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Abstract: In order to solve the problem of insufficient end positioning accuracy due to factors such as
gravity and material strength during the inverse solution process of a large hydraulic robotic arm, this
paper proposes an inverse solution algorithm based on an adaptive spider wasp optimization (ASWO)
optimized back propagation (BP) neural network. Firstly, the adaptability of the SWO algorithm
is enhanced by analyzing the phase change in population fitness and dynamically adjusting the
trade-off rate, crossover rate, and population size in real time. Then, the ASWO algorithm is used to
optimize the initial weights and biases of the BP neural network, effectively addressing the problem
of the BP neural network falling into local optima. Finally, a neural network mapping relationship
between the actual position of the robotic arm’s end-effector and the corresponding joint values
is established to reduce the influence of forward kinematic errors on the accuracy of the inverse
solution. Experimental results show that the average positioning error of the robotic arm in the XYZ
direction is reduced from (91.3, 87.38, 117.31) mm to (18.16, 24.67, 27.21) mm, significantly improving
positioning accuracy by 80.11%, 71.78%, and 76.81%, meeting project requirements.

Keywords: spider wasp optimization; BP neural network; inverse kinematics; error compensation;
adaptive regulation

1. Introduction

The rapid development of tunnel construction has dramatically increased the demand
for large hydraulic robotic arms. Compared with the electronically controlled mechanical
arm, the hydraulic mechanical arm has the advantages of strong power, high durability,
and fast response speed. However, the deflection error caused by the huge size of the arm
itself makes it difficult to ensure its end positioning accuracy. The end position error of the
forward kinematics can be determined through deflection modeling, error compensation
modeling, and other methods. Inverse kinematics directly affects the control speed and
accuracy of the robotic arm [1]. How to avoid the influence of forward solution errors and
improve the positioning accuracy of the inverse solution of large hydraulic robotic arms
has become the focus of research.

Currently, inverse kinematics methods for robotic arms mainly include geometric,
analytical, iterative, and intelligent algorithms. The geometric method [2,3] depends
on the geometric characteristics of the robot, is less generalized, and is not applicable
to robotic arms with complex structures or many joints. The analytical method [4] has
high solution accuracy but is computationally complex and has the problem of multiple
solutions. The iterative method [5,6] requires a large amount of computation and is difficult
to meet real-time control requirements. Intelligent algorithms can be divided into two parts:
neural networks and heuristic algorithms, which transform the complex inverse kinematics
problem into a data model training and objective optimization problem and have become
effective methods for the inverse kinematics solution of robotic arms.
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Artificial neural networks are widely used to solve complex robotic arm inverse solu-
tions because of their powerful mapping ability, avoiding complex computational processes,
and meeting real-time control requirements [7–13]. Yang et al. [14] established an accurate
kinematic model of a rigid-flexible variable-diameter robotic arm by quantitatively analyz-
ing different pressure and load cases underwater and utilized a deep neural network to
map the relationship between the position and attitude of the target terminal and the input
pressure, achieving high inverse solution accuracy. Wagaa et al. [15] solved the kinematic
inverse problem of a six-degree-of-freedom robot by five different deep learning networks.
Gao et al. [16] proposed an excitation function-based improved BP neural network for
robot inverse solution. Aravinddhakshan et al. [17] completed the inverse solution of an
industrial grade 5 degree of freedom manipulator with path planning through a neural
network. Aydogmus et al. [18] completed the inverse solution of a humanoid robotic arm
by using Bayesian-optimized deep neural network structure. Almusawi et al. [19] proposed
an artificial neural network with the current joint angle of the robotic arm and the desired
position and attitude of the end in the input layer to improve the joint output accuracy.
However, the above neural networks are prone to falling into local optimality and and
find it difficult to find the global optimal solution when dealing with multi-peak high
dimensional problems.

