
Citation: Kuber, P.M.; Rashedi, E.

Investigating Spatiotemporal Effects

of Back-Support Exoskeletons Using

Unloaded Cyclic Trunk

Flexion–Extension Task Paradigm.

Appl. Sci. 2024, 14, 5564. https://

doi.org/10.3390/app14135564

Academic Editor: Heecheon You

Received: 7 June 2024

Revised: 20 June 2024

Accepted: 24 June 2024

Published: 26 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Investigating Spatiotemporal Effects of Back-Support
Exoskeletons Using Unloaded Cyclic Trunk Flexion–Extension
Task Paradigm
Pranav Madhav Kuber * and Ehsan Rashedi *

Industrial and Systems Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA
* Correspondence: pmk2015@rit.edu (P.M.K.); exreie@rit.edu (E.R.)

Abstract: Back-Support Industrial Exoskeletons (BSIEs) are designed to reduce muscle effort during
repetitive tasks that involve trunk bending. We recruited twelve participants to perform 30 cycles of
45◦ trunk bending with/without the assistance of BSIEs and with/without postural asymmetry, first
without any back fatigue, and then at the medium–high level of perceived back fatigue. To study
the benefits of BSIEs, the effects of being in a fatigued state were assessed by comparing the muscle
demands, kinematics, and stability measures during bending, retraction, and their transition portions
per cycle across the study conditions. Overall, the BSIEs caused a minimal decrease in the lower-back
activity (0–1.8%), caused by the increased demands during the retraction portion. A substantial
decrease in leg activity was observed (10–18%). Asymmetry increased the right-lower-back and
leg demands. Medium–high fatigue caused an increase in the lower-back activity (8–12%) during
bending and retraction. The BSIEs caused slower movements and improved the stability by lowering
the maximum distance of the Center of Pressure (COP) during the transition portion, as well as by
lowering the mean velocity of the COP during the bending/retraction portions. This controlled
study demonstrated the use of a cyclic trunk flexion–extension paradigm to study the effects of BSIEs,
and the outcomes can help with understanding the temporal effects of using BSIEs on physiological
measures, ultimately benefiting their proper implementation.

Keywords: ergonomics; industrial exoskeleton; human muscle fatigue; muscle activity; motion
analysis; stability; trunk bending

1. Introduction

Repetitive manual tasks, when performed for prolonged periods, can overload the
human musculoskeletal system, leading to strain, ache, and injury. In recent years, there
has been a high number of such injuries from overexertion and bodily reactions, which
accounted for ~1 million cases in the year 2021–2022 in the U.S. alone [1]. Even with
traditional ergonomic controls, like workforce training, and safety controls, workers are
exposed to greater demands due to ever-increasing consumer needs [2]. Meanwhile,
traditional ergonomic controls are often expensive to implement industry-wide and offer
less flexibility with variations across industrial tasks. Wearable assistive devices, such as
exoskeletons (EXOs), provide a mobile and affordable solution to reduce the risk of injury
by augmenting human capabilities.

Among the body regions, the lumbar region of the lower-back is the most susceptible
to the risk of injury, with the highest (~17%) injury rate [3]. Back-Support Industrial
Exoskeletons (BSIEs) support their wearers’ torsos while they perform tasks that require
trunk flexion, relieving the lower-back muscle effort, potentially reducing the risk of
injury in the back region [4–6]. BSIEs have shown significant reductions in the lower-
back muscle activity during the performance of static-posture maintenance tasks with
trunk bending [5,7,8] and dynamic lifting tasks [9–14]. However, when evaluated in field
environments, their effects on the human body are found to be mixed, as reviewed in
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our prior work [15]. Conducting in-depth evaluations can provide key insights, which
may be beneficial to improving their design. Furthermore, the outcomes from evaluations
can be beneficial to developing guidelines for their proper use and implementation in the
real world.

Temporal considerations during biomechanical evaluations are valuable for deter-
mining the realistic effects of an intervention. For instance, fatigue is often the result of
the repetitive activation of the same muscle group, as observed commonly during tasks
involving the picking up/placing of objects at the lower-body levels. Besides suffering
from muscle strain/sprain, when fatigued, a worker may be more vulnerable to injury
due to the affected neuromusculoskeletal systems. High demands on the body compared
to the body’s capacity to generate vital forces can lead to failure, poor work quality, and
performance errors, and they can cause injury [16]. Therefore, estimating the impacts of
fatigue on the human body during the performance of tasks can be beneficial.

