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Abstract: The use of tuning forks to measure fluid density and viscosity is widely employed in
fields such as food, medicine, textiles, automobiles, petrochemicals, and deep drilling. The explicit
analytical model based on the Euler–Bernoulli cantilever-beam theory for the relationship between
tuning-fork resonance characteristics and the density and viscosity of fluid is only applicable to
the situation where the fluid viscous effect is very small. In this paper, the finite element method
is used to simulate the influence of large variations in fluid density and viscosity on the resonance
characteristic parameters (resonant frequency and quality factor) of the tuning fork. The numerical
simulation results are compared with the analytical analysis results and experimental measurement
results. Then, the sensitivity of tuning-fork resonance characteristic parameters to fluid density
and viscosity is studied. The results show that compared with the analytical results, the numerical
simulation results have a higher degree of agreement with the experimental measurement results.
The relative difference in resonant frequency is less than 2%, and the relative difference in quality
factor is less than 4%. This indicates that the finite element method includes the influence of fluid
viscosity on tuning-fork resonance parameters, which is more in line with the actual conditions than
the analytical model. Simulating and analyzing the sensitivity of the tuning fork to fluid density and
viscosity by the finite element method, it is possible to consider the situation where fluid density
and viscosity vary over a large range. Compared with experimental measurements, this method has
higher efficiency and can significantly save time and economic costs. This study can overcome the
limitation of existing explicit analytical models, which are only applicable when the viscous effects
of the fluid are very small. It enables a more accurate simulation of the coupling vibration between
tuning forks and fluids, thereby providing theoretical references for further optimizing tuning-fork
structural parameters to enhance the accuracy of measuring fluid characteristic parameters.

Keywords: finite element method; tuning fork; resonance characteristics; density; viscosity

1. Introduction

The two arms of a tuning fork can be regarded as two symmetrical cantilever beams
with one end fixed and the other end free, which can achieve decoupled measurement of
fluid density and viscosity. Tuning forks are widely employed in industrial production.
For example, tuning forks are used to measure the density and viscosity of wine in real
time, thereby achieving quality monitoring of the wine fermentation process [1,2]. Tuning
forks are used to measure the density and viscosity of gases, in order to monitor the gas
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polymerization process in high-temperature and high-pressure containers [3]. The smoke
and dust content of engine oil can be monitored by measuring its density and viscosity
through tuning forks [4,5]. In the process of oil and gas exploitation [6,7], using a tuning fork
to measure the density and viscosity of downhole fluid can identify fluid [8,9], determine
fluid composition, and divide the oil–water interface, which is of great significance for
optimizing oil and gas reservoir management and intelligent oil-field exploitation [10,11].

In-depth study of the relationship between tuning-fork resonance characteristics and
fluid characteristic parameters is helpful in optimizing the design of the tuning fork sensor,
thereby enhancing the accuracy of fluid density and viscosity measurements using tuning
forks. In 1998, John Elie Sader established an explicit analytical model based on the
Euler–Bernoulli cantilever-beam theory, which relates the resonant frequency and quality
factor of a cantilever beam vibrating in a fluid to fluid density and viscosity. The model
can express the quantitative relationship between the resonant frequency and quality
factor of the tuning fork, the size of the tuning fork, the material parameters, and the
fluid density and viscosity, but only for fluid with small viscous effects, such as air [12].
In 2011, Waszczuk et al. developed an implicit analytical model using an equivalent circuit
approach, relating tuning-fork resonant frequency and quality factor to fluid density and
viscosity. The model contained undetermined coefficients related to the material and size
of the tuning fork, and the accuracy of the model was affected by the parasitic capacitance
of the tuning fork [13]. In 2014, Henisch et al. compared the vibration of a tuning fork in a
fluid to the damped vibration of a pendulum–spring system. Based on the forces exerted on
the tuning fork in the fluid, they derived an implicit analytical model relating tuning-fork
resonant frequency and quality factor to fluid density and viscosity, with the effective area
of interaction between the tuning fork and fluid being an undetermined coefficient [14].
In 2015, Henisch et al. studied the feasibility of using an electromagnetic-driven metal
tuning fork to measure fluid density and viscosity, and analyzed the sensitivity of tuning
fork characteristic parameters to fluid density and viscosity. However, due to the limitation
of experimental fluid samples, only the sensitivity of the tuning fork was studied when
density and viscosity changed within a small range [15]. In 2020, Zhang et al. used the
Sobol global sensitivity analysis method instead of the commonly used finite difference
method to analyze the sensitivity of tuning forks to fluid density and viscosity, but did not
carry out further research into the relationship between the sensitivity of tuning forks and
the large-scale variation of fluid density and viscosity [16].

