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Abstract: Remanufacturing of mechanical parts has recently gained much attention due to the rapid
development of green technologies and sustainability. Recent efforts to automate the inspection
step in the remanufacturing process using artificial intelligence are noticeable. In this step, a visual
inspection of the end-of-life (EOL) parts is carried out to detect defective regions for restoration. This
operation relates to the object detection process, a typical computer vision task. Many researchers
have adopted well-known deep-learning models for the detection of damage. A common technique
in the object detection field is transfer learning, where general object detectors are adopted for
specific tasks such as metal surface defect detection. One open-sourced model, YOLOv7, is known
for real-time object detection, high accuracy, and optimal scaling. In this work, an investigation
into the YOLOv7 behavior on various public metal surface defect datasets, including NEU-DET,
NRSD, and KolektorSDD2, is conducted. A case study validation is also included to demonstrate
the model’s application in an industrial setting. The tiny variant of the YOLOv7 model showed the
best performance on the NEU-DET dataset with a 73.9% mAP (mean average precision) and 103 FPS
(frames per second) in inference. For the NRSD dataset, the model’s base variant resulted in 88.5% for
object detection and semantic segmentation inferences. In addition, the model achieved 65% accuracy
when testing on the KolektorSDD2 dataset. Further, the results are studied and compared with some
of the existing defect detection models. Moreover, the segmentation performance of the model was
also reported.

Keywords: YOLOv7; metal defect; defect detection; defect segmentation

1. Introduction

Remanufacturing is gaining more attention for its significant impact on establishing
a sustainable circular economy [1]. This increase in interest is mainly due to its capacity
for resource efficiency and waste reduction. A critical aspect of remanufacturing is the
difficulty in aligning production planning and control with remanufacturing processes.
Guide [2] extensively discussed the research needs in this domain, highlighting the gap
between industry practice and theoretical development. Additionally, the development of
a remanufacturing supply chain management system, as exemplified in the case study by
Zhu and Tian [3], further demonstrates the practical applications and benefits of remanufac-
turing in the industry. The evolution of remanufacturing processes is further emphasized
by Tolio et al. [4] and Caterino et al. [5], who highlighted the integration of cutting-edge
systems like cloud technologies in remanufacturing.

One crucial step in remanufacturing involves inspecting end-of-life (EOL) products,
which is mostly carried out manually by a skilled worker [6]. However, with promising
achievements in computer vision applications, scientists are now focusing on automating
this remanufacturing step by adopting intelligent defect detection approaches to recognize
faulty regions on EOL parts that require restoration [7–9].
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Defect detection on metal surfaces [10] is an important area of research that is gaining
more attention from the scientific community as we move into a sustainable environment.
Defects on metal surfaces occur in several types, including cracks, scratches, inclusions,
corrosion, spots, patches, etc. [11]. Such defects can affect the quality and performance of
the product. Chen et al. [12] conducted an extensive exploration of traditional and deep
learning-based methods for surface defect detection, underscoring the evolution from basic
feature analysis to sophisticated neural architectures capable of handling complex defect
patterns. Furthermore, Jin et al. [13] extended the discussion to the application of machine
learning in solid mechanics, suggesting a broader context where these computational
models contribute to predictive maintenance and quality assurance in manufacturing
processes. Thus, there have been many efforts to develop and adopt different models for
efficient and accurate detection of such defects.

Some researchers have focused on developing novel deep learning architecture target-
ing a specific environment and dataset [14–18]. Others adopted and fine-tuned some of the
existing models trained and developed for a general object detection domain [7–9,19–22].
A recent approach involves improving a well-performed existing model utilizing hybrid
methods [23–26]. Therefore, a behavioral study of the state-of-the-art object detection model
on detecting defects on metal surfaces is important for further decision support in the se-
lection of the repair process. Thus, this paper focuses on investigating the state-of-the-art
object detection model for the defect detection task.