Meta-heuristic algorithms are more efficient in solving complex nonlinear prob-
lems [20–27], which can overcome the shortcomings of neural networks that are prone to
fall into local optimums. Zong et al. [28] proposed an inverse kinematics solution method
for a four-degree-of-freedom hydraulic manipulator by combining the global mapping of
a BP neural network with the local search of a gravitational search algorithm, ensuring
solution accuracy while avoiding the problem of multiple solutions. Bai et al. [29] proposed
to optimize the initial weight bias of BP neural networks with a fruit fly optimization algo-
rithm (FOA) to avoid neural networks from falling into local extremes. Rokbani et al. [30]
proposed a new method for kinematic inverse solution of a three-jointed robotic arm based
on a firefly algorithm. Jiang et al. [31] proposed particle swarm (PSO) optimized BP neural
network algorithm to solve the robotic arm inverse solution problem and improve the
convergence accuracy and speed of neural network. However, the meta-heuristic algorithm
is often constrained by preset fixed algorithmic parameters when coping with multi-peak
high-dimensional problems, which leads to the lack of adaptability of the algorithm and
the inability to effectively adjust the exploration strategy to adapt to the different stages
of optimization.

Aiming at the above problems, this paper proposes an inverse kinematics method
for a large hydraulic robotic arm based on an adaptive adjustment SWO optimization BP
neural network.

The main contributions of this paper are as follows:

1. By improving the SWO algorithm, an ASWO algorithm is proposed. During the
iteration process, the algorithm parameters are dynamically adjusted in real time
according to the phase change of population fitness to enhance the adaptability of the
algorithm.

2. The ASWO algorithm is used to optimize the initial weights and biases of the neural
network, which effectively solves the problem that the BP neural network is easy to
fall into the local optimum.

3. Establish the neural network mapping relationship between the actual position infor-
mation at the end of the robotic arm and the corresponding joint value, so as to reduce
the influence of the positive kinematic error on the inverse solution accuracy.

This paper is organized as follows.
In Section 2, the robotic arm is first modeled with forward kinematics to analyze

the positioning error relationship between forward and inverse kinematics, and then the
forward solution error model is established to ensure the reliability of the data in the
simulation stage. In Section 3, the SWO algorithm is improved through parameter adaptive
tuning. In Section 4, the ASWO algorithm is pre-optimized to obtain the optimal initial



Appl. Sci. 2024, 14, 5551 3 of 17

weights and biases of the neural network through continuous iteration of the population.
In Section 5, the validity of the method proposed in this paper is verified by simulation
and experiment.

2. Forward Modeling and Error Analysis of the Robotic Arm

In order to improve the accuracy of the inverse solution of the robotic arm, it is
necessary to minimize the distance e between the actual position of the end-effector and the
target position. By modeling the forward kinematics of the robotic arm and analyzing the
error relationship between the theoretical and actual positions during the forward solution,
the main source of the end-positioning error e in the inverse kinematics is identified.

2.1. Forward Modeling of the Robotic Arm

This paper takes the G3Zi rock drill dolly mechanical arm as the research object, which
has five rotary joints and two translational joints. The length of the arm is about 7.84 m,
and it reaches 11.5 m when the translational joints are fully extended. This is a kind of large
hydraulic arm, as shown in Figure 1.

Figure 1. G3Zi rock drilling rig.

The standard DH method is used to establish the coordinate system of the robotic arm
rod, as shown in Figure 2.

Figure 2. The DH model structure of the robotic arm.

The DH parameter values for each joint of the model, including the rotation angle θi,
link offset di, twist angle αi, and link length ai, are presented in Table 1.
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Table 1. DH parameters table.

i θi/◦ di/mm αi/◦ ai/mm Joint Range

1 θ1(0) 0 −90 200 θ1(−40,40)
2 θ2(90) 0 90 −35 θ2(−50,40)
3 90 d3(4297) 0 0 d3(0,2200)
4 θ4(90) 0 90 0 θ4(−180,180)
5 θ5(90) 650 90 80 θ5(−130,130)
6 θ6(90) 679.5 90 241 θ6(−12,58)
7 0 d7(3058) 0 0 d7(0,1600)

θi denotes the angle at which the Xi−1 axis is rotated about the Zi−1 axis until it is
parallel to the Xi axis. di denotes the distance at which the Xi−1 axis is translated along the
Zi−1 axis until it is co-linear on the Xi axis. αi denotes the angle at which the Zi−1 axis is
rotated about the Zi−1 axis until it coincides with the Zi axis. ai represents the distance of
translation along the Xi axis until point Oi−1 moves to point Oi. The pose matrix between
adjacent coordinate systems is shown in Equation (1), and the end-effector pose matrix is
given in Equation (2), where cθi is an abbreviation for cosθi, and sαi is a shorthand for sinαi.