In order to overcome the limitation of existing explicit analytical models, which are
only applicable when the viscous effects of the fluid are small, this paper utilizes finite
element analysis to simulate the coupling vibration law between tuning forks and fluids.
It compares the results of finite element numerical simulations, analytical model predictions,
and experimental measurements. Building upon this comparison, the finite element method
is employed to simulate the relationship between tuning-fork resonance characteristics and
fluid characteristic parameters. Furthermore, the sensitivity of tuning forks to large-scale
variations in fluid density and viscosity is analyzed based on the finite element simulations.

2. Materials and Methods
2.1. Analytical Model

Assuming that the cross section of the tuning fork arm is uniform along the length, and
the length of the tuning fork arm is much larger than the width and thickness, according to
the Euler–Bernoulli cantilever-beam theory, the flexural vibration equation of the tuning
fork arm during vibration in an incompressible fluid is as follows [12]:

EI
∂4

∂x4 W(x,ω)−ω2ρbelW(x,ω) = Fex(x,ω) + Fhydro(x,ω) (1)

where E represents Young’s modulus; I represents the moment of inertia; ω represents the
resonant angular frequency of the tuning fork when it vibrates in the fluid; ρb represents
the density of the tuning fork material; e represents the width of the tuning fork arm;
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l represents the thickness of the tuning fork; W(x,ω) represents the displacement function,
where x represents the position coordinate along the length direction of the tuning fork
arm; Fex(x,ω) represents the external driving force of the tuning fork; and Fhydro(x,ω) rep-
resents the force of the fluid on the tuning fork. Fhydro(x,ω) = π

4 ρω
2l2Γhydro(ω)W(x,ω) is

obtained by solving the linear Navier–Stokes equation, and Γhydro = Γr
hydro(ω) + jΓi

hydro(ω)
represents hydrodynamic function. When the tuning fork is immersed in the fluid with
a small viscous effect, Formula (1) is solved to obtain the resonant frequency of the tuning
fork when it is performing first-order in-plane anti-phase flexural vibration [12],

ω = ωvac[1 +
πρfe
4ρbl

Γr
hydro]

−1/2 (2)

where ωvac = 2πfvac represents the resonant angular frequency of the tuning fork when

it vibrates in vacuum, fvac,n = e
4π

√
3

√
E
ρb
(C1

L )
2
, C1 = 1.875 is the first positive root of

the equation 1 + cos(Cn)cosh(Cn) = 0, Γr
hydro = 1 + 4√

2Re
represents the real part of the

hydrodynamic function [16], and Re = ρfl
2ω

4η represents the Reynolds number.
By substituting Formula (2) into Formula (1), the fluid viscosity quality factor of the

tuning fork during the first-order flexural vibration can be obtained:

Q =

4ρbe
πρfl

+ Γr
hydro

Γi
hydro

(3)

where Γi
hydro = 4√

2Re
+ 2

Re represents the imaginary part of the hydrodynamic function [16].
The quality factor of the tuning fork in Formula (3) is related to the resonant frequency of
the tuning fork in Formula (2), and Formula (2) is derived under the assumption of small
viscous effects of the fluid, which implies that the resonant frequency and quality factor
in Formula (2) and Formula (3) are only applicable when the viscous effect of the fluid
is small [17,18].