Many novel approaches are based on convolutional neural networks (CNNs). CNNs
are robust networks used for extracting embedded features for images, such as corners,
edges, etc., which makes them widely adopted in the object detection task [27]. Tao
et al. [14] developed a detection pipeline based on cascaded autoencoder (CASAE) and
CNN networks. This architecture uses CASAE to localize and segment the defect, whereas
CNN is used to classify the defect type. Moreover, Parvez et al. [15] and Han et al. [16] de-
signed similar networks that used CNN for feature extraction and a fully connected neural
network (FCNN) for the classification step. Both focused on detecting defects in additively
manufactured parts, which include cracks, porosity, and lack of fusion. In addition, Xu
et al. [17] developed a novel self-supervised efficient defect detector (SEDD) that focuses on
eliminating the annotation step of the data by using a homographic enhancement method.
They also designed a custom detector based on depth-wise convolution layers and an
attention module to enhance performance and accuracy.

Another approach is to utilize state-of-the-art object detection detectors for defect
detection applications. This approach is known as transfer learning, where the model
is trained on a new dataset to perform a related task using initial weights [28]. Zheng
et al. [7,19] adopted mask region-based CNN (Mask RCNN) architecture for detecting and
segmenting the damaged area on metal parts for further repair applications. In addition,
Zheng et al. [20] investigated the performance of Faster R-CNN, YOLOv3, and RetinaNet ar-
chitectures on rail crack detection employing knowledge transfer of the COCO dataset [29].
Furthermore, Konovalenko et al. [21] and Litvintseva et al. [22] based their detection model
on the U-Net architecture for defect detection. In [8,9], Imam et al. leveraged one of the
most known two-stage models—Faster R-CNN using the transfer learning concept (using
the COCO dataset) to detect and localize steel parts’ wear for a remanufacturing task.

A recent work by Li et al. [23] proposed a new method that leverages and enhances
CSPDarknet53 architecture by integrating a multi-head self-attention block and using it as
the backbone of their detector. They also adopted some simple yet effective techniques to
enhance the model’s performance, such as augmentation and grayscale filtering. Moreover,
Pan et al. [24] integrated a dual attention module with DeepLabv3+ architecture to detect
and segment metal defects. Furthermore, Wang et al. [25] developed a new module that
follows a similar pipeline to ResNet based on Transformers and CNNs to retain both
local and global information. Moreover, Gao et al. [26] adopted the Swin Transformer
with a variant shift window called Cas-VSwin Transformer as the backbone network
for better performance on the defect detection task. In addition, they used the feature
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pyramid network (FPN) as the neck, whereas the Cascade Mask network is the head of the
architecture.

One feature of YOLO detectors is real-time inference. They gained a lot of attention
on the object detection task. With the speed requirement for the defect inspection process
in production lines, many scientists have investigated and adopted YOLO for the defect
detection problem. In addition, the YOLO series provides the lowest processing time com-
pared to all other state-of-the-art detectors. However, higher detection accuracy is achieved
with enhanced versions of the YOLO series by integrating it with other networks, such
as self-attention mechanisms. Li et al. [30] developed an improved version of the YOLO
network using only CNN layers. This method performed well; however, no comparison
with the standard YOLO network was conducted.

Furthermore, Kou et al. [31] proposed a new detector based on YOLOv3 architecture
with an anchor-free feature selection method and custom dense convolution blocks. This
improves the training process and inference accuracy by about 26.7% on the NEU-DET
dataset. In addition, Xu et al. [32] modified the YOLOv3 network to improve accuracy
by focusing on extracting more features of small defects using a new scale feature layer.
With this, an improvement of 4.6% in precision is gained on the Tianchi dataset. On
the other hand, Guo et al. [33] introduced an improved architecture of YOLOv5 with a
Transformer encoder as the backbone of the network to integrate more global information
into the model. This model was tested with the NEU-DET dataset and achieved 75.2%
mean average precision (mAP) on inference. Saiz et al. [34] also proposed combining
YOLOv5 and DeepLabV3+ models, which provides stable and reliable defect detection in
components, overcoming the limitations of traditional methods. This ensemble approach,
tailored to specific use cases, achieved full accuracy in overall performance testing, proving
highly effective for practical applications in the manufacturing industry.

