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Abstract: The accuracy of detecting superficial bridge defects using the deep neural network approach
decreases significantly under light variation and weak texture conditions. To address these issues, an
enhanced intelligent detection method based on the YOLOv8 deep neural network is proposed in
this study. Firstly, multi-branch coordinate attention (MBCA) is proposed to improve the accuracy of
coordinate positioning by introducing a global perception module in coordinate attention mechanism.
Furthermore, a deformable convolution based on MBCA is developed to improve the adaptability
for complex feature shapes. Lastly, the deformable convolutional network attention YOLO (DCNA-
YOLO) detection algorithm is formed by replacing the deep C2F structure in the YOLOv8 architecture
with a deformable convolution. A supervised dataset consisting of 4794 bridge surface damage images
is employed to verify the proposed method, and the results show that it achieves improvements of
2.0% and 3.4% in mAP and R. Meanwhile, the model complexity decreases by 1.2G, increasing the
detection speed by 3.5/f·s−1.

Keywords: concrete surface defects; deep learning; YOLO; attention mechanism; deformable convolution

1. Introduction

Bridges, which are crucial to national economic development, play an important
role in the transport infrastructure. The number of constructed and operational bridges
has exceeded 1.2 million in China, of which more than 70% are concrete bridges. As the
service life increases, concrete bridges are inevitably subjected to various superficial defects
such as cracking, concrete spalling, and rebar corrosion due to the combined effects of
material aging, external loads, and the working environment [1]. These defects can affect
the load-bearing capacity, service life, and overall safety of bridge structures [2]. Due to the
large number and scale of concrete bridges, traditional manual inspections are inefficient to
meet the demands of routine inspections. In addition, structures such as high piers and
long spans require expensive auxiliary equipment for close-up inspection, which further
increases inspection costs. With the improvements in resolution and accuracy of cameras,
there is growing interest in using computer vision pattern recognition, including machine
learning and deep learning, [3] to automatically detect bridge defects [4–7].

Machine learning methods mainly rely on template matching for defect detection,
so such methods rely heavily on manual experience for sample feature extraction. In
addition, single-layer features constructed by these methods have limited recognition
ability when dealing with complex features and noise. Therefore, deep learning methods
that can adaptively learn and extract image features have become mainstream, which are
categorized into one-stage and two-stage methods based on the overall training conditions.
One-stage detection methods extract features directly in the network to predict object
classification and location, including the You Only Look Once (YOLO) [8] and Single
Shot Multibox Detector (SSD) algorithms [9]. Two-stage methods typically use a Region
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Proposal Network (RPN) to extract potential target area which typically exhibit higher
detection accuracy and stability as well as more computing resources, such as Regions
with Convolutional Neural Network (RCNN) [10], Fast RCNN [11], Faster RCNN [12], and
Mask RCNN [13].

The YOLO algorithm has been continuously improved since it was proposed by Joseph
Redmon et al. in 2016, whose detection accuracy and computing speed have been further
improved [8,14–21]. The main feature of the YOLO algorithm is that it transforms object
detection into a regression problem, dividing the image into s × s grids and directly pre-
dicting the class probabilities and position information within the corresponding bounding
box of each grid. YOLOv8 [21] adopts an anchor-free approach, combines the Task-Aligned
assigner positive sample assignment strategy [22] and decoupled head, and introduces a
C2F structure with a richer gradient flow and distribution focal loss, further improving
detection accuracy and speed. However, the YOLO algorithm was primarily designed for
general image classification. To improve its effectiveness in identifying concrete cracks,
Zhang XB et al. [23] proposed a YOLOv5 model enhanced with a fusion of spatial pyra-
mid pooling cross-stage partial connections (SPPCSPCs) and a transposed convolution to
detect cracks on bridge surfaces from different angles, demonstrating superior detection
performance compared to other models on the ZJU SYG dataset (a crack data set for object
detection based on deep learning provided by Zhejiang University). Yu Z et al. [24] intro-
duced a concrete structure crack detection method based on an improved YOLOv5, using a
threshold segmentation method based on Otsu’s maximum inter-class variance to remove
background noise in images, and optimizing the initial anchor box sizes with the K-means
method. The improved average accuracy in complex environments increased by 6.87%. Jin
Q et al. [25] proposed an improved YOLOv5 algorithm based on transformer heads and
the self-attention mechanism, which effectively improved the detection and classification
capabilities of concrete cracks, with a mean accuracy (mAP) of up to 99.5%. WU Y et al. [26]
presented a lightweight LCANet backbone and a novel efficient prototype mask branch
for crack detection based on the YOLOv8 instance segmentation model, reducing model
complexity. Specifically, under conditions of 129 frames per second (FPS), the results of
the case study showed the accuracy reached 94.5%, while the computational complexity
decreased by 51%, compared to the original model.