Global fatigue has been traditionally measured using subjective scales by recording
the ratings of perceived exertion (RPEs) on the Borg scale [17], while the impacts of fatigue
on specific body regions have been measured by recording changes in the muscle force
generation capacity. Impacts of fatigue are also commonly observed in measures of muscle
activity, body movement, and whole-body stability. Muscle fatigue has been defined in the
literature as “the inability of muscles to sustain force generation over time” [18]. Moreover,
performing activities in a fatigued state may also cause detrimental effects, such as a lack of
balance and proper control over body movement, increasing the risk of falls [19,20]. While
BSIEs may provide benefits in reducing the rate of muscle fatigue, they may expose users
to a higher fall risk [21], especially with additional weight (2.2–4.5 kg), and assistive torque
could affect the wearer’s stability [19]. Conditions may worsen during the performance
of dynamic tasks with increased inertial forces, as well as during awkward/asymmetric
postures [14,22–24]. Considering these aspects in task simulation can provide valuable
insights into improving BSIE designs.

The novelty of this study lies in our experimental design, where cyclic trunk flexion–
extension tasks were utilized to compare the physiological effects of being in a fatigued state
with vs. without a BSIE. In addition, the study participants were fatigued using intermittent
bending tasks, like realistic industrial tasks, as opposed to earlier work in which changes in
the duration till the fatigued state when maintaining a flexed trunk posture were utilized
to assess the temporal effects of BSIEs [4]. In addition, we also considered the effects of
postural asymmetry, and our in-depth analysis included the study of specific portions
of the cyclic trunk flexion–extension of the bending, transition, and retraction motions.
Impacts on the measures of the muscular demands in both the lower-back and legs, as well
as on the whole-body stability, were evaluated. We hypothesized that using a BSIE can
provide overall benefits over time to both the back and leg regions, and that wearing the
device can detrimentally affect the natural body movement and whole-body stability. The
outcomes presented in this article can be beneficial to developing guidelines for effectively
implementing these wearable assistive devices in workplaces.

2. Materials and Methods
2.1. Participant Pool

We recruited twelve young male adults from a college population. Inclusion criteria
requirements were an exercise frequency of at least two times each week and a lack of
incidents of back/lower-body musculoskeletal disorder in the last 6 months from the first
day of the experiment. The participant pool in this study was the same as that in our
prior analysis, and further details on the anthropometric measurements can be found in
our recent publication [25]. Written informed consent was obtained, as approved by the
university review board with the approval code HSRO#01113021. The protocols agreed
with the tenets of the Declaration of Helsinki.
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2.2. Experimental and Task Design

This study focused on evaluating the effects of using a BSIE in realistic conditions,
specifically the presence of fatigue and awkward postures, while performing repetitive
trunk flexion tasks. Thus, a 2 × 2 × 2 design was selected with the independent fac-
tors as assistance (without exoskeleton (N)/with exoskeleton (E)), posture (symmetry
(S)/asymmetry (AS)), and time (beginning (B)/end (ED)). To assess the effects of assis-
tance with a BSIE, we selected a passively actuated BSIE, named BackX Model AC (SuitX,
Emeryville, CA, USA), set at medium support (~25 lbs. of support).

The experimental setup included a portable adjustable stand in front of the participant
such that the subject could bend at a ~45◦ sagittal flexion angle. For simulating awkward
postures, ~45◦ asymmetry in the transverse plane towards the left was chosen, as per
similar recent studies [26]. Lastly, to investigate the effects of fatigue, we incorporated
a back-fatiguing task that involved sustaining trunk flexion for short durations that was
performed intermittently. Cyclic flexion–extension was performed at the start and end of
each session to assess the effects of fatigue. Three sessions were scheduled on separate
days (with a gap of 48 h) per participant to avoid a potential carry-over effect between the
levels of the assistance (E/N) factor, as shown in Figure 1. Among the three sessions, the
first session included training, while the other two consisted of performing tasks.
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2.3. Data Collection Equipment and Tools