It is essential to acknowledge the complexities introduced by the diverse range of
defect types, such as scratches, dents, and corrosion, each varying significantly in shape,
size, and visibility [14]. Traditional computer vision techniques, while less computationally
demanding, often fall short in flexibility and adaptability, struggling with high noise levels
and variability in defect manifestations, which are common in industrial settings [35].
Conversely, deep learning models, despite their superior performance in learning from
large datasets and generalizing across different defects, require extensive computational
resources and substantial amounts of labeled data, which complicates their application in
real-life industrial scenarios [36]. One of the most promising solutions for industries is the
YOLOv7 object detection model, which aims to bridge these gaps by enhancing detection
accuracy while meeting the operational demands of real-time industrial applications [37].

YOLOv7 is the current state-of-the-art for real-time object detection tasks in terms
of both speed and accuracy [37]. However, this benchmark is based on the Microsoft
COCO dataset. A benchmark of YOLOv7 on the defect datasets is essential to observe
and investigate its performance on metal defect detection tasks. This paper focuses on
adopting the state-of-the-art model, YOLOv7, for detecting defects and damages on metal
surfaces and investigating the model’s behavior on some public datasets of metal defects.
This can also be used as a reference for future comparisons of the enhanced models based
on YOLOv7 with the standard. Furthermore, a comparison of the existing defect detection
models with the YOLOv7 is conducted and studied. A case study validation is also
conducted on synthetic data inspired by an industrial setting, demonstrating the real-world
application and efficacy of the YOLOv7 model in identifying and classifying defects.

2. YOLOv7 Architecture

YOLOv7 is the latest improved model of the YOLO series. YOLO models, including
YOLOv7, are a type of single-stage framework that contains three main components, named
backbone, neck, and head [38–44], as shown in Figure 1. The backbone extracts feature
maps of an image and transfers them to the neck layers. Those maps are combined, fused,
and passed to the next layers. Then, the head network predicts the objects’ bounding boxes
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and their classes. Unlike the two-stage models, the YOLO series, a single-stage model,
reconsidered the object detection task as a regression problem instead of a classification
problem, which is the main feature of real-time detection algorithms [45].
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The efficiency of the CNNs in the backbone network is important to enhance the
inference process. Thus, the author of YOLOv7 proposed an enhanced method based on
an efficient layer aggregation (ELAN) network named Extended-ELAN (E-ELAN). This
method improves the ELAN architecture to boost the learning ability of a scaled network
without disturbing or changing the original gradient propagation path. E-ELAN has a
stronger learning ability for various features.

Furthermore, YOLOv7 comes with a new method of scaling for concatenation-based
models. The proposed method, named corresponding compound model scaling, addresses
the issue of a larger width output of the computational block when depth scaling is
performed on the architecture. With the proposed method, the depth of the concatenation-
based model is scaled directly; however, the width of transition layers is scaled with a
corresponding factor calculated from the change of the output width of the block.