i−1
i T =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 (1)

0
7T =

7

∏
i=1

i−1
i T =

[ 0
7R3×3

0
7P3×1

0 1

]
=


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (2)

In the configuration of the robotic manipulator, i−1
i T represents the pose transforma-

tion matrix from the i joint to the i − 1 joint. As defined in Equation (2), 0
7R3×3 denotes the

end-effector’s orientation, and 0
7P3×1 signifies the end position.The end-effector’s orien-

tation 0
7R3×3 is the deflection angle of the end-effector coordinate system under the base

coordinate system, and in this paper, we use the XYZ fixed angle method to describe the
attitude, and the rotation matrix is shown in Equation (3). In inverse kinematics, the desired
end-effector’s orientation (typically specified in angles) can be swiftly converted into a
rotation matrix.

0
7RXYZ(γ, β, α) =

 cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

 (3)

2.2. Forward and Inverse Kinematic Error Analysis

The hydraulic manipulator arm is large in size, and its end position error is affected
by the intertwining of multiple factors, including mechanical tolerances, software errors,
and external load variations.

In order to accurately localize the robotic arm in real-time, the forward kinematics error
compensation model is first constructed. The DH parameter method is used to calculate
the theoretical position of the end-effector based on joint values. The actual position of the
end-effector is recorded by a total station. The position error of the end-effector is obtained
by calculating the difference between these two positions.

This project utilizes the Leica TS13 automatic total station, which offers an angular
accuracy of 1′′ and a distance measurement accuracy of 1 mm + 1.5 ppm, meeting the
accuracy requirements.

The procedure for data collection using the total station is as follows:
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1. Two prisms are placed on the body of the rock drill truck, and the position of these
prisms relative to the base coordinate system is measured.

2. Input the positions of the two prisms into the total station to complete the establish-
ment of the base coordinate system.

3. A reflective sticker is placed on the actuator at the end of the robotic arm.
4. Use the total station to record the position of the reflective sticker, thus completing the

collection of the actual position of the end effector.

The joint values and the end position errors are trained as the input and output of
the neural network model, respectively, to obtain the mapping relationship between the
joint values of the robotic arm and the position errors. The spatial error distance between
the actual position and the theoretical position can be determined when the robotic arm is
located at different joint angles. The model building process is shown in Figure 3.

Figure 3. The process of establishing the forward kinematics error model.

During the operation of the robotic arm, although the forward kinematic error com-
pensation model can accurately locate the actual position of the end of the robotic arm
corresponding to a given combination of joint values, it does not completely solve the
problem of positioning deviation between the end position and the expected target point.
This forward kinematic positioning error, which is known in size but not compensated
for, becomes a major factor affecting the accuracy of inverse kinematics. The robotic arm
inverse kinematics error is shown in Figure 4.

Figure 4. Robotic arm inverse kinematics error.

3. SWO Algorithm and Its Improvement

Mohamed Abdel-Basset proposed the SWO algorithm in 2023 [32]. In this chapter, the
SWO algorithm and its optimized version, the ASWO algorithm, will be introduced, with a
focus on the optimization process of the ASWO algorithm.

3.1. SWO Algorithm

The SWO algorithm is an optimization technique inspired by the behavior of spider
wasps in nature. It effectively balances the exploration and exploitation processes by
simulating the hunting, nesting, and mating behaviors of female spider wasps, as shown in
Figure 5.



Appl. Sci. 2024, 14, 5551 6 of 17

Figure 5. SWO algorithm judgement process.