Both the lower-back and leg regions were selected as the locations of interest, and the
participants in our pilot study reported the prominent presence of fatigue in the legs. Thus,
the muscle groups to be studied included the left/right erector spinae longissimus (LES,
RES) and the bicep femoris muscles (LBF, RBF). Both these muscle groups are known to
contract the most during trunk flexion, as they are responsible for pulling the weight of
the upper torso and torso to ensure a stable posture. Four Trigno Wireless sensors (Delsys,
Natick, MA, USA, 1200 Hz) for measuring muscle activity using surface Electromyog-
raphy (EMG) were placed on the four muscles. We followed the protocols provided by
SENIAM [27] for placing the sensors on the respective muscle groups using double-sided
tapes. To segment the data into different portions, as well as to detect trunk movement,
an optoelectronic motion capture system (VICON, Hauppauge, NY, USA, 100 Hz) was
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used. This included 20 reflective markers placed on the upper body (3 on the upper-back,
2 on the middle back, and 3 on the hip) and lower body (3 on each leg and 3 on each foot)
of each participant. Marker placement locations were determined based on guidelines
provided by VICON [28]. For understanding the impacts on balance, participants stood
upon two floor-embedded force plates (AMTI OR6-6 platform, Watertown, MA, USA,
1000 Hz) with each foot on one force plate. All three systems were time-synced using
NEXUS v1.7.1 software (VICON, Hauppauge, NY, USA). Lastly, the perceived fatigue
levels in the back and legs were obtained using ratings of exertion (RPEs) on the Borg RPE
CR-10 scale [29,30].

2.4. Procedure

The experimental procedure used to collect data was the same as that in our recently
published study [31]. A wall-sit task was performed at the start of each session for the self-
calibration of the Borg RPE CR-10 scale. This was followed by the attachment of electrodes
and sensors and the measuring of the MVCs from all four muscles (Figure 1). The first
session concluded with participants performing two repetitions of each experimental task
with/without assistance and in symmetric/asymmetric postures and then familiarizing
themselves with the BSIE. Participants were asked to perform trunk flexion tasks during
the first session, and those able to perform too few (<4) or too many (>30) trials without
assistance were excluded from the remaining sessions and the final pool, as these would be
outliers in our dataset.

Each of the two subsequent experimental sessions included performing trunk-bending
tasks in asymmetric and symmetric postures, with/without the BSIE. The protocol for
the experimental tasks in each condition consisted of performing 30 cycles of repetitive
trunk flexion–extension at the start (RPE in the back: 0 (no exertion)) and at the end (RPE
in the back: 7 (medium–high exertion)). Task cycles with 30 s sustained bending, and
two 15 s standing-still activities were performed with 15 s intermittent breaks until par-
ticipants reached a medium–high fatigue level (Figure 2). After performing 30 repetitive-
bending cycles at the end, the experimental condition was concluded. Participants were
recalled for performing the third session after a minimum period of 48 h to allow complete
muscle recovery.

2.5. Data Analysis and Responses

NEXUS v1.7.1 software (VICON, Hauppauge, NY, USA) was used to export data from
each sensor/marker of the EMG, force plates, and motion capture systems in a single (.csv)
file that represented 30 cycles of repetitive bending. We developed a custom MATLAB code
to import data from the Excel file. Data obtained from the force plate and motion capture
system were filtered using a 2nd-order, lowpass, digital Butterworth filter with a normalized
cutoff frequency of 10 Hz. Meanwhile, the EMG was filtered using a Butterworth filter in
the band [4,32]. To evaluate variations across the bending/retraction cycles, we segmented
the cycles using the position in the z direction of the upper-back reflective marker by
detecting the bending start/end and retraction start/end portions. To ensure consistency,
the middle 40% of the range of movement, scaled from 0 to 1, was selected, as shown in
Figure 3. Each repetitive-bending task was divided into 30 distinct bending (BD), retraction
(RT), and transition (TS) portions. The TS portion was defined as the spatial movement
from the detected end of bending to the detected start of retraction, which represents the
portion during which participants switched from bending to retraction.
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After segmenting the cycles into distinct portions based on the spatial location of the
trunk, we calculated the responses from the EMG, force plates, and motion data. As the
raw EMG data could not be directly used for processing, correlation, or comparison, we
calculated the Root Mean Square (RMS) of the signal. Using the RMS, we determined
the peak amplitude for each portion (bending/transition/retraction). Peak values were
reported as the average of 50 datapoints before and after the detected peak. Similarly, we
determined the peak values of the norm of the velocity of the upper-back, lower-back, and
hip markers for each portion of cycles. Regarding the stability analysis, the maximum
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distance of the COP (Center-of-Pressure) location from the neutral position for each portion
was determined using the combined COP co-ordinates of both force plates with the distance
formula. We also calculated the mean velocity of the COP.
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marker during 30 cycles of a repetitive trunk flexion–extension task based on type of spatial activity
categorized as bending, retraction, or transition movement (Adapted from [31]).