Moreover, several techniques have been introduced in the YOLOv7 to improve the
model inference accuracy while maintaining a low training cost. Those strategies are
called bags of freebies (BoF), including planned re-parameterization and dynamic label
assignment. After a deep investigation of the re-parametrized convolution behavior when
combined with various networks, the author showed an increase in the model’s accuracy
when using the RepConv without identity connection (RepConvN). Further, in supervised
deep learning techniques, the head that represents the final prediction of the model is called
the lead head, whereas the auxiliary head is the head that is used to assist the lead head.
Previously, both heads were independent of each other, and their prediction and the ground
truth were used as soft labels for label assignment. However, YOLOv7 proposed a new
method for lead-dependent label assignment. Two types of label assigners were developed
with the YOLOv7. One is lead head guided, where the soft label is mainly generated from
the leader’s head and ground truth. Another is coarse-to-fine lead head-guided, where two
different soft labels are produced, including fine and coarse labels. The fine label is the
same as the one generated in the lead head guided assigner; however, the coarse label is
generated with relaxed rules on the positive sample assignment process.
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Other BoF techniques are also adopted and used in YOLOv7, such as batch normaliza-
tion, implicit knowledge, and the exponential moving average (EMA) model. Normaliza-
tion of the training batch, by integrating the mean and variance of the data to the bias and
weight of the convolutional layer, is proved to directly affect the training process by utiliz-
ing a higher training rate and faster convergence [46]. Another technique is the implicit
knowledge, adopted from the YOLOR [44], computed as a vector in the inference stage
of YOLOv7, improving the prediction accuracy in previous versions. Lastly, adopting the
EMA model as the final inference model in YOLOv7 has improved the inference accuracy.

YOLOv7 outperforms all existing models in the object detection task in terms of both
speed and accuracy [37]. According to the authors, the focus of YOLOv7 has been to
optimize the training process for enhanced detection accuracy and speed, as well as to
improve the inference process. This optimization includes the reduction of model training
parameters and the enhancement of the learning process.

In contrast to the evaluation performed in [37], which establishes the general superior-
ity of YOLOv7 in object detection, this paper uniquely contributes to the field by explicitly
investigating the performance of YOLOv7 in detecting defects on metal surfaces. While
previous benchmarks, such as the one on the Microsoft COCO dataset, provide a broad
understanding of YOLOv7’s capabilities, this work offers a specialized assessment of its
applicability and efficiency in the context of metal surface defect detection. This evaluation
is essential, as the characteristics and requirements of defect detection on metal surfaces
differ significantly from the more general object detection tasks. Therefore, this analysis re-
inforces the findings regarding YOLOv7’s overall performance and extends its utility to the
specific domain of defect detection, providing valuable insights for industrial applications.

3. Training and Results
3.1. Datasets

Since YOLOv7 was trained and tested on the Microsoft COCO dataset, the model’s
behavior on the metal defect datasets has not yet been studied by researchers. Therefore,
this paper investigates the behavior of the YOLOv7 model on metal defect detection tasks.
An optimal approach for this study is to use public datasets for standard benchmarks and
replication of the same results in the future. In addition, a comparison of the YOLOv7
performance with previously reported results is conducted. A list of the available public
datasets is mentioned in Table 1.

Table 1. Public metal defect datasets.

Dataset Set Size Raw Image Size (Pixels) # of Classes

Severstal defect dataset [47] 18,074 1600 × 256 4
No-service rail surface defect (NRSD) [48] 4101 600 × 600 1

Kolektor surface-defect dataset 2 (KSDD2) [49] 3335 230 × 630 1
DAGM 2007 [50] 2300 512 × 512 10

GC10 defect dataset (GC10-DET) [51] 2294 415 × 416 10
Northeastern University defect dataset (NEU-DET) [52] 1800 200 × 200 6

Ball screw drive surface defect dataset (BSData) [53] 1104 1130 × 460 1
Kolektor surface-defect dataset (KSDD) [54] 399 500 × (1240–1270) 1

Rail surface discrete defect (RSDD) [55] 167 various 1

There are many public datasets available for the metal defect detection task; how-
ever, investigating the YOLOv7 model performance on all of them is time and resource-
consuming and adds a minimal contribution to the study. Thus, three of the easily available
and frequently cited datasets listed in Table 1, are selected to perform this investigation and
obtain a general performance of the YOLOv7 model on the defect detection task. Those
are NEU-DET, NRSD, and KolektorSDD2 datasets. Samples of the annotated datasets are
shown in Figures 2–4.
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The NEU-Det dataset contains grayscale images collected from real-life industrial
settings, specifically from the inspection of metal surfaces in manufacturing and reman-
ufacturing environments. These images are representative of common defects found in
such contexts, including but not limited to cracks, scratches, inclusions, corrosion spots,
and other anomalies typically encountered IN metal surfaces during production and post-
production processes. In addition, the NEU-Det dataset is annotated for an object detection
task meaning only bounding boxes of the defect exist, whereas NRSD and KSDD2 are
annotated for both object detection and segmentation tasks containing bounding boxes and
masks. Furthermore, NRSD and KSDD2 consist of colored (i.e., RBG) images of planned
and unplanned defects. Furthermore, it is important to note that the NRSD dataset con-
tains some synthetic segmentation of the collected images generated by MCnet. Therefore,
annotation is not accurate and might cause difficulty for the model to perform. Further
data preprocessing is required to address these annotation inaccuracies.