The improvements made to the YOLO algorithm focus on optimizing the model
structure, improving the loss functions and the feature extractors, and optimizing the
data pre- and post-processing methods. These improvements have enhanced detection
accuracy, speed, and robustness. However, in engineering applications, the underside
of concrete bridge structures, where significant forces are applied, is prone to cracking,
but these areas often have inadequate lighting conditions. In addition, structural corners
and edges are susceptible to defects such as honeycombing and exposed rebar due to
casting problems, but these areas have complex backgrounds and weak surface textures. In
such cases, the YOLO algorithm can suffer from missed detections and false positives. To
address these challenges, the deformable convolutional network attention YOLO (DCNA-
YOLO) algorithm based on YOLOv8s is proposed in this study. A multi-branch coordinate
attention mechanism (MBCA) is introduced to simultaneously incorporate spatial position
information and global information. The attention weights for direction perception, position
sensitivity, and global awareness are optimized to comprehensively improve the accuracy
of coordinate localization. This effectively highlights features of target defect areas with
uneven reflections and weak textures, thereby improving the representation and detection
effects of the target detection algorithm. Thus, the balance between detection performance,
speed, and model parameter size is achieved using MBCA. Furthermore, a deformable
convolution method, named MBCADC, based on MBCA is presented. By embedding
MBCA attention, this method improves the adaptability of the deformable convolution
to significant illumination changes and complex feature shapes in regions with uneven
reflections. As a result, it better accommodates different image structures and texture
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features. The complexity of the model is reduced, while recall (R) and average precision
are improved, and missed detections and false positives are reduced.

The paper is organized as follows. Firstly, an overview of the YOLO algorithm is given
for the problem under study, and the improvements of existing methods are compared.
Subsequently, an improved framework that incorporates deformable convolution (DC)
modules with the multi-branch coordinate attention (MBCA) mechanism is introduced.
Finally, this new framework is validated with a dataset containing 4794 damage images
and compared with other algorithms. Flowchart of study as shown in Figure 1.
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2. Basic Theory of the YOLOv8 Network

YOLOv8s was introduced in 2023 as the latest version of YOLO, which supports
image classification, object detection, and instance segmentation tasks. The model structure
consists of three main components: backbone, neck, and head, as shown in Figure 2. The
received training data are pre-processed using mosaic data augmentation before entering
the backbone network for feature extraction. Then, the backbone outputs three feature
maps of different scales to the neck structure for bidirectional feature fusion. Finally, the
head uses convolutional layers to scale the fused feature maps, producing outputs at three
different scales.

The backbone network consists of convolution batch normalization sigmoid linear
unit (CBS), cross-stage partial fusion (C2F), and spatial pyramid pooling fast (SPPF) mod-
ules [27], where the CBS module is primarily used to extract features from the input image,
the C2F module retains lightweight properties while capturing richer gradient flow infor-
mation, and the SPPF module employs spatial pyramid pooling by serially computing
three MaxPool2d operations with 5 × 5 convolutional kernels. The optimizations made
in this paper focus on this component; further information on YOLOv8s can be found in
reference [21].
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3. DCNA-YOLO Method Construction
3.1. Multi-Branch Coordinate Attention

Critical information about objects may be obscured by noise, image backgrounds,
and uneven lighting due to complex, blurry, and poorly lit environments. Therefore, en-
hancing the positional information of features is a significant challenge. To address this
issue, attention mechanisms [28] have been introduced in recent years. Among these meth-
ods, the coordinate attention mechanism (CAM) [29] effectively enhances the extraction
of structural information about objects by using two one-dimensional average pooling
operations to aggregate the feature maps vertically and horizontally into two separate
orientation-aware feature maps, which are subsequently encoded into an attention tensor
containing orientation–position information, and ultimately decomposed into a pair of
attention maps that are both orientation- and position-aware.