Where r1 is a 0~1 random number, TR is the trade-off rate, comparing the two to
determine the current execution of hunting and nesting behaviors or mating behaviors.
i is the current index value of the agent to be optimized, N is the population size, and
k gradually decays from 1 to 0 with the growth in the number of iterations as shown in
Equation (4), which determines the execution of hunting or nesting behaviors. p is a 0~1
random number, and the result of comparing it with the value of k determines whether the
search agent executes the search or follows behavior. In addition, in the mating behavior,
the crossover rate CR plays an important role in the decision.

k = 1 − (t/Tmax) (4)

Among the behavioral strategies of the four algorithms mentioned above, different
judgment conditions can be used to select suitable individual position updating methods
in order to explore the solution space more efficiently. In the early stage of the search, the
algorithms focus on extensive exploration to prevent prematurely stagnating at local opti-
mum solutions. In the later stages of the search, they focus on utilizing known information
to improve search efficiency, targeting the global optimum solution more quickly.

In addition, the algorithm introduces Levy flights. By adjusting the scaling factor or
stability index of the step size, it can balance global exploration and local exploitation of
the search process. With its long-range step size, the algorithm can escape local optima
and explore search spaces far from the current position, helping to avoid getting stuck in
local optima for extended periods in multi-peak problems. The continuous reduction of
population size with population iteration can effectively reduce the computational burden
brought by high-dimensional problems.

These features make the SWO algorithm show unique advantages in dealing with
multi-peak and high-dimensional problems, which can adapt to the variable search space
and locate the global optimal solution effectively. However, there are problems, such as
the algorithm parameters are fixed and the local optimum cannot be jumped out in time in
some iteration stages.

3.2. ASWO Algorithm

This study enhances the original SWO algorithm by incorporating a feedback adap-
tive adjustment that dynamically optimizes the population size N, trade-off rate TR, and
crossover rate CR during the algorithm’s execution. The average fitness variation rate
∆F−avg(t) of the population is calculated for each generation as depicted in Equation (5).
Where F−avg(t) represents the average fitness of generation ‘t’ and F−avg(t − 1) is the
average fitness in generation t − 1. If ∆F−avg does not improve significantly over a con-
siderable number of generations, the parameters are adjusted to increase exploratory
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capabilities. Conversely, when the algorithm demonstrates rapid improvement, parameters
are adjusted to reduce exploration and increase the likelihood of exploiting potentially
promising regions.

∆F−avg(t) = −(F−avg(t)− F−avg(t − 1))/F−avg(t − 1) (5)

For optimization problems with vast solution spaces, it is necessary to adjust the strat-
egy for optimizing population size. This strategy can be transitioned from a fixed iterative
reduction to a dynamic adjustment based on the rate of change in fitness. Specifically, when
there is a significant increase in population fitness, meaning that ∆F−avg remains above
threshold thu for consecutive ‘m’ generations, the population size is rapidly decreased to
allow the algorithm to focus on high-potential areas. Conversely, when ∆F−avg remains be-
low threshold thl for consecutive ‘m’ generations, the reduction in population size is slowed
to promote a broad exploration of the solution space and prevent the premature discarding
of potential optimal solutions. This strategy is illustrated in Equation (6), where α f ast, αslow,
αnormal represent the three rate parameters that modulate the reduction in population size
at different rates. This strategy maintains population diversity, assisting the algorithm in
escaping local optima and potentially accelerating the global optimization process.

N(t + 1) =


max(N(t)− α f ast ∗ Tmax−t

Tmax
, Nmin), counthigh = m

max(N(t)− αslow ∗ Tmax−t
Tmax

, Nmin), countlow = m
max(N(t)− αnormal ∗ Tmax−t

Tmax
, Nmin), otherwise

(6)

The trade-off rate TR and crossover rate CR are important parameters for controlling
the positional variation of individual spider bees, and dynamic adjustment of TR and
CR can balance global exploration and local exploitation to enhance the efficiency of the
algorithm. When the average fitness change rate ∆F−avg is lower than the threshold thl for
m consecutive generations, TR and CR are boosted to promote exploration and increase
population diversity, and local optimization is avoided global search. Conversely, if a
significant improvement in algorithm performance is observed, i.e., when ∆F−avg is higher
than the threshold thu for m consecutive generations, decreasing TR and CR can focus
on high-potential regions and retain high-quality solutions to enhance local search. This
process is illustrated in Equations (7) and (8), where αTR and αCR represent the balanced
increasing weights, and βTR and βCR represent the balanced decreasing weights.