2.2. Finite Element Method
2.2.1. Coupling Relationship between the Tuning Fork and Fluid

The structure of the tuning fork is shown in Figure 1a. The length of the tuning fork
arm is L, the width of the tuning fork arm is e, the thickness of the tuning fork arm is h, and
the spacing between the tuning fork arms is g. The bottom of the tuning fork is fixed, thus
the displacement is zero. Figure 1b is a schematic diagram of the tuning fork performing
first-order in-plane anti-phase flexural vibration. This paper mainly studies the relationship
between the resonant frequency and quality factor of this vibration mode with respect to
fluid density and viscosity. The material of the tuning fork is quartz, with a density of
2650 kg/m3, and other material property parameters of quartz are defined by the elastic
matrix (the conversion matrix between stress and strain, related to material parameters
such as Young’s modulus and Poisson’s ratio), the coupling matrix (the conversion matrix
between charge and stress), and the relative dielectric constant.

The governing equations for fluid motion in the finite element method are defined
by the linear Navier–Stokes equations, including the momentum equation, the continuity
equation, and the constitutive relation equation:

iωρ0ut = ∇·σ (4)

iωρt +∇·(ρ0ut) = 0 (5)

ρt = ρ0
(
βTpt − αpTt

)
(6)

σ = −ptI + η
(
∇ut + (∇ut)

T
)
− (

2
3
η− ηB)(∇·ut)I (7)
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where ρ0 represents the initial density of the fluid in the absence of disturbance, ut = u0 +u
represents the total acoustic velocity field, u0 represents the initial background acoustic
velocity field, and u represents the acoustic velocity field generated by tuning fork’s
vibration. Tt = T0 + T indicates the total temperature, where T0 indicates the initial
background temperature and T indicates the temperature change caused by the tuning
fork’s vibration. pt = p0 + p represents the total acoustic pressure, where p0 represents the
initial background pressure and p represents the acoustic pressure caused by the tuning
fork’s vibration. ρt represents the density of the fluid during the propagation of the acoustic
wave; αp represents the coefficient of thermal expansion at constant pressure; η represents
the dynamic viscosity; and ηB represents the volume viscosity, which is related to the
momentum loss caused by the expansion and compression of the fluid. βT represents the
isothermal compression rate; σ represents the stress; and I represents the unit diagonal
matrix, i2 = −1.
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Figure 1. (a) Tuning fork model in finite element method. (b) The tuning fork performs first-order
in-plane reverse flexural vibration.

Fluid in finite element method is compressible fluid, and density, ρ0, and dynamic vis-
cosity η are related to temperature and pressure. ρ0 and η are set to constants in simulation,
so that, ρ0 and η are not affected by temperature and pressure.

When the tuning fork and the fluid are in coupled vibration, their displacements are
continuous, satisfying the following relationship:

cfluid =
∂x
∂t

(8)

where x and cfluid represent the displacement of the tuning fork and the velocity of the fluid,
respectively, and their relationship in the frequency domain is cfluid = iωx. This coupling
relationship shows that the normal stress on the boundary between the tuning fork and the
fluid is also continuous.

To sum up, the equations of fluid motion in the analytical method and the finite
element method are both linear Navier–Stokes equations. However, in order to obtain
an explicit expression for the resonant frequency and quality factor of the tuning fork
with respect to fluid density and viscosity in the process of solving Equation (1), it is
assumed that the viscous effect of the fluid is small, providing only an approximate
solution. This approximation does not hold well when the fluid viscosity is large. The finite
element method gives the relationship between tuning-fork resonance parameters and fluid
characteristic parameters by solving Equation (4) to Equation (8), without approximation.
Therefore, the finite element method is more in line with the actual situation than the
analytical method, and the simulation results are closer to the actual situation.
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2.2.2. Comparison of Finite Element Method and Analytical Method