For statistical analysis, we used standard least squares with an emphasis on effect
leveraging using JMP Pro® v16.1.0 software (SAS Institute, Cary, NC, USA), with the
statistical significance level at a p-value < 0.05. Significant results were then followed by
post-hoc paired comparisons using Tukey’s Honest Significant Difference (HSD) test where
relevant. All the parametric model assumptions were validated before providing the mean
(SD) for the levels of statistically significant effects.

3. Results

The statistical comparisons across the levels of the main and interaction effects of
assistance (E/N), posture (AS/S), and time (B/ED) are listed in the Appendix A Section in
Tables A1–A3. The outcomes were categorized according to the measure type, specifically
the muscle demands (back/legs), trunk movement (upper-back/lower-back/hip), and
whole-body stability, described in detail in the following sections.

3.1. Muscular Demands

Overall, the muscle demands in both the back and leg muscles were the lowest during
the bending portion, while both the retraction and transitioning from bending to retraction
imposed higher demands. Specifically, the demands were ~28%, 10%, ~93%, and 62%
higher in the LES, RES, LBF, and RBF muscles (p < 0.01) during the transition vs. bending
portion, respectively (Table 1). Over time, an increase in activity was seen in the LES,
RES, and RBF muscles for all three portions, and in the LBF during the transition portion
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(Table 2). Across the postures, the RES activity during retraction was the highest (0.68 (0.3))
during the asymmetric postures and was greater than the symmetric postures by ~19%
(Table 3).

Table 1. Overall variations in muscle demands across the bending (BD), retraction (RT), and transition
(TS) portions of the repetitive-bending task.

LES RES LBF RBF

Portion Mean SD Mean SD Mean SD Mean SD

BD 0.45 0.17 0.48 0.21 0.14 0.11 0.14 0.10
RT 0.57 0.20 0.62 0.27 0.27 0.18 0.27 0.18
TS 0.60 0.18 0.54 0.27 0.39 0.18 0.27 0.18

Table 2. Overall variations in muscle demands across the bending (BD), retraction (RT), and transition
(TS) portions across time as the beginning (B) and end (ED) of the repetitive-bending task.

LES RES LBF RBF

Portion Time Mean SD Mean SD Mean SD Mean SD

BD
B 0.42 0.16 0.46 0.19 0.14 0.12 0.14 0.09

ED 0.47 0.18 0.51 0.21 0.14 0.11 0.15 0.11

RT
B 0.53 0.19 0.60 0.27 0.27 0.19 0.26 0.16

ED 0.60 0.21 0.65 0.27 0.27 0.18 0.28 0.19

TS
B 0.56 0.16 0.50 0.24 0.36 0.16 0.26 0.16

ED 0.63 0.20 0.57 0.28 0.41 0.19 0.28 0.19

Table 3. Overall variations in muscle demands across the bending (BD), retraction (RT), and transition
(TS) portions across asymmetric (AS) and symmetric (S) postures of the repetitive-bending task.