3.2. Training Environment

The model was trained and tested locally on a machine with the specifications listed
in Table 2. Those specifications are considered at the high end of the time performing
this study.
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Table 2. Training machine specifications.

Property Value

CPU AMD Ryzen Threadripper 3970X 32-Core
GPU NVIDIA GeForce RTX 3090/24 GB

CUDA cores/version 10,496/11.8
Operating system Windows Server 2019

RAM 128 GB
PyTorch 1.10.1

3.3. Training Parameters

To maintain a standard benchmark with the original results of the YOLOv7 models,
this work uses similar training parameters as studied by Wang et al. [37] with an increased
training iteration for the larger variants of the YOLOv7 model, i.e., yolov7-d6, yolov7-e6,
and yolov7-e6e. There are three different hyper-parameter settings depending on the model
size, including small, medium, and larger. Furthermore, each dataset has a different set
size and image resolution; as a result, training hyper-parameters are slightly different for
each dataset. A general range of those parameters are listed in Table 3. In addition, each
dataset is split into three sets: 70% training, 20% validation, and 10% testing.

Table 3. Training parameters.

Parameter Value Parameter Value

Learning rate 0.001 Batch Size 8–32
Momentum 0.937 Image Size Depends on dataset

Weight decay 0.0005 Epochs 100–300

3.4. Evaluation Metrics

In this work, standard evaluation metrics are adopted, the same as in YOLOv7, to
study and compare the performance of the different variants of the YOLOv7 models on
different metal defect datasets. Traditionally, the mean average precision (mAP), which
is the area under the precision and recall curve calculated using (1), is calculated at a
0.5 threshold of the intersection over union (IoU) (mAP_0.5). However, a recent trend
in the research field is to compute mAP over multiple IoU values following the COCO
interpretation from 0.5 to 0.95 with a step of 0.05 (mAP_0.5:0.95). This has proven to affect
the model with a better localization reward. However, some of the recent studies in the
defect detection field still use the mAP_0.5; thus, both metrics will be reported in this study.
In addition, inference speed is also observed for each dataset.

AP =
∫ 1

0
(precision × recall) d(recall) (1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where TP, FP, and FN are the true positive, false positive, and false negative of the bounding
box predictions, respectively.
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3.5. Training Results

The YOLOv7 model was trained on each of the selected datasets in Section 3.1. to
measure its performance in detecting defects on metal surfaces. Since the NEU-Det dataset
was annotated for an object detection task meaning, Section 1 of this study will focus on
investigating the behavior of each variant of the model on this dataset. The remaining
investigation of this study is to analyze and report the performance of the base variant of
the YOLOv7 model on the metal defect detection and segmentation task. Moreover, this
work used the initial weights of the trained YOLOv7 model on the Microsoft COCO dataset.
This is to leverage and transfer the knowledge from the previous object detection task and
facilitate the training process for faster convergence.

3.5.1. NEU-DET

In this study, each model variant was trained and tested on this dataset to observe a
wider behavior of the model. The validation and inference results are shown in Table 4.
There are three main evaluation metrics presented in the table. APtest, APval, and AP50

test

are mAP_0.5:0.95 for the testing set, mAP_0.5:0.95 for the validating set, and mAP_0.5 for
the testing set, respectively. Those parameters are selected for better visualization of the
model’s performance. As shown in the table, the main difference between each variant is
the model size, increasing as going down the table. The larger the model size, the more
training parameters it has, which increases the learning knowledge and training time.