TR(t + 1) =
{

TR(t) + αTR ∗ (thl − ∆F−avg(t)), countlow = m
TR(t)− βTR ∗ (∆F−avg(t)− thu), counthigh = m (7)

CR(t + 1) =
{

CR(t) + αCR ∗ (thl − ∆F−avg(t)), countlow = m
CR(t)− βCR ∗ (∆F−avg(t)− thu), counthigh = m (8)

In order to prevent the variables TR and CR from exceeding the reasonable range, the
maximum value is set to 1 and the minimum value to 0. Boundary checking and correction
are carried out using Equations (9) and (10) to ensure the reasonableness of the algorithm
parameters and the stability of the algorithm’s performance.

TR(t + 1) = min(max(TR(t + 1), 0), 1) (9)

CR(t + 1) = min(max(CR(t + 1), 0), 1) (10)

Adjusting the parameters based on the average fitness change rate over multiple
consecutive generations can provide a smoother parameter adjustment mechanism and
reduce overly drastic adjustments due to occasional fitness fluctuations. With this approach,
the algorithm can make more robust and efficient parameter updates according to the
current search stage, which helps the algorithm to move towards the optimal solution
more efficiently.

Algorithm 1 lists the pseudocode for the ASWO.
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Algorithm 1 ASWO algorithm

Input: Number of iterations Tmax, Dimension dim, Number of populations N, Minimum
number of populations Nmin, TR, CR, Thresholds thu thl

Output: Optimal fitness value f itness, Optimal agent SW∗
1: Initialize the spider wasps,

−−→
SWi(i = 1, 2 · · · · · · N)

2: Calculating initial population f itness to select SW∗
3: t = 1 %Initialize iteration count
4: while t < tmax do
5: if r < TR then
6: for i = 1 : N do
7: if i < N ∗ k then
8: Hunting phase;
9: else

10: Nesting phase;
11: end if
12: Calculating f itness to select SW∗;
13: end for
14: else
15: for i = 1 : N do
16: Mating phase;
17: Calculating f itness to select SW∗;
18: end for
19: t = t + 1;
20: end if
21: Compute F−avg(t);
22: Applying Equation (5);
23: if ∆F−avg(t) < thl then
24: countlow+ = 1;
25: counthigh = 0;
26: else if ∆F−avg(t) > thu then
27: countlow = 0;
28: counthigh+ = 1;
29: else
30: countlow = 0;
31: counthigh = 0;
32: end if
33: Applying Equation (6); %Population size N updates
34: Applying Equations (7) and (8); %TR and CR updates
35: Applying Equations (9) and (10); %Boundary checks and corrections
36: end while

4. ASWO-BP Inverse Solution Study

In order to address the shortcomings of the BP algorithm, such as its tendency to
fall into local optima and its weak generalization ability, the ASWO algorithm is used to
optimize the weights and biases of the BP neural network. This optimization improves the
network’s generalization ability and output accuracy. The flow of the algorithm is shown
in Figure 6.

In the ASWO optimization BP neural network algorithm, the data set is first pro-
cessed to determine the neural network topology, and random positions are generated
to represent the search agents, i.e., individual spider bees, in the ASWO algorithm. The
initial position of each agent represents a potential solution to the weights and biases in the
neural network. Following the ASWO algorithm strategy, the search agents explore and
update their positions in the solution space, and each population iteration performs fitness
calculations and updates the algorithm parameters, which helps to guide the search agents
to evolve towards a better solution and to find the optimal search agent through continuous
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iterations. Finally, the optimal weights and biases obtained by the ASWO algorithm are
used as the initial weights and biases of the BP neural network for training.

Figure 6. Flowchart of the BP neural network algorithm optimized by ASWO.

To construct the complete data set that covers the working range of the robotic arm,
the complete spatial range reachable by the end of the drilling arm is first determined using
the Monte Carlo pseudo-random number method within the range of each joint. During
the data set establishment process, the straight-line distance between the rock drill dolly
and the boring face is continuously adjusted, and the position points are planned within
the coverage of the boring face so that they are evenly spread across it. The total station is
used to collect and store the actual position data of the end of the robotic arm, while the
control unit of the rock drill cart synchronizes and records the joint values of the robotic
arm and the attitude of the end-effector.