LES RES LBF RBF

Portion Posture Mean SD Mean SD Mean SD Mean SD

BD
AS 0.40 0.17 0.49 0.21 0.16 0.13 0.16 0.12
S 0.50 0.16 0.48 0.20 0.12 0.09 0.13 0.08

RT
AS 0.49 0.18 0.68 0.30 0.28 0.20 0.26 0.18
S 0.65 0.19 0.56 0.23 0.25 0.17 0.28 0.17

TS
AS 0.52 0.16 0.47 0.24 0.35 0.17 0.26 0.18
S 0.67 0.17 0.60 0.27 0.43 0.18 0.28 0.17

Considering all three task portions, the benefits of the BSIE for back muscles were
minimal (0–1.8%), with no effects on the RES, while the benefits were more prominent
in the leg muscles (10–18%), specifically the LBF and RBF (Table 4). Specifically, the
muscle demands were greater when the BSIE was worn during the retraction portion. The
RES and LES activities were ~4.8% and 3.6% higher, respectively, with the BSIE during
the retraction portion (Figure 4). Meanwhile, most benefits were observed in the LBF
and RBF muscles, with ~23% and ~17% lower activity during retraction with the BSIE.
Variations in the muscle demands across the assistance, time, and posture factors are
depicted in Figures 4–6 and are described separately in the following sections across the
three task portions.
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Table 4. Muscle demands with (E)/without (N) assistance from BSIE, averaged over bending,
retraction, and transition portions.

LES RES LBF RBF

Mean SD Mean SD Mean SD Mean SD

E 0.53 0.21 0.55 0.25 0.25 0.18 0.21 0.16
N 0.54 0.18 0.55 0.26 0.28 0.20 0.25 0.17
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Figure 5. Muscle demands in left/right erector spinae (LES/RES) and left/right bicep femoris
muscles compared between without assistance (N) and with assistance (E) across asymmetric (AS)
and symmetric (S) postures and categorized according to task portion as bending (BD), retraction
(RT), and transition (TS) (Note: dissimilar letters/symbols within the same task portion denote
statistical significance).

3.1.1. Effect of Assistance during Bending Portion

Wearing a BSIE led to 9%, 4%, 22%, and 9% benefits in the LES, RES, LBF, and
RBF, respectively, during the bending portion. The BSIE led to 18% lower activity in the
asymmetric postures, and the highest activity of 0.53 (0.17) in the LES was seen during the
symmetric postures without any assistance. As shown in Figure 5, the RES activity ranged
from 0.45 to 0.5 in both postures with/without a BSIE, with minimal differences. When
using the BSIE, ~10% (p < 0.01) higher activity was seen in the asymmetric vs. symmetric
postures in the RES muscle. Higher LBF (~30%) and RBF (~18–28%) activities were seen
during bending in the asymmetric vs. symmetric postures and were higher (5–18%) without
assistance. Meanwhile, 8–12% (p < 0.01) higher activity was seen in the LES and RES when
repetitive bending was performed at the end vs. beginning, and most benefits of ~7–8%
were seen in the LES muscle (Figure 6). Similar activity was seen in the leg muscles
across time.



Appl. Sci. 2024, 14, 5564 10 of 21
Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 21 
 

 
Figure 6. Muscle demands in left/right erector spinae (LES/RES) and left/right bicep femoris muscles 
compared between without assistance (NE) and with assistance (E) across time of experiment as 
beginning (B) and end (ED) and categorized according to task portion as bending (BD), retraction 
(RT), and transition (TS) (Note: dissimilar letters/symbols within the same task portion denote sta-
tistical significance). 

3.1.2. Effect of Assistance during Retraction Portion 
Over the retraction task portion, slight benefits were seen in the LES, LBF, and RBF 

muscles but not in the RES muscle, where the BSIE led to ~5% increased demands (p < 
0.01) with a normalized amplitude of 0.64. However, benefits in the leg muscles of ~22% 
(p < 0.01) were seen in both leg muscles with the BSIE. Looking at the postures, asymmetry 
decreased the demands in the LES by 20–25% but increased the demands by about the 
same amount in the RES under both the with-assistance/without-assistance conditions. 
The highest activity of 0.71 (SD: 0.26) occurred in the RES with the BSIE during the asym-
metric postures. During retraction, the activity in the LBF was higher in the asymmetric 
vs. symmetric posture under the with (8% difference)- and without (13% difference)-as-
sistance conditions (Figure 5). Considering the temporal differences (Figure 6), the use of 
the BSIE led to 12% and 11% increases in the LES and RES with time, while the increases 
were ~10% and 5% without the BSIE, respectively (p < 0.01). 

