result of the dehydration that often accompanies the Cd stress
response in plants [22,62,89].

The effect of Cd was also observed on the distribution of carbohydrates in the seeds
and pods of peas. As mentioned earlier only control plants and plants treated with 10 µM
CdSO4 produced matured seeds [14]. El-Okkiah et al. [90] also showed a reduced number
of pods per plant, fewer seeds per pod, and lower seed weight after Cd treatment of pea
plants. The present analysis of soluble carbohydrates in the seeds showed that Cd affected
the accumulation of sucrose, myo-inositol, raffinose, and verbascose. It is worth noting, that
the level of RFOs in pea seeds is comparable to that observed by Gawłowska et al. [91].
Interesting results were noticed in the soluble carbohydrate distribution in pods after Cd
treatment. The accumulation of sucrose and glucose in pods of plants treated with 50, 100,
and 200 µM CdSO4 was noticeable. Additionally, the highest level of maltose, galactinol,
and raffinose but the lowest level of myo-inositol was observed in pods of plants treated
with 50 µM CdSO4. In contrast to that, the highest level of myo-inositol and the lowest
level of galactinol and raffinose were observed in pods of the plants treated with 200 µM
CdSO4. The pods play an important role as a sink in the allocation of plant resources
for the development of seeds [92,93]. In the early stages of seed development, the pod
walls act as a temporary reservoir for assimilates, e.g., carbohydrates transported from
the leaves/shoots before they are translocated to the developing seeds. In the pod wall,
the level of soluble sugars falls during the later stages of development. These are possibly
transported into the developing seeds and utilised there for starch synthesis, and thus a
pod wall acts as a temporary reservoir of carbohydrates to be later transferred to seeds [94].
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The studies carried out by Harvey [95] showed that the proportion of the total 14C fixed
by a 14CO2-fed leaf which was exported, was related to the 14C-sink capacity of the pods.
Out of the total 14C fixed by a leaf, the proportion that was exported within 24 h was
related to the 14C-sink capacity of the pods. Four days from anthesis, pea plants retained a
substantial amount (51–67%) of the 14C in the fed leaf and exported only a small portion
(6–17%) to the pod. However, at 22 days from anthesis, the plants exported a higher average
percentage (78%) to the pods and retained less (14–26%) in the fed leaf, indicating a shift
towards increased carbon allocation to the pods as they mature [95]. This indicates that the
proportion of 14C exported to a pod increased with the plant age. Presented studies show
that Cd-induced accumulation of the soluble carbohydrates in the shoots, in comparison
to the control plants, where the level of sugars decreased during the experiment. This
confirms the inhibitory effect of Cd on the translocation of assimilates to pods, and thus the
inhibition of pod and seed development.

5. Conclusions

The presented study showed that cadmium exposure does not deplete soluble car-
bohydrates but alters carbohydrate distribution, impacting the resource allocation and
sugar supply to flowers and fruits, and thus affecting the seed development and yield.
The cadmium-induced expression of PsGolS confirms that the accumulation of galactinol
and raffinose can enhance plant tolerance to heavy metal stress. Overall, the shift in carbo-
hydrate allocation and metabolism under cadmium stress highlights the essential role of
carbohydrates in plant defence mechanisms against heavy metal toxicity, demonstrating
the complex ways in which plants adapt to and cope with environmental stressors such
as cadmium.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app14135486/s1, Figure S1. The content of soluble carbohydrates in seeds
collected from the control plants and plants treated with 10 µM CdSO4. Each value is the mean of
three replicates ± SD. Different letters represent significant differences at p < 0.05 (lowercase letters)
or p < 0.01 (uppercase letters).
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