Table 4. Performance of each variant of YOLOv7 on NEU-DET metal defect datasets.

YOLOv7
Variant #Params Image Size FPSRTX 3090 APtest/APval AP50

test

Tiny 6 M 224 103 37.0%/35.6% 73.9%
Base 37 M 224 78 37.1%/35.4% 73.9%

X 70.8 M 224 63 30.2%/30.3% 65.8%
W6 81 M 448 61 31.7%/30.5% 69.3%
E6 110 M 448 45 31.1%/29.8% 67.2%
D6 153 M 448 40 33.8%/32.6% 70.9%
E6E 164 M 704 30 36.0%/31.7% 73.3%

Furthermore, the smallest variant of the YOLOv7 model took about 84 min to complete
150 epochs of training, whereas the largest version took four times the smallest one. The
table shows that the YOLOv7 achieved about 73.9% mAP with a 0.5 threshold on the testing
set. However, as expected, a lower accuracy was observed with an interval threshold of
(0.5–0.95). Although each variant was trained in slightly different parameters, the reported
results are all for 150 training epochs. In Figure 5, the training process curve of each variant
is plotted to represent the mAP_0.5. As shown in this figure, the small-sized models tend to
converge faster compared to the larger ones due to the number of parameters that require
optimization. It is also worth noticing that smaller models have a smoother learning curve,
which might be due to the loss of some information in the images when resizing, especially
for the small objects. In addition, a smaller batch size might reduce the sharp fluctuation
in the learning curve. Figure 6 shows the mAP_0.5 of the testing set with its trend. The
performance trend of the YOLOv7 model variants represents a parabolic trend where the
performance decreases in the middle. This could be due to the increase in the image size
and the model, which led to more knowledge gained.

This dataset is public and has been used in serval studies. Furthermore, comparing the
YOLOv7 results with other previously reported results is valuable. Lv et al. [51] reported
a 72.2% in mAP_0.5 on their proposed method based on EDDN. Their model performed
slightly better in the pitted surface and scratches classes but worse in detecting cracks.
Furthermore, Guo et al. [33] reported better results with 75.2% of mAP_0.5 of their proposed
model based on an improved YOLOv5 an increase of about 1.3%. Moreover, a recent model
proposed by Gao et al. [26], based on Transformers, has achieved higher results in the
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NEU-DET dataset with 80.5% mAP_0.5. It is worth noting that integrating YOLO models
with Transformer networks enhances the model performance, as shown; thus, it is worth
exploring this approach to further increase detection accuracy. Lastly, the base variant of
the YOLOv7 model provides the right balance between accuracy and speed for real-time
defect detection.
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Figure 6. YOLOv7 variants’ testing performance on the NEU-DET dataset.

Looking further into the base variant results, the model struggles to detect cracks
and rolled-in scale defects with about 19% of mAP, as reported in Table 5 and shown in
Figure 7. This might be due to the nature of those types of defects existing with minimal
features and are less distinguishable with the metal surface compared to other types of
defects. In addition, the ratio of defect to background pixels in those types is usually small
compared to other types. In contrast, patch defect provides unique features with a high
defect/background ratio leading to better results of about 54% mAP.

Table 5. YOLOv7-based variant model performance per class.