3.1.3. Effect of Assistance during Transition Portion 

Figure 6. Muscle demands in left/right erector spinae (LES/RES) and left/right bicep femoris
muscles compared between without assistance (N) and with assistance (E) across time of experiment
as beginning (B) and end (ED) and categorized according to task portion as bending (BD), retraction
(RT), and transition (TS) (Note: dissimilar letters/symbols within the same task portion denote
statistical significance).

3.1.2. Effect of Assistance during Retraction Portion

Over the retraction task portion, slight benefits were seen in the LES, LBF, and RBF
muscles but not in the RES muscle, where the BSIE led to ~5% increased demands (p < 0.01)
with a normalized amplitude of 0.64. However, benefits in the leg muscles of ~22% (p < 0.01)
were seen in both leg muscles with the BSIE. Looking at the postures, asymmetry decreased
the demands in the LES by 20–25% but increased the demands by about the same amount
in the RES under both the with-assistance/without-assistance conditions. The highest
activity of 0.71 (SD: 0.26) occurred in the RES with the BSIE during the asymmetric postures.
During retraction, the activity in the LBF was higher in the asymmetric vs. symmetric
posture under the with (8% difference)- and without (13% difference)-assistance conditions
(Figure 5). Considering the temporal differences (Figure 6), the use of the BSIE led to 12%
and 11% increases in the LES and RES with time, while the increases were ~10% and 5%
without the BSIE, respectively (p < 0.01).
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3.1.3. Effect of Assistance during Transition Portion

During the transition portion, the benefits of the BSIE were seen only in the RBF, where
the activity was ~15% lower (p < 0.01) (Figure 4). Minor benefits of ~5% were seen only
during the symmetric postures (p < 0.05) in the LES, LBF, and RBF muscles. For the RES,
a ~5% (p < 0.05) increase in demands was seen during the transition in the asymmetric
postures. Considering the temporal aspects, an ~11% increase in the LES activity was seen
over time without the BSIE and ~15% with the BSIE with a normalized value of ~0.64
(SD: 0.17) when performing the tasks at the end (Figure 5). A similar increase of ~12–13%
occurred in the RES and LBF activities, but no effect with time was seen in the RBF activity
under both the with-assistance and without-assistance BSIE conditions (Figure 6).

3.2. Trunk Kinematics

Performing repetitive bending while wearing the BSIE led to reduced upper-back and
lower-back mean norm velocities by ~10–15% and ~50–60% during both the bending and
retraction portions, respectively (Figure 7). However, the hip velocity was ~13% higher
during bending with assistance, and no difference was seen during retraction. Between the
postures, asymmetry led to a higher mean norm velocity of the upper-back, lower-back,
and hip by ~5–15% (Table 5). With time, the mean velocity of the upper-back showed clear
increases of up to ~7% during the bending and retraction, both with and without the use of
the BSIE. The highest velocity of 565 mm/s was seen without the BSIE at the end during
retraction, while the lowest velocity of 401 mm/s occurred at the beginning of the trials
during bending with assistance. While the upper-back speed varied, no difference was seen
in the lower-back over time, and the velocities for the hip were almost similar (Figure 8).
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Table 5. Mean norm of velocity in the upper-back, lower-back, and hip regions with (E)/without (N)
assistance across postures with asymmetry (AS) and symmetry (S) during the transition (TS) portion
of the repetitive-bending task.

UB LB Hip

Portion Assistance Posture Mean SD Mean SD Mean SD

BD
E

AS 421.2 119.8 147.5 51.7 99.4 31.0
S 404.1 123.4 127.6 46.4 85.3 29.5

N
AS 470.8 155.7 238.3 78.3 81.3 43.1
S 457.9 163.5 211.8 83.3 80.9 52.2

RT
E

AS 476.8 114.5 136.2 57.7 129.5 47.9
S 471.4 132.8 138.5 57.8 100.3 34.6

N
AS 553.4 152.1 254.5 74.5 121.0 57.8
S 539.8 155.3 227.3 79.7 110.9 55.1

TS
E

AS 78.5 18.4 37.4 10.5 28.2 8.1
S 78.6 23.6 35.0 9.8 22.5 6.8

N
AS 79.5 17.5 47.9 11.1 23.1 7.5
S 75.2 16.2 43.2 10.3 20.1 5.9
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Figure 8. Comparison of movement of upper-back, lower-back, and hip regions between without
assistance (N) and with assistance (E) across time as beginning (B) and end (ED) and categorized
according to task portion as bending (BD), retraction (RT), and transition (TS) (Note: dissimilar
letters/symbols within the same task portion denote statistical significance).
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3.3. Whole-Body Stability