In the finite element simulation, the material and size of the tuning fork are consistent
with those of the laboratory quartz tuning fork in literature [19]. The length of the tuning
fork arm L is 4.05 mm, the width e is 0.66 mm, the thickness h is 0.4 mm, and the spacing g
is 0.24 mm. The resonant frequency and quality factor of tuning forks in 19 groups of fluids
with different densities and viscosities were measured by experiments in reference [19].
In this paper, the finite element method and the analytical method were used to simulate
the model with parameters identical to those in the experiments. Equation (2) and Equation
(3) were used for the analytical method, the value of Young’s modulus E was 78.3 GPa, and
the value of the material density ρb of the tuning fork was 2650 kg/m3. The comparison of
the numerical simulation results, analytical results, and experimental measurement results
is shown in Table 1, where fluids of groups 1–19 are arranged in order of viscosity from
small to large. The finite element simulation results were obtained through the conductance
diagram, with peak value corresponding to the resonant frequency f of the tuning fork,
quality factor Q = f/∆f, and ∆f is −3 dB bandwidth. Figure 2 shows the results of group 1
and group 19. The resonant frequency of the tuning fork in fluid of group 1 was 29,089 Hz,
and the quality factor was 58.53. In fluid of group 19, the resonant frequency of the tuning
fork was 27,151 Hz, and the quality factor was 6.69.

Table 1. Comparison of numerical results, analytical results, and experimental results.

No.
Density
kg/m3

Viscosity
mPa·s

Experimental
Results

Numerical
Results

Relative Difference of
Numerical Results

Analytical
Results

Relative Difference of
Analytical Results

f
(Hz) Q f

(Hz) Q δf
(%) δQ f

(Hz) Q δf
(%) δQ

1 828.6 2.930 29,089 58.53 29,485 57.97 1.36 0.96 29,540 122.61 1.55 109.48
2 815.1 4.658 29,077 46.75 29,474 46.88 1.37 0.28 29,544 97.88 1.61 109.49
3 848.4 6.096 28,925 41.98 29,302 40.54 1.29 3.43 29,323 84.04 1.38 100.19
4 812.4 7.08 29,027 37.07 29,411 38.21 1.31 3.08 29,483 79.38 1.57 114.14
5 854.9 8.344 28,845 34.18 29,216 34.61 1.24 1.24 29,226 71.49 1.32 109.16
6 834.3 10.64 28,877 30.40 29,240 30.92 1.26 1.71 29,277 63.86 1.39 110.07
7 849.4 11.78 28,778 27.73 29,157 29.23 1.32 5.41 29,173 60.18 1.37 117.02
8 864.8 14.68 28,699 26.55 29,040 26.06 1.19 1.85 29,034 53.40 1.17 101.13
9 840.7 15.18 28,776 26.38 29,124 25.86 1.21 1.97 29,150 53.12 1.30 101.29

10 868.1 18.31 28,630 23.80 28,961 23.3 1.16 2.10 28,950 47.36 1.12 98.99
11 831.1 19.60 28,757 23.77 29,085 22.84 1.14 3.91 29,122 46.84 1.27 97.06
12 850.3 28.62 28,542 19.38 28,878 18.69 1.18 3.56 28,885 38.20 1.20 97.11
13 853.5 36.52 28,426 16.39 28,770 16.45 1.21 0.37 28,767 33.62 1.20 105.13
14 915.9 40.29 28,138 14.97 28,483 15.31 1.23 2.27 28,401 31.05 0.93 107.41
15 867.9 40.70 28,329 15.56 28,665 15.47 1.19 0.57 28,643 31.57 1.11 102.89
16 849.7 69.22 28,115 12.31 28,457 11.78 1.22 4.31 28,460 24.14 1.23 96.10
17 941.8 71.36 27,847 12.13 28,077 11.27 0.83 7.09 27,966 22.80 0.43 87.96
18 968.3 119.78 27,380 9.01 27,628 8.66 0.91 3.88 27,480 17.17 0.37 90.57
19 886.3 210.58 27,151 6.69 27,450 6.47 1.10 3.29 27,411 13.12 0.96 96.11
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Figure 2. (a) Conductance diagram of the tuning fork in fluid of group 1. (b) Conductance diagram
of the tuning fork in fluid of group 19.
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Figure 3 shows the comparison of numerical, analytical, and experimental results of
resonant frequency and quality factor. Figure 4 shows the relative differences between
numerical results and experimental results, and the relative differences between analytical
results and experimental results, respectively. The relative difference of numerical results is
numerical result − experimental result

