Design and Initial Tests of a Fast Neutron Radiography Detector Prototype with Silicon Photomultiplier Readouts
Abstract
:1. Introduction
2. Detector Working Principle
3. Detector Simulation and Optimization
3.1. Spatial Resolution
3.2. Neutron Conversion Efficiency
4. Detector Prototype and Readout Electronics
4.1. SiPM Array
4.2. Electronics
4.3. Scintillator Array and Detector Prototype
5. Prototype Performance Test
6. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brzosko, J.S.; Robouch, B.V.; Ingrosso, L.; Bortolotti, A.; Nardi, V. Advantages and limits of 14-MeV neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1992, 72, 119–131. [Google Scholar] [CrossRef]
- Greenberg, R.R.; Bode, P.; De Nadai Fernandes, E.A. Neutron activation analysis: A primary method of measurement. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 193–241. [Google Scholar] [CrossRef]
- Andersson, P.; Valldor-Blücher, J.; Andersson Sundén, E.; Sjöstrand, H.; Jacobsson-Svärd, S. Design and initial 1D radiography tests of the FANTOM mobile fast-neutron radiography and tomography system. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 756, 82–93. [Google Scholar] [CrossRef]
- Li, H.; Zou, Y.B.; Wang, S.; Wen, W.W.; Liu, S.G.; Tang, G.Y.; Lu, Y.R.; Guo, Z.Y. Preliminary experiments of neutron radiography with several hunderd keV fast neutrons. Phys. Procedia 2013, 43, 66–72. [Google Scholar] [CrossRef]
- Zboray, R.; Adams, R.; Kis, Z. Scintillator screen development for fast neutron radiography and tomography and its application at the beamline of the 10 MW BNC research reactor. Appl. Radiat. Isot. 2018, 140, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, R.M.; Fraser, G.W.; Feller, B.; Street, R.; Watterson, J.I.W.; White, P.; Downing, G. Large area microchannel plate detector with amorphous silicon pixel array readout for fast neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 500, 351–361. [Google Scholar] [CrossRef]
- Ambrosi, R.M.; Fraser, G.W.; Street, R.A.; Watterson, J.I.W.; Lanza, R.C.; Dowson, J.; Abbey, A.F.; Feller, B.; Downing, G.; White, P.; et al. Design of a prototype microchannel plate detector with cooled amorphous silicon array readout for neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 542, 271–278. [Google Scholar] [CrossRef]
- Dangendorf, V.; Laczko, G.; Reginatto, M.; Vartsky, D.; Goldberg, M.; Mor, I.; Breskin, A.; Chechik, R. Detectors for time-of-flight fast-neutron radiography 1. Neutron-counting gas detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 542, 197–205. [Google Scholar] [CrossRef]
- Cortesi, M.; Zboray, R.; Adams, R.; Dangendorf, V.; Prasser, H.M. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications. J. Instrum. 2012, 7, C02056. [Google Scholar] [CrossRef]
- Mikerov, V.; Samosyuk, V.; Verushkin, S. Detectors based on imaging plates for fast neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 542, 192–196. [Google Scholar] [CrossRef]
- Zhang, F.Q.; Qi, J.M.; Zhang, J.H.; Li, L.B.; Chen, D.Y.; Xie, H.W.; Yang, J.L.; Chen, J.C. A method of fast-neutron imaging with energy threshold based on an imaging plate. Acta Phys. Sin. 2014, 63, 128701. [Google Scholar] [CrossRef]
- Ma, Z.W.; Li, W.M.; Ran, J.L.; Huang, Z.W.; Zhang, S.J.; Li, K.J.; Yao, Z.E. Simulation and design of a fast neutron radiography detector based on MCP. J. Instrum. 2018, 13, P05034. [Google Scholar] [CrossRef]
- Liu, L.; Lu, M.H.; Cao, W.Q.; Peng, L.K.; Chen, A. Improving detector spatial resolution using pixelated scintillators with a barrier rib structure. Med. Imaging 2016 Phys. Med. Imaging 2016, 9783, 283. [Google Scholar]
- Cha, B.K.; Bae, J.H.; Lee, C.H.; Jeon, H.; Kim, H.; Chang, S.; Kang, B.S.; Cho, G. Improvement of the sensitivity and spatial resolution of pixelated CsI: Tl scintillator with reflective coating. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 607, 145–149. [Google Scholar] [CrossRef]
- Anger, H.O. Scintillation camera. Rev. Sci. Instrum. 1958, 29, 27–33. [Google Scholar] [CrossRef]
- ELJEN Technology. Available online: https://eljentechnology.com/ (accessed on 14 March 2024).
- Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyski, M. Comparison of SensL and Hamamatsu 4 × 4 channel SiPM arrays in gamma spectrometry with scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 856, 53–64. [Google Scholar] [CrossRef]
- Huang, T.C.; Fu, Q.B.; Lin, S.P.; Wang, B. NaI(Tl) scintillator read out with SiPM array for gamma spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 851, 118–124. [Google Scholar] [CrossRef]
- Light Guide for Crystals and Photodetectors. Available online: https://www.epic-crystal.com/ (accessed on 14 March 2024).
- Zhao, B.Q.; Huang, Y.; Wang, C.L. Initiation and Development of Supercritical Carbon Dioxide Nuclear Energy and Power System. At. Energy Sci. Technol. 2023, 57, 1665–1680. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.J.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Boreman, G.D. Modulation transfer function in optical and electro-optical systems. Russ. Chem. Rev. 2001, 71, 159–179. [Google Scholar]
- Cao, R.L.; Biegalski, S.R. The measurement of the presampled MTF of a high spatial resolution neutron imaging system. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip. 2007, 582, 621–628. [Google Scholar] [CrossRef]
- Maxwell, C. EJ-200 Plastic Scintillator Data Sheet; Eljen Technology: Sweetwater, TX, USA, 2010. [Google Scholar]
- SensL. Available online: https://www.onsemi.com/ (accessed on 14 March 2024).
- Zhang, X.H.; Qi, Y.J.; Zhao, C.L. Design and development of compact readout electronics with silicon photomultiplier array for a compact imaging detector. Chin. Phys. C 2012, 36, 973–978. [Google Scholar] [CrossRef]
- Park, H.; Yi, M.; Lee, J.S. Silicon photomultiplier signal readout and multiplexing techniques for positron emission tomography: A review. Biomed. Eng. Lett. 2022, 12, 263–283. [Google Scholar] [CrossRef]
- Choe, H.J.; Choi, Y.; Hu, W.; Yan, J.H.; Jung, J.H. Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector. Phys. Med. Biol. 2017, 62, N120. [Google Scholar] [CrossRef]
- Wang, S.; Yin, W.; Liu, B.; Li, H.; Sun, Y.; Cao, C.; Wu, Y.; Huo, H.Y.; Zhu, S.L.; Lou, B.C.; et al. A moveable neutron imaging facility using DT neutron source based on a compact accelerator. Appl. Radiat. Isot. 2021, 169, 109564. [Google Scholar] [CrossRef]
- Garutti, E.; Musienko, Y. Radiation damage of SiPMs. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 926, 69–84. [Google Scholar] [CrossRef]
EJ200 Physical and Scintillation Constants | |
---|---|
Light output in % relative to anthracene | 64 |
Density, g/cm3 | 1.023 |
Polymer base | Polyvinyl toluene |
Wavelength of max. emission, nm | 425 |
Scintillation efficiency, photons per 1 MeV e− | 10,000 |
Rise time, ns | 0.9 |
Decay time, ns | 2.1 |
Pulse width, FWHM, ns | 2.5 |
Organic flours, % | 3 |
Number of H atoms per cm3 | 5.17 × 1022 |
Number of C atoms per cm3 | 4.69 × 1022 |
Number of electrons per cm3 | 3.33 × 1023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Tang, B.; Chen, R.; Zhu, Z.; Zhang, P.; Yu, Q.; Huang, C.; Chen, S.; Wang, X.; Xu, H.; et al. Design and Initial Tests of a Fast Neutron Radiography Detector Prototype with Silicon Photomultiplier Readouts. Appl. Sci. 2024, 14, 5536. https://doi.org/10.3390/app14135536
Chen X, Tang B, Chen R, Zhu Z, Zhang P, Yu Q, Huang C, Chen S, Wang X, Xu H, et al. Design and Initial Tests of a Fast Neutron Radiography Detector Prototype with Silicon Photomultiplier Readouts. Applied Sciences. 2024; 14(13):5536. https://doi.org/10.3390/app14135536
Chicago/Turabian StyleChen, Xu, Bin Tang, Ruofu Chen, Zhifu Zhu, Pingchuan Zhang, Qian Yu, Chang Huang, Shaojia Chen, Xiuku Wang, Hong Xu, and et al. 2024. "Design and Initial Tests of a Fast Neutron Radiography Detector Prototype with Silicon Photomultiplier Readouts" Applied Sciences 14, no. 13: 5536. https://doi.org/10.3390/app14135536
APA StyleChen, X., Tang, B., Chen, R., Zhu, Z., Zhang, P., Yu, Q., Huang, C., Chen, S., Wang, X., Xu, H., Cai, X., Guo, D., Yu, L., Sun, Z., Wang, Y., & Liu, Y. (2024). Design and Initial Tests of a Fast Neutron Radiography Detector Prototype with Silicon Photomultiplier Readouts. Applied Sciences, 14(13), 5536. https://doi.org/10.3390/app14135536