Class AP50 mAP

Crack 54.5% 19.0%
Inclusion 81.9% 40.8%

Patch 92.4% 54.2%
Pitted surface 79.7% 39.8%
Rolled-in scale 55.1% 18.5%

Scratch 80.5% 40.2%
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3.5.2. NRSD

For this dataset, the base variant of the YOLOv7 model was selected to investigate
its instance segmentation performance. Although this dataset contains multiple types of
defects, including scratches, wear, welding spots, etc., it was annotated with one class
which is a defect. Furthermore, this work reports both object box and mask results. The
dataset images were all resized to 640 × 640 for the training process. The model was trained
for 100 epochs and 24 batch sizes, and the same parameters mentioned in Table 3 were
used. As shown in Figure 8, the YOLOv7 model performed better with the NRSD dataset
than the NEU-DET for many reasons, including RGB information, higher quality images,
large objects, higher defect/background ratio, and larger dataset size. The model has a
similar performance for detecting the bounding box of the defects with about 88.5% for
both metrics (mAP_0.5 and mAP_0.5:0.95). However, the segmentation task has a slightly
worse accuracy, where it achieved 69.6% mAP_0.5:0.95 in detecting masks. The similarity of
the defects to the background might affect the segmentation results as shown in the testing
results in Figure 9. Furthermore, the segmentation training process coverage is slower
than the object detection process due to the larger knowledge that needs to be learned.
Thus, increasing training epochs might increase segmentation accuracy. In addition, the
inference process is observed to take about 18 ms per image on RTX 3090 GPU that about
55 fps. Some of the testing results on NRSD dataset are shown in Figure 10. In contrast with
previously reported results, Li et al. [23] proposed a detection model that accomplished
81.09% of mAP_0.5, which is lower by about 6.91% compared to the YOLOv7 model.
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3.5.3. KSDD2

In this challenging dataset, where samples containing defects are only about 10% of the
total samples, training results are shown in Figure 11. As the NRSD dataset, the base model
variant was selected and trained with similar parameters as with NEU-DET mentioned in
Table 3. In addition, images are resized to 640 × 640 to reduce training time. Furthermore,
the model was trained for 200 epochs since this dataset has fewer true positive samples,
which is expected to slow the learning process, as shown in Figure 11. The training process
results plotted in Figure 11 show a difficult learning curve due to serval reasons including
a small number of defect samples, and a similar texture of defect with the background.
Some of the testing results are shown in Figure 12. For the mAP with a 0.5 IoU threshold,
the model performance with about 65% for both the bounding box and mask. However,
the accuracy is reduced dramatically for the mAP over the range (0.5–0.95) IoU threshold
with about 30% for the bounding box and 26% for detecting masks. This is due to smaller
portions of the defective areas being detected that are ignored when the threshold is larger.
For this dataset, Jakob et al. [49] introduce a weakly supervised model that achieved a
73.3% mAP_0.5 which is about 8.3% better than the YOLOv7 model in segmentation.
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Table 6 provides a comparison of the YOLOv7 defect detection models used in this
study across different datasets, along with some other studies, highlighting the accuracy
metrics for each model. The results illustrate the strengths and limitations of each approach
in identifying defects in industrial contexts. YOLOv7 variants show strong performance on
the NRSD dataset but have lower performance with the KolektorSDD2 dataset, indicating
variability in their effectiveness based on dataset characteristics. ResNet50 (Faster R-
CNN) and Mask R-CNN demonstrate high accuracy on custom datasets, suggesting their
suitability for specific applications. The Cas-VSwin Transformer balances high accuracy
in both box and mask predictions, highlighting the importance of hybrid methods that
combine YOLO with Swin Transformers, making it more suitable for real-time applications.

Table 6. Comparative performances of defect detection models.

Method Dataset Accuracy

YOLOv7 variants NEU-DET 65–73% mAP_0.5
YOLOv7 (base) NRSD 88.5% mAP_0.5
YOLOv7 (base) KolektorSDD2 65% mAP_0.5

ResNet50 (Faster R-CNN) [9] Custom (fixed bends) 88.7% mAP
Cas-VSwin Transformer [26] Private dataset 82.3% AP (Box)/80.2% AP (Mask)

Mask R-CNN [56] Custom insulator dataset 87.5% mAP
Faster R-CNN [57] Aluminum defect dataset 78.8% mAP