experimental result × 100%, and the relative difference of analytical results is
analytical result − experimental result

experimental result × 100%.
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Figure 4. (a) Relative difference of numerical results and analytical results of resonant frequency
corresponding to 19 groups of different fluids. (b) Relative difference of numerical results and
analytical results of quality factor corresponding to 19 groups of different fluids.

From Figures 3 and 4, it can be seen that the numerical results and analytical results of
the resonant frequency are highly consistent, with a relative difference of less than 2% from
the experimental measurement results. The difference between the numerical results and
the analytical results of the quality factor is large, the relative difference between the numer-
ical results and the experimental results is less than 4%, and the relative difference between
the analytical results and the experimental results can even exceed 110%. This shows that
the finite element method includes the influence of fluid viscous effects on tuning-fork
resonance parameters, and is closer to the actual situation than the approximate analytical
method, and the simulation results are more accurate.
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3. Results
3.1. Relationship between Tuning-Fork Resonance Characteristics and Fluid
Characteristic Parameters

Based on the above conclusions, the finite element method is used in this paper
to simulate the relationship between the tuning-fork resonance characteristics (resonant
frequency and quality factor) and the fluid characteristic parameters (density and viscosity)
when the fluid density varies from 100 kg/m3 to 1900 kg/m3 and the viscosity varies from
2 mPa·s to 212 mPa·s. The numerical simulation results are shown in Figure 5.
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It can be seen from Figure 5 that both the resonant frequency and quality factor of
the tuning fork decrease with the increase in fluid density and viscosity. The vibration of
the tuning fork in the fluid can be regarded as the damped vibration of a oscillator spring
system [20], so the resonant frequency and quality factor can be written as follows [14,21]:

ω =

√
k0

m0 + mf
(9)

Q =
1
ω

k0

c0 + cf
(10)

where k0 represents the elastic coefficient of the spring, m0 represents the mass of the
oscillator, c0 represents the spring damping, mf represents the additional mass of the
fluid, and cf represents the fluid damping. When the tuning fork vibrates in the fluid,

the additional mass mf = A
√

ηρf
ω , where A is the effective area of the tuning fork, so the

resonant frequency of the tuning fork decreases when the density and viscosity increase,

with damping coefficient cf = A
√
ωηρf and Q =

√
k0

√
m0+A

√
ηρf
ω

c0+A
√
ωηρf

. Because as the increase

in ρf and η, the increasing trend of
√
ωηρf is greater than (ηρf

ω )
1
4 . Therefore, with the

increase in ρf and η, the quality factor Q gradually decreases. Also, as ρf and η increase,
the fluid damping force on the tuning fork increases, leading to greater energy loss in the
tuning fork vibration, hence reducing its quality factor.

3.2. Sensitivity Analysis

In the finite element numerical simulation, the calculation formula of relative sensitiv-
ity is

SY,x =

∣∣∣∣∣ ∆Y
Y

∆x
x

∣∣∣∣∣ =
∣∣∣∣∆Y

∆x
· x
Y

∣∣∣∣ (11)
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where Y represents f or Q, x represents ρ or η, and Formula (11) represents the relative
change in resonant frequency or quality factor corresponding to a relative change in
unit density or viscosity. The higher the sensitivity, the more sensitive the tuning-fork
resonance parameters are to the changes of fluid characteristic parameters, resulting in
higher measurement accuracy.