The data set needs to be further processed by converting the attitude data into the
9 elements of the rotation matrix 0

7R3×3. The theoretical position of the end-effector is
obtained by solving the forward kinematics of each set of joint values, and the spatial
position error is obtained by subtracting the theoretical position from the actual position
for use in the subsequent simulation process.

A total of 3095 sets of data were collected in this study, covering the entire working
space of the robotic arm. Each group contains 7 joint values of the robotic arm, 3 actual
position values of the end-effector, 3 theoretical positions, 3 spatial position errors, and
9 data units of the rotation matrix R. Eighty-five percent of the data set was used for training,
and the remaining 15% (i.e., 464 data sets) was used for network prediction.

According to the analysis of multiple rounds of experiments, the optimal hidden layer
structure is determined to be 2 layers, the number of nodes is 22 and 18, respectively, the
hidden layer adopts the tansig function as the activation function, the number of training
iterations is 1500, and the learning rate is set to 0.001, and the topology of the BP neural
network is shown in Figure 7.
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Figure 7. Topology of the BP neural network.

In order to find the global optimal solution, the mean square error (MSE) is used as
the fitness value. MSE is the average of the squared errors between the predicted and
actual values.

MSE =
1
n

n

∑
i=1

(
θi − θ̂i

)2
(11)

A smaller MSE value means a smaller gap between the predicted and true values,
thus indicating a more accurate and better solution. In order to balance the influence of
the telescopic and rotational joints on the overall fitness value when calculating the MSE,
the two telescopic joints are unified in decimeters, ensuring equal importance of each joint
parameter in the optimization process.

5. Simulation and Experimental Validation

In order to verify the effectiveness of the ASWO-BP algorithm in solving the inverse
kinematics problem of the robotic arm, simulation and real experiments are carried out,
respectively. MATLAB and CoppeliaSim joint simulation are used to simulate the real
operation of the robotic arm based on the error model in Section 2.2. The three inverse
solution methods, ASWO-BP (use actual positions as data set inputs), Jacobi iteration
method, and ASWO-BP (use theoretical positions as data set inputs), are applied to the real
operation of the G3Zi robotic arm, and the inverse solution error is calculated.

5.1. Simulation Verification

The simulation verification process is shown in Figure 8. The target position XtgtYtgtZtgt
and the target attitude Rtgt are input into the ASWO-BP neural network inverse solution
model, which results in a set of joint angles. Firstly, the DH forward solution is performed
to obtain the theoretical position XtheoYtheoZtheo, and secondly, the set of joint angles is
input into the forward solution error compensation model to obtain the position compen-
sation value XcompYcompZcomp, and then the XtheoYtheoZtheo and XcompYcompZcomp are added
together to obtain the actual position XactYactZact of the end. Finally, the difference between
XactYactZact and XtgtYtgtZtgt is calculated to obtain the simulation inverse solution error
XerrorYerrorZerror.

In order to verify the performance of the ASWO algorithm, three algorithms (GA,
PSO, and SWO) are used for comparison experiments. To ensure a fair comparison of the
four algorithms, the individual dimension dim, the population number N, the maximum
number of iterations Tmax, and the fitness value function are unified. According to the BP
neural network topology, the total number of weights and biases is 833, so the dimension
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dim is set to 833, the population number N is set to 100, and the maximum number of
iterations Tmax is set to 50,000.

Figure 8. Simulation verification process.

In addition, to ensure a fair comparison among the four algorithms, other parameters
were adjusted for each algorithm, and multiple sets of experiments were conducted to
analyze the data and obtain optimal solutions.

The following is the optimal parameter configuration for each algorithm. In the ASWO
and SWO algorithms, the initial minimum number of populations Nmin is set to 80, the
initial trade-off rate TR is set to 0.4, and the initial crossover probability CR is set to 0.3.
The threshold thl is set to 0.01 for the ASWO algorithm, thu is set to 0.2, and m is set to 50.
In the GA algorithm, the crossover rate CR is set to 0.3, and the variance rate VR is set to
0.1. In the PSO algorithm, the learning factors C1 and C2 are set to 2, and the inertia weight
W is set to 0.6.