Although the CAM is effective in capturing long-range dependencies in local spatial
information, it overlooks the global dependencies necessary for understanding spatial
features. To address this limitation, a global context perception module is introduced
into the CAM, aiming to help the network acquire global information by considering the
overall context comprehensively. This results in more precise and comprehensive image
representations for processing tasks. Additionally, by optimizing attention weights for
direction awareness, position sensitivity, and global perception, the network can selectively
focus on key areas of the target, significantly improving coordinate localization accuracy.

As shown in Figure 3, the multi-branch coordinate attention (MBCA) principle is
described, which consists of two steps:

Step 1: In the information embedding phase, each channel of the input feature map X
is encoded using two spatial range pooling kernels: (H, 1) and (1, W) to embed coordinate
information. The kernels operate along the horizontal (width W) and vertical (height H)
coordinates, respectively.
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
zh

c (h) =
1

W ∑
0≤i<W

xc(h, i)

zw
c (w) =

1
H ∑

0≤j<h
xc(j, w)

(1)

where h and w represent the height and width of the current input feature map, respectively.
c denotes the current input feature map’s channel. zh

c (h) denotes the output of channel c at
height h, and zw

c (w) denotes the output of channel c at width w.
The global information is additionally embedded in the CAM by encoding each

channel of the input feature map X through global average pooling (GAP).

Zc =
1

h × w

h

∑
i=1

w

∑
j=1

xc(i, j) (2)

where zc represents the global information output of channel c.
Step 2: At the coordinated and global attention generation phase, the aggregated

feature maps Zh and Zw generated from Equation (1) are firstly concatenated, and then
a 3 × 1 convolution operation is applied for information fusion, compressing feature
channels. After batch normalization and non-linear activation functions, the intermediate
feature map is split along the spatial dimension into two independent tensors f h and f w.
Subsequently, two 1 × 1 convolutions Fh and Fw are used to transform f h and f w into
tensors with the same number of channels as the input X. Furthermore, to fully utilize
the expressive representation of the aggregated feature maps and accurately highlight the
regions of interest, a feature map optimization module is proposed. This involves passing
the intermediate feature map f through a 1 × 1 convolutional transformation function
F1 to adjust the number of channels. After applying a non-linear activation function
and a sigmoid function, a feature map optimization weight matrix g1 is obtained. The
optimization weight matrix is then split along the spatial dimension into independent
weights gh

1 and gw
1 for the vertical and horizontal directions, respectively. Finally, the

two independent weights gh
1 and gw

1 are applied to the corresponding tensors, and after
passing through a sigmoid function, the outputs gh and gw are expanded and used as
attention weights. 

f = δ
(

F3×1

([
Zh, Zw

]))
g1 = σ(δ(F1( f )))

gh
1 = Fh(g1)

gw
1 = Fw(g1)

gh = σ
(

Fh

(
f h
)
× gh

1

)
gw = σ

(
Fw( f w)× gw

1
)

(3)

where [·,·] represents the concatenation operation along the spatial dimension. F3×1(·)
denotes the 3 × 1 convolution transformation function, δ(·) represents the non-linear
activation function hard_swish. f represents the intermediate feature map with horizontal
and vertical spatial information, where f ϵRC/r×(W+H). r is the reduction ratio, taken
as 16. Fh and Fw represent 1 × 1 convolution operations in the vertical and horizontal
directions, respectively. f h and f w represent intermediate feature maps in the vertical
and horizontal directions, where f hϵRC/r×1×H and f wϵRC/r×1×W . σ denotes the sigmoid
activation function. g1 represents the feature map optimization weight matrix. gh

1 and gw
1

represent optimization weights in the vertical and horizontal directions, respectively. gh

and gw represent attention weights in the vertical and horizontal directions, respectively.
For global attention generation, the global information feature map generated from

Equation (2) is multiplied element-wise by the average-weighted optimization weight
matrix g1. Subsequently, the result passes through a sigmoid function to obtain the global
attention weights gG. {

fc = δ(F1(Zc))
gG = σ(mean(g1)· fc)

(4)
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where F1(·) represents the 1 × 1 convolution transformation function. mean(·) represents
the mean function. fc represents the intermediate feature map with global information,
where fcϵRC×1×1. g1 represents the feature map optimization weight matrix. gG represents
the global attention weights.
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Figure 3. The principle of the multi-branch coordinate attention (MBCA) algorithm.