The tuning fork size is set to be consistent with that used in the laboratory in the
finite element method. Fluid density increases from 100 kg/m3 to 1900 kg/m3, ∆ρ is
50 kg/m3, viscosity increases from 2 mPa·s to 212 mPa·s, and ∆η is 6 mPa·s.Figure 6 shows
the sensitivity of resonant frequency to density and viscosity, and Figure 7 shows the
sensitivity of quality factor to density and viscosity.
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Figure 6. (a) Sensitivity of resonant frequency to density. (b) Sensitivity of resonant frequency
to viscosity.
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Figure 7. (a) Sensitivity of quality factor to density. (b) Sensitivity of quality factor to viscosity.

It can be seen from Figure 6 that the sensitivity of tuning-fork resonant frequency
to fluid density and viscosity increases with the increase in fluid density and viscosity,
and the sensitivity of tuning-fork resonant frequency to fluid density is greater than to
viscosity. It can be seen from Figure 7b that the sensitivity of tuning fork quality factor
to fluid viscosity generally increases with the increase in fluid viscosity. The sensitivity
value of tuning fork quality factor to fluid density is comparable to that of viscosity.
But the sensitivity of quality factor to fluid density does not vary monotonically.

Henisch et al. [15] analyzed, through experiments, the sensitivity of the metal tun-
ing fork driven by electromagnetic means. However, this approach required setting up
experimental platforms and extensive data-processing work. Moreover, the analysis results
were limited by experimental samples and only the sensitivity of the tuning fork within a
small range of density and viscosity variations was analyzed. In contrast, the finite element
method does not require the construction of experimental platforms and experiments, and
can analyze the sensitivity of the tuning fork when the density and viscosity change in a
wide range, which can greatly save time and economic costs.
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4. Conclusions

Firstly, the existing analytical model of the relationship between tuning-fork resonance
characteristics and fluid characteristics based on Euler–Bernoulli’s cantilever-beam theory
was analyzed. It has the limitation of being applicable to the small viscous effects of
fluid. In this paper, the finite element method was used to establish the simulation model
to simulate the coupling vibration law of the tuning fork and fluid, and the influence
of the fluid viscous effect on the resonant characteristics of tuning fork was considered.
The comparison of the finite element numerical results, analytical results, and experimental
measurement results showed that the finite element simulation results and experimental
measurement results had a higher agreement, and the relative difference rate of resonant
frequency between the two was less than 2%, and the relative difference rate of quality
factor was less than 4%. This indicates that, compared with the approximate analytical
method, the finite element method can consider the influence of the fluid viscous effect,
so it is more in line with the actual situation than the analytical method. Finally, based on
the finite element method, the sensitivity of tuning-fork resonance characteristics to fluid
characteristic parameters (density and viscosity) was calculated. The results show that
the sensitivity of tuning-fork resonant frequency to fluid density and viscosity increases
with the increase in fluid density and viscosity, and the sensitivity of tuning fork quality
factor to fluid viscosity generally increases with the increase in fluid viscosity. However,
the sensitivity of quality factor to fluid density does not change monotonically. Compared
with experiments, the established finite element simulation model can be used, conveniently,
to analyze the sensitivity change in tuning fork to fluid density and viscosity when the fluid
density and viscosity change in a large range, which can greatly save time and economic
cost. It provides a theoretical reference for further optimization of the design of the tuning
fork sensor to improve the accuracy of measuring fluid characteristic parameters. Next,
the finite element simulation model can be optimized into the tuning fork’s vibration in
multiphase flow, so as to study the relationship between tuning fork’s resonance parameters
and multiphase flow’s characteristic parameters.
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