From the best fitness curve in Figure 9, it can be seen that the GA algorithm has a
stronger global search ability and can obtain a better solution in fewer iterations, but it has
weaker local search ability, with a best fitness value of 1.946. The PSO algorithm, due to its
stronger local search ability, is prone to falling into local optima, with a best fitness value
of 0.826. The SWO algorithm, due to its fixed parameters, can sometimes remain in the
local optimum for a long time and is difficult to escape from, with a best fitness value of
0.641. The ASWO algorithm has a faster decreasing fitness value compared to the other
three algorithms, is less likely to be troubled by local optima, and obtains a better solution
with fewer iterations, with a best fitness value of 0.343.

Figure 9. Optimal fitness curves of four algorithms.

The optimal solutions obtained by the four algorithms are used as the initial weights
and biases of the BP neural network, respectively. After the training is completed, 464 sets
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of test data are substituted into the four models to obtain the joint error range, MSE, and
three-direction position error range, as shown in Table 2.

Table 2. Simulation results of the four algorithmic models.

Metrics GA-BP PSO-BP SWO-BP ASWO-BP

∆θ1(
◦) −0.941~0.86 −0.634~0.754 −0.536~0.417 −0.305~0.368

∆θ2(
◦) −1.121~0.953 −0.802~0.741 −0.382~0.459 −0.412~0.374

∆d3(mm) −113.6~102.7 −90.3~92.5 −85.2~79.6 −44.3~56.5
MSE 1.562 0.686 0.394 0.173

∆X(mm) −86~110 −94~86 −61~49 −33~37
∆Y(mm) −139~113 −89~100 −47~65 −42~40
∆Z(mm) −155~124 −107~92 −66~73 −60~54

As can be seen from Table 2, compared with the other three algorithmic models, the
first three joints of the ASWO-BP algorithm have smaller error ranges of (−0.305~0.368)°,
(−0.412~0.374)°, and (−44.3~56.5) mm, respectively.The mean square error of the ASWO-
BP algorithm is 0.173, which is lower than that of the optimal SWO-BP among the other
three models, which is 0.394. The ASWO-BP algorithm’s end position error ranges are
(−33~37) mm, (−42~40) mm, and (−60~54) mm, which is lower than the SWO-BP, which
is the best among the other three algorithm models.

The same target position (7950, 1800, 1540) mm is inversely solved by four methods
respectively, and the four sets of joint values are substituted into the simulation model.

As can be seen from Figure 10, there are three position points in each figure: the
theoretical position obtained by the DH forward solution, the actual position after compen-
sation for the forward solution error model, and the preset target position. The ASWO-BP
inverse solution position error is (−12, 20, 4) mm, the SWO-BP inverse solution position
error is (−18, −30, −29) mm, the PSO-BP inverse solution position error is (−33, −37, 35)
mm, and the GA-BP inverse solution position error is (−51, −24, −52) mm. The simulation
results show that the ASWO algorithm is able to optimize the initial weights and biases
more efficiently, thereby assisting the BP neural network in the learning and training pro-
cess and helping the network avoid local optima and find the global optimum or a better
local optimum.

Figure 10. Comparison of end positioning accuracy of four inverse solution methods for robotic arms.
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5.2. Experimental Validation of Robotic Arm Inverse Solution

In order to verify the validity of using actual positions as inputs to the BP neural
network data set in this study, a comparison is made in Experiment 1, where theoretical
positions are used as inputs to the data set, and the same algorithmic model as in this study
is used for training. Fifty-five sets of data are randomly tested during the actual use of the
robotic arm (the target positions are all within the operational space of the robotic arm), and
the joint values and the actual positions of the robotic arm’s end are recorded. The position
errors of the two methods in the three XYZ directions under the same target positions are
compared, and the experimental results are shown in Figure 11.

Figure 11. Comparison of errors for the two positions as inputs to the data set.