The attention weights g are calculated by multiplying the vertical and horizontal
direction attention weights by the global attention weights.

gc = gh
c (i)× gw

c (j)× gG
c (i, j) (5)

where gc represents the attention weight at channel c. gh
c represents the vertical direction

attention weight at channel c. gw
c represents the horizontal direction attention weight at

channel c. gG
c represents the global attention weight at channel c.

It computes the average of all elements within each feature map of the input, resulting
in a feature map with a size of 1 × 1. When direct multiplication or addition operations are
needed for the original input, reverse average pooling (UNAP) can be used to expand the
feature map to the desired size. The specific pooling operations are illustrated in Figure 4.

The multi-branch coordinate attention (MBCA) mechanism is established by the two
steps above, introducing global-level information and optimizing the perception of specific
target positions at the local level.
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3.2. Deformable Convolution Based on MBCA

The features of the image become more complex and irregular due to weak texture or
lighting changes on the target surface with the detection of weak texture areas and uneven
reflection areas, making the fixed receptive field kernel insufficient to adapt complex
features. To address this issue, deformable convolution (DCNv2) [30] is applied to learn the
offset and modulation parameters for each pixel to better adjust to the sampling position of
the convolution kernel and to adapt to different image structures and texture features.

For each position p0 in the output feature map y, the deformable convolution structure
is defined as follows:

y(P0) = ∑pn∈R w(p0)·x(p0 + pn + ∆pn)·∆mn (6)

where the grid R defines the size and expansion rate of the receptive field. For a receptive
field of size 3 × 3 and a dilation rate of 1, R = {(−1,−1), (1, 0) · · · (0, 1), (1, 1)}. p0 corre-
sponds to mapping each point of the output feature map y to the center of the convolution
kernel, and then mapping it to the coordinates in the input feature map x; pn represents the
relative coordinates in R for p0. ω(·) denotes the sampling point weight, and x (·) denotes
the mapping of the coordinates in the input feature map x to feature vectors. The offset
{∆pn|n = 1, 2 · · · · N}, N = |R|, and the modulation parameter ∆mn lies within [0, 1].

The offsets ∆pn and modulation parameters ∆mn of a deformable convolution are
obtained by applying a separate standard convolution layer to the same input feature map,
which results in insufficient spatial support range. As a consequence, the effective receptive
field of foreground nodes and the prominent region constrained by errors may include
background areas irrelevant to detection. The proposed multi-branch coordinate attention
(MBCA) is embedded during the process of generating the offsets ∆pn and modulation
parameters ∆mn, which is named MBCADC, to further enhance the ability of deformable
convolution DCNv2 to manipulate spatial support regions, as illustrated in Figure 5.
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Figure 5. Structure of original deformable convolution (DCNv2) and improved deformable convolu-
tion (MBCADC).

The MBCADC module consists of a Conv2d, MBCA attention, a DCN, BatchNorm2d,
and a SiLU activation function, where o1 and o2 represent learned offsets in the x- and
y-coordinate directions, respectively, and mask denotes the sampling weights at different
positions. The structure of the deformable convolution MBCADC is defined as follows:

y(P0) = ∑pn∈R w(p0)·x(p0 + pn + ∆pn·g)·∆mn·g (7)

where g represents the attention weights generated by multi-branch coordinate attention
(MBCA).

Figure 6 illustrates the process of MBCADC deformable convolution. From Figure 6,
it can be observed that the sampling matrix of deformable convolution is non-fixed and
deformable, with the offsets determined by algorithms that can better learn the geometric
properties of the objects to be detected.
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3.3. MBCADC2F Module

The MBCAC2F module is an improvement over the YOLOv8s backbone network’s
C2F module, integrating the multi-branch coordinate attention deformable convolution
(MBCADC) module. This module comprises two CBS modules and n Bottleneck modules,
where the Bottleneck module contains a residual structure with two MBCADC modules, as
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illustrated in Figure 7. By learning the parameters of deformable convolution, the model
can dynamically adjust the sampling positions of the convolution kernel based on the
actual shape and positional information of the target, allowing for more precise capture of
target features.
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3.4. Deformable Convolutional Network Attention YOLO Object Detection Network