When wearing a BSIE, the maximum distance during the transition portion was
91.5 (37.6) mm, while the same without a BSIE was 102.7 (39.5), with the BSIE leading to a
12% decrease in the COP distance from the initial position when standing. This distance
was higher with the asymmetric postures both with and without BSIE support (Table 6).
Both with and without the BSIE, the asymmetric postures increased the maximum COP
distance by ~50%.

Table 6. Maximum distance with (E)/without (N) assistance across asymmetric (AS) and symmetric
(S) postures from BSIE during the transition (TS) portion of the repetitive-bending task.

Assistance Posture Mean SD

E
AS 114.6 30.1
S 68.2 29.1

N
AS 129.8 32.8
S 75.6 24.1

Meanwhile, the mean COP velocity was ~40% (p < 0.01) lower with assistance vs.
without in all three portions of the repetitive bending. The highest mean COP velocity of
1318 mm/s (911) occurred without assistance during the retraction portion, while the lowest
value occurred during the transition portion when the BSIE was worn (Figure 9). When the
BSIE was worn, no difference was seen in the COP velocity based on the postures, but when
the BSIE was not worn, the mean COP velocities in all three task portions were ~15–17%
(p < 0.01) higher during the asymmetric vs. symmetric postures. When comparing the
differences over time, ~10% (p < 0.01) higher values were seen when tasks were performed
at the end vs. at the beginning, and this rate of increase was almost the same with vs.
without the BSIE.
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4. Discussion

This study considered an in-depth evaluation to assess the efficacy of BSIEs in intermit-
tent trunk flexion tasks involving sustained bending portions by evaluating the changes in
the physiological measures during specific portions of the repetitive trunk flexion–extension
tasks. Specifically, we segmented each trunk flexion–extension cycle (30 cycles per con-
dition) into three separate portions based on the trunk movement as bending, retraction,
and transitioning from bending to retraction. The measures assessed included the muscle
demands in the lower-back and legs, the trunk movement, and the whole-body stability
during each bending/retraction movement. The novelty of our study lies in the level of
depth of our assessment. In our experimental design, we used intermittent trunk flexion–
extension tasks with sustained bending and short-duration relaxation breaks (15 s intervals)
to fatigue the study participants, as would be the case in industrial task cycles. Prior
studies on BSIEs have mostly simulated static-posture maintenance [4,7] and repetitive-
lifting tasks [33,34], but the effects during repetitive unloaded trunk flexion–extension tasks
have not been thoroughly explored in such depth. While our overall findings indicated
that BSIEs may offer minimal (0–1.8%) benefits in the back but greater benefits in the leg
region (10–18%) during repetitive bending, our study was able to determine variations
across the different spatial portions of the task, as well as over time. The outcomes, as
discussed below, may be beneficial to understanding the impacts of assistive devices in
real-world scenarios.

The distribution of the muscle demands was assessed based on the dynamic spatial
movement during each cycle of bending, transitioning, and retraction. Across these por-
tions, most benefits of the BSIE in the back region (LES: 4%; RES: 9%) occurred during
the bending portion, while the device increased the demands during retraction (~5% in-
creased demands (p < 0.01)) in the RES. No effects on the back activity were seen during
the transition portions. Although the assistance provided by the device was beneficial
during the bending movement, and possibly for stopping the trunk movement at a 45◦

angle, the added weight of the device may have increased the total weight on the torso
and the demands on the back muscles while pulling back the torso to a neutral stance.
As opposed to the back, the benefits with the BSIE were seen across all three portions of
the task: (a) bending (~9–22%), (b) retraction (~22%), and (c) transition (~2.8–15%). Such
benefits may have originated from the design of the evaluated BSIE, for which the structural
mechanisms transfer loads from the chest to the front of the thigh region, bypassing the
demands in the bicep femoris muscles [8]. In contrast, when not using the BSIE, the bicep
femoris muscles are required to hold the weight of the entire upper body. Even though the
BSIE was designed primarily for sustained bending tasks, real-world applications of such
bending tasks may require the wearers to perform repetitive trunk flexion–extension [15].
In such cases, BSIEs may provide greater benefits in reducing the demands on the legs
rather than on the back region.