Each vertical axis in Figure 11 represents the positioning error in the XYZ directions,
while the horizontal axis represents the test points. Using the theoretical position as the
data set input does not effectively compensate for the forward solution error. Additionally,
the inaccuracy of the inverse solution model itself further increases the localization error,
resulting in average localization errors of (104.48, 94.07, 128.47) mm in the XYZ directions
(indicated by black dots). In this study, using the actual position as the data set input can
compensate for the aforementioned issues and significantly reduce the positional error.
This approach reduces the average positioning error in the XYZ directions to (18.16, 24.67,
27.21) mm (indicated by red pentagrams), respectively. The experimental results confirm
the validity and effectiveness of the data set settings in this paper.
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In order to avoid the influence of neural network model errors on the experiment,
the Jacobi iterative method, which is commonly used in the industrial field, is employed
in Experiment II to compare with the research method of this paper. The experimental
steps are similar to those in Experiment I. The spatial position errors of the two methods in
the XYZ directions under 55 sets of target positions are calculated, and the test results are
shown in Figure 12.

Figure 12. Comparison of end position error between ASWO-BP method and Jacobi iterative method.

The Jacobi iterative method is more accurate and can make the theoretical position
of the end reach the target position accurately, but it cannot compensate for the existing
forward solution error, leading to a larger error in the final position. As can be seen from
the green dots in the error distribution in Figure 12, these points are relatively far from the
zero-error line. In contrast, the inverse solution error (indicated by the red pentagrams)
obtained using the ASWO-optimized BP neural network algorithm is significantly lower,
and its distribution is close to the zero-error line. Compared to the Jacobi iterative method,
the maximum positioning errors in the XYZ directions are reduced from (181.26, 284.74,
305.81) mm to (42.59, 63.71, 67.08) mm, and the average positioning errors from (91.3, 87.38,
117.31) mm to (18.16, 24.67, 27.21) mm, thus greatly improving the positioning accuracy of
the robotic arm by 80.11%, 71.78%, and 76.81% in the respective directions.

As can be seen from Table 3, the inverse solution position errors reported in the literature
[11,19,31] are significantly lower than those in this paper and in the literature [14,28], primarily
due to the smaller size of the electro-mechanical arm and its more stable operation. The
average spatial position error of the method in this paper is 32.21 mm. Compared to the
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hydraulic robotic arm described in the literature [14,28], the position error of the proposed
method in this paper is larger, mainly because of the higher degree of freedom (DOF) and
larger size of the robotic arm studied in this paper. An increase in the size of the robotic
arm exponentially increases the position error of the end-effector. In addition, the literature
[14,28] provides only a single experimental result, which may exhibit a larger positional error.
Therefore, the method proposed in this paper can effectively compute the inverse solutions
for large hydraulic mechanical arms with high accuracy.

Table 3. System performance comparison between this study and other studies mentioned in
the literature.

Study Method DOF Robotic Arm
Size/m Driving Method Position

Error/mm

Proposed ASWO-BP 7 7.84~11.5 Hydraulic drive 32.21
Zong et al. 2023 [28] SAGSA+BP 4 3.89 Hydraulic drive 10
Yang et al. 2021 [14] Improved WHAM+DNN - 0.5 Water-hydraulic drive 5
Jiang et al. 2017 [31] PSO-BP 6 0.88 Electric drive 0.176

Cheng et al. 2020 [11] MQACA-RBF 6 0.25 Electric drive 0.09144
Almusawi et al. 2016 [19] ANN 6 0.42 Electric drive 0.35

6. Conclusions

In this paper, a robotic arm inverse solution method based on an ASWO-optimized BP
neural network is proposed. The ASWO algorithm performs real-time adaptive adjustment
of parameters, enhancing the algorithm’s adaptability. A mapping relationship between
the actual position and the joint angle is established in the neural network model, further
improving the positioning accuracy of the inverse solution. The ASWO-BP algorithm
improves the convergence accuracy and generalization ability of the neural network in
comparison with the GA-BP, PSO-BP, and SWO-BP algorithms. Experimental results show
that the ASWO-BP algorithm effectively reduces the spatial distance between the target
position and the actual position. Its inverse kinematics solving accuracy is significantly
better than that of the Jacobi iteration method. The three-direction end positioning accuracy
of the robotic arm is improved by 80.11%, 71.78%, and 76.81%, meeting the actual accuracy
requirements of engineering.
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