The deformable convolutional network attention YOLO (DCNA-YOLO) algorithm
improves upon the YOLOv8s baseline model by modifying the backbone network. The
neck and head structures of the DCNA-YOLO model remain the same as those of the
baseline model. The model’s overall structure is illustrated in Figure 8. The DNCA-YOLO
backbone network comprises five CBS modules, two C2F modules, two MBCADC2F
modules, and one SPPF module. The structures of modules such as CBS, C2F, and SPPF
in the MBCADC2F module are identical to those of the corresponding modules in the
YOLOv8s baseline model. Each Bottleneck unit in the MBCADC2F module contains a
residual connection structure with two MBCADC modules.
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4. Example Verification
4.1. Experimental Dataset

We created a dataset of apparent damage to concrete bridges, consisting of 4794 images.
Domain experts annotated the dataset, which we used to evaluate the effectiveness of the
proposed method in identifying apparent damage to concrete bridges. According to the
regulations of China’s road and bridge maintenance standards and inspection standards,
apparent concrete damage was classified into seven types: cracks, spalling, honeycombing,
exposed reinforcement, water seepage, and voids. The constructed dataset included at least
one type of damage in each image. Augmenting the dataset enhances its diversity and
richness, making the model’s detection more effective. The original dataset was randomly
divided into training, validation, and testing sets with a ratio of 8:1:1. Data augmentation
techniques, such as flipping, rotation, and HSV (hue, saturation, and value) enhancement,
were then applied to the divided dataset. The dataset sizes were as follows: 14,528 images in
the training set, 1816 images in the validation set, and 1816 images in the testing set. Table 1
shows the statistical results of the number of annotated boxes for each type of damage.

Table 1. Number of Labels for Each Damage in the Dataset.

Labels (Damage) Number Labels (Damage) Number

liefeng (crack) 17,636 shenshui (seepage) 9244
boluo (spalling) 11,875 fengwo (comb surface) 8330

kongdong (cavity) 7082 lujin (steel exposed) 6584
mamian (pockmark) 8274

The images of the bridge’s apparent damage collected in the experimental dataset were
affected by the lighting environment, resulting in variations in image quality. Statistical
analysis was conducted on the grayscale histograms of the images, which allowed for the
categorization of the images into four lighting conditions:

(1) Well-lit images, which exhibit high clarity and rich details. The histogram of the
grayscale image displays a unimodal distribution, with grayscale values primarily ranging
from 150 to 250. The average grayscale value of the image is greater than 170.

(2) Partial shadow or occlusion images: The grayscale distribution is complex, with
areas of varying brightness. The histogram of the grayscale image displays a bimodal
distribution, with grayscale values primarily ranging from 50 to 100 and from 150 to 250.
The image’s average grayscale value is approximately 150.

(3) Low-lighting images: The overall low brightness can result in blurry or confusing
areas in the apparent damaged regions. The grayscale histogram of the image displays a
unimodal distribution, with grayscale values primarily distributed between 50 and 100.
The image’s average grayscale value is approximately 100.

(4) Dark-lighting images: The overall low brightness can make it challenging to
distinguish details of the apparent damage. The image’s grayscale histogram displays a
unimodal distribution, with grayscale values ranging from 0 to 50. The average grayscale
value of the image is below 30.

Figure 9 shows the grayscale histograms for the four distinct illumination conditions.
Table 2 presents a statistical study of the number of well-lit images, partial shadow or
occlusion images, low-lighting images, and dark-lighting images. Figure 10 illustrates
some examples of picture data.
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Table 2. Summary of Image Quantities Under Different Illumination Conditions.

Data Set Well-Lit
Images

Partial Shadow
or Occlusion

Images

Low-
Lighting
Images

Dark-
Lighting
Images

Total

Train 6697 1798 2608 3425 14,528
Val 923 239 298 356 1816
Test 876 225 326 389 1816
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4.2. Environmental Design and Evaluation Metrics

The computer hardware setup included an Intel Core i5-13600K CPU, 48 GB of RAM,
and an NVIDIA GeForce RTX4070 with a 12,282 Mib GPU. The experimental environment
consisted of Windows 10, CUDA 11.8, PyTorch 2.0.1, and Python 3.8.18. The training
parameter settings had an initial learning rate of 0.01, with a learning rate strategy that
employed cosine annealing. The number of training epochs was set to 300, with an initial
input size of the model at 640 × 640 and a batch size of 16. The optimization algorithm
used was SGD [31], with the loss function being cross-entropy. To prevent overfitting,
early stopping criteria were employed. The network training was halted if the validation
accuracy did not improve after 50 epochs.