There is potential for further improvements in the average prediction precision of this
study through advanced data augmentation techniques. Techniques such as geometric
transformations (rotations, translations, scaling, and flips) [58], photometric adjustments
(altering brightness and contrast) [59], and the addition of synthetic noise can significantly
enhance the model’s robustness. Additionally, more sophisticated methods like generative
adversarial networks (GANs) can be used to generate synthetic data that mimics real-world
variations in defects [60]. Implementing these data augmentation methods is expected to
improve the robustness of the YOLOv7 model and its precision in detecting subtle and
complex defects.
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4. Case Study Validation

To further validate the efficacy of the YOLOv7-based defect detection model, a case
study was conducted on a damaged cylindrical component. This study primarily focused
on the identification of wear-type defects, which are prevalent and repairable in laser-
cladding processes. The NRSD dataset, notable for its high-resolution RGB images, variety
of defect types, and texture that mimics real damaged components, was employed for
model training.

In this case study, a virtual replica of a damaged workpiece was created using Blender
software version 3.0 (Figure 13), incorporating a metallic texture inspired by real-life
damaged samples (Figure 14). This virtual replica was used to ensure controlled testing
conditions and simulate specific defect types uniformly. A single wear defect, representative
of common wear and tear such as dents, was introduced onto this virtual part. Subse-
quent image captures of this damaged part, aided by a 2D camera and a pixel stitching
algorithm, facilitated the creation of a comprehensive image for analysis (Figure 15). The
pre-trained YOLOv7 model, applying bounding box techniques, successfully detected these
synthetic defects with an 86% accuracy on mAP. This finding underscores the potential of
the model, although the expansion of validation samples and further real-life experiments
are necessary for comprehensive performance verification.
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5. Conclusions

Deep learning architectures have shown promising results in surface defect detection.
One of those is the YOLOv7 model, which is state-of-the-art in the object detection field
and outperforms real-time detectors in terms of speed and accuracy. In this study, an
investigation of the YOLOv7 model is conducted on a metal defect detection task using
a publicly available dataset. Some of the datasets are selected for this study according to
specific criteria. The selected datasets are NEU-DET, NRSD, and KolektorSDD2. Further,
each variant of the YOLOv7 model is studied on the NEU-DET. The mAP_0.5 achieved
on this dataset was about 65–73%, with the base model coming with the optimal balance
between accuracy and speed. In addition, object detection and semantic segmentation of the
base variant of the YOLOv7 model were tested on the NRSD dataset. The YOLOv7 model
achieved a higher accuracy of about 88% on mAP_0.5 with this dataset for its larger set size,
higher resolution, and larger defect/background ratio. In the last dataset, the model was
trained for some extra time to compensate for the fewer defect samples; however, the model
achieved the worst accuracy among all tested datasets. This is due to the higher similarity
of the defect to the background texture. All variants of the model have accomplished a
real-time inference process. For industrial applications, deploying the defect detection
model requires more fine-tuning to the specific problem for reliable and accurate results.
This tunning process is achieved by training the detection model on real-life defect samples.
The performance of the detection model is sensitive and biased to the collected dataset,
which might raise some challenges in achieving the desired results. For future development
of this pipeline, a custom real-life dataset needs to be collected. Further, a comparative
analysis with results obtained by Wang et al. [61] underscores the potential advantages of
custom modifications to the YOLOv7 model, as their tailored enhancements led to higher
detection accuracy of mAP 81.9% on the NEU-DET database. This highlights an avenue
for future research to explore and implement specific model adjustments for improved
performance in defect detection tasks. In addition, it is important to mention that hybrid
methods such as improving YOLO with Swin Transformers also enable achieving higher
accuracy results [26]. Adopting pixel-level supervision could also significantly improve the
model’s precision by allowing it to learn more granular details of defects, such as small
cracks and minute surface variations that are often missed by conventional inspection
methods [62,63]. This approach could be particularly beneficial for detecting early-stage
defects that typically do not affect the larger visual appearance of the metal surface but
may lead to significant issues if not addressed promptly. This work can be used as a base
for future studies and comparison of the enhanced models based on YOLOv7.
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