To evaluate the model’s detection performance for seven types of visual damage, we
used precision (P), recall (R), mean average precision (mAP), model parameter quanti-
ties (parameters), floating-point operations (FLOPs), and frames per second (FPS) as the
evaluation metrics.

4.3. Experimental Results and Analysis
4.3.1. Ablation Experiment

To further validate the effectiveness of the proposed improvements in terms of the
number and placement of different enhancement modules, ablation experiments and
quantitative and qualitative analyses were performed using the generated dataset in the
same experimental environment to evaluate the benefits of key components in the model.
Among them, “MBCA” refers to the addition of MBCA attention after the last layer of
the backbone network SPPF; “DCNv2” refers to the replacement of the Bottleneck in the
C2F module of the eighth layer of the backbone network with deformable convolution
DCNv2; “Proposed method” refers to replacing the C2F module of the sixth and the eighth
layer of the backbone network with the MBCADC2F module proposed in this paper. The
experimental results are presented in Table 3.

Table 3. Results of ablation experiments.

Model Parameters/M FLOPs/G FPS/f·s−1 P/% R/% mAP0.5/% mAP0.5:0.95/%

YOLOv8s 11.1 28.7 70.9 89.1 82.0 87.4 68.9
+MBCA 11.2 28.7 68.9 90.2 82.7 87.9 68.9
+DCNv2 11.2 27.5 73.8 90.0 82.5 88.1 70.2

proposed method 11.3 27.5 74.4 91.3 85.4 89.4 73.3

A comparison of the data in the table shows that the MBCA attention mechanism
proposed in this study did not significantly increase the number of network parameters
or model complexity, but improved the model’s mAP0.5 value by 0.5%. The deformable
convolution DCNv2 was able to reduce the model complexity and improve the model
mAP0.5 without significantly increasing the model parameter count. The method proposed
in this paper achieved the best experimental results, with only a 0.2 M increase in model
parameters compared to the baseline model. Furthermore, floating-point operations were
reduced by 1.2G, precision increased by 1.8%, recall improved by 3.4%, and mAP0.5 and
mAP0.5:0.95 increased by 2.0% and 4.4%, respectively. In addition, the model’s speed of
detection increased by 3.5/f·s−1.

Figure 11 shows a comparison between the test results and the heatmap analysis of the
baseline model and the proposed method for well-lit images. The heatmaps were generated
using the Grad-CAM method. They show that both models achieved good detection results
for all seven types of surface defects in images with good lighting conditions. The proposed
method detected all defects, while the baseline model missed a small piece of exposed rebar
(fourth-row image). Furthermore, the accuracy of the detection results obtained by the
proposed method was consistently higher than that of the baseline model. A comparison
of the heatmaps shows that the proposed method provided a better representation, with
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the heatmaps better conforming to the shape of the target. These results indicate that the
proposed method was effective in improving the accuracy of detecting images with good
lighting conditions.
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Figure 11. Detection results and heatmaps of seven types of damage in well-lit images.

Figure 12 shows a comparison between the test results and the heatmap analysis of the
baseline model and the proposed method for images with partial shadows or occlusions. It
can be seen that the proposed method achieved better detection results than the baseline
model for images with partial shadows or occlusions. In images with partial shadows or
occlusions, there were areas of varying brightness due to significant changes in illumination
and uneven reflections on the target surface. The baseline model with fixed geometric
structures of convolutional kernels was not effective in capturing the spatial information
of the target in these regions. The proposed method used deformable convolution based
on multi-branch coordinate attention, which allowed the model to dynamically adjust the
sampling positions of the convolutional kernels according to the actual shape and position
information of the target. A comparison of the heatmaps shows that the proposed method
provided a better representation, with the heatmaps focusing more on the edge features of
the target, which effectively reduced the rates of missed detections and false positives in
images with partial shadows or occlusions.

Figure 13 shows the comparison between the test results and the heatmap analysis of
the baseline model and the proposed method. It can be seen that both the baseline model
and the proposed method could detect the class and location of defects in the image under
low-light conditions. However, the detection accuracy of the proposed method was higher
compared to the baseline model. The texture of the target region in the image may have
been relatively weak, resulting in the lower detection accuracy of the model. A comparison
of the heatmaps shows that the proposed method could effectively highlight the features of
the defective region, thus improving the detection accuracy of the model.
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Figure 13. Detection results and thermograms of damage in low-light images.

Figure 14 illustrates a comparison between the test results and the heatmap analysis
of the baseline model and the proposed method for images with dark lighting conditions.
From Figure 14, it can be seen that both the baseline model and the proposed method
performed poorly on images with dark lighting conditions. In images with dark lighting
conditions, the overall brightness was low, making it difficult to detect surface defect details.
The models failed to learn useful information from the images, resulting in incorrect target
category detection or no defect detection.
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In summary, the proposed method effectively improved the accuracy of detecting
images with good lighting conditions and those with poor lighting conditions, effectively
mitigating the problems of missed detections and false positives.

4.3.2. Comparison Experiment of Different Detection Algorithms

Considering the real-time performance and accuracy requirements for concrete bridge
surface defect detection tasks, the two-stage object detection models of the RCNN series and
the outdated SSD models were not included in the comparative experiments. Instead, more
widely used and advanced models from the YOLO series were selected as the benchmark
models. The results are presented in Table 4.

Table 4. Comparative experimental results of different network models.

Model Parameters/M FLOPs/G FPS/f·s−1 P/% R/% mAP0.5/% mAP0.5:0.95/%

YOLOv3-tiny 12.1 19.1 76.9 81.7 73.4 78.6 53.4
YOLOv5s 7.0 16.8 78.3 91.2 84.9 88.7 67.4
YOLOv6s 16.3 44.2 69.4 90.2 81.5 87.7 69.6
YOLOv8s 11.1 28.7 70.9 89.1 82.0 87.4 68.9

Proposed method 11.3 27.5 74.4 91.3 85.4 89.4 73.3

Comparing the data in Table 4, it is evident that the model proposed in this paper
exhibited more effective performance in terms of detection accuracy compared to the current
state-of-the-art (SOTA) models. The mAP0.5 value was improved by 11.1%, 0.7%, and 1.7%
compared to the classical YOLOv3-tiny, YOLOv5s, and YOLOv6s models, respectively.
Compared to the baseline model YOLOv8s, the proposed model achieved a 2.0% and
4.4% improvement in average precision (mAP0.5 and mAP0.5:0.95, respectively), a 3.4%
increase in recall rate, an increase of 3.5/f·s−1 in detection speed, and a reduction in
model complexity by 1.2G. These results demonstrate that the proposed model had better
detection performance in concrete bridge surface defect detection.

5. Conclusions

The current work adopts a novel object detection algorithm termed DCNA-YOLO
based on multi-channel attention mechanisms and deformable convolutions. It is proposed
to address problems such as missed detections, false positives in regions with insufficient
illumination, complex backgrounds, and weak surface textures on concrete bridge surfaces.
The major findings of this work are concluded below:

(1) Multi-branch coordinate attention (MBCA) is adopted on the basis of CA with a
supplementation of the global information branch. MBCA is applied to obtain spatial coor-
dinate information and global information simultaneously, which improves the accuracy of
coordinate information in the attention mechanism.

(2) The MBCA mechanism is embedded with a deformable convolution, then used
to enhance the adaptability of the convolution kernel. This novel coordinated model
contributes the coordinate localization ability for better adaptation to different image
structures and texture features.

(3) The proposed framework (Figure 8) is validated through a self-constructed concrete
surface defect dataset. Our results effectively highlight the accuracy of detecting regions
with significant light variations, uneven reflections, and weak textures without increasing
the complexity. All of these mitigate the problems of missed detections and false alarms.

(4) The next plan is to prune and distill the knowledge of the DCNA-YOLO model
to develop a lighter model that can be deployed on resource-constrained concrete bridge
health inspection drones for efficient real-time inspection. This will improve the safety,
efficiency, and accuracy of the inspection and provide a scientific basis for the maintenance
and management of concrete bridges.
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