We considered 45◦ asymmetric bending towards the left to simulate awkward postures,
which are known to increase the physical demands and risk of injury [35]. Asymmetry
caused 18% lower activation in the LES but increased activity in the RES (by ~10%), LBF
(~30%), and RBF (~18–28%) vs. the symmetric-posture muscles. This was expected, as
asymmetry caused higher stretching and contraction in the right back region, increasing the
workload on the right musculature. Using the BSIE was slightly beneficial for the LES and
led to greater benefits (5–18%) in the leg region. Meanwhile, during transition, no effects
were seen in the LES, LBF, or RBF muscles, and the demands ~5% (p < 0.05) increased in
the RES in the asymmetric vs. symmetric postures. During retraction, the BSIE caused the
highest activity of 0.71 (SD: 0.26) in the RES during asymmetric retraction (21% more than
symmetric bending) and increased the activity in the LBF (~8%). The increased activity in
the LBF during retraction occurred possibly due to the application of higher forces at the
left foot for maintaining balance. Both the switching between bending and retraction, as
well as retraction itself, were thus more demanding in the presence of awkward postures.
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The effects of muscle fatigue were assessed by comparing the effect of time, as the
beginning and end portions were performed at the no-fatigue and medium–high-fatigue
levels on the Borg CR-10 RPE scale. The presence of muscle fatigue is known to increase
the peak amplitude of the EMG signal, and BSIEs have been known to delay muscle
fatigue [36,37]. Increased back muscle activity occurred across all three task portions but
increases in all the muscles occurred mostly during the transition portion of the task. This
portion involved switching from an ongoing dynamic motion of bending forward to an
opposite retraction movement, requiring additional demands to counteract and exceed the
inertial forces. The effects of fatigue on the muscular demands were clearly observed from
the increased back activity (8–12% (p < 0.01)) between the beginning and end trials during
bending, with most of the benefits (~7–8%) seen in the LES muscle originating from the
reduced demands on the left back musculature during the asymmetric postures. During
retraction, higher fatigue effects occurred with the BSIE (LES: 12% increase with time; RES:
11%) vs. without the BSIE (LES: ~10%; RES: 5%) (p < 0.01). Similar increased demands
over time were also seen during the transition portions in the LES, RES, and LBF activities
(up to 15%), but no effect with time was seen in the RBF activity under either the with-
or without-BSIE conditions. This may be because of the asymmetry conditions, as well
as the possibility that the study subjects shifted their weight more on the left side when
performing the tasks in both the symmetric and asymmetric postures.

The use of the BSIE led to consistent reductions across the bending and retraction
portions in the movement velocities of the markers located on the upper-back, lower-back,
and hip regions. Retraction was performed faster than bending, possibly because the
bending movement required more effort to control the fall of the torso, while retraction
required pulling the entire torso towards a neutral posture, requiring acceleration phases.
Reductions in trunk angular velocities have been reported when performing repetitive-
lifting tasks after wearing a BSIE [13]. The upper-back velocities were the highest, as
this was the region with the most displacement, followed by the lower-back and hip
regions, which were the most stable. Interestingly, most reductions (of ~up to 60%) after
using assistance occurred in the lower-back region during both the bending and retraction
portions. This may have been caused by the structural support provided by the BSIE. On the
contrary, the BSIE increased the hip velocity by ~13% during bending with assistance, and
no difference was seen during retraction. This may have been the result of the BSIE keeping
the trunk and legs straight throughout the bending/retraction cycle, leading to more hip
movement. When the subjects were fatigued, they performed faster bending/retraction
movements. This was seen from the increase of ~7% in the mean velocity of the upper-
back. This movement was the fastest when the BSIE was not worn, while the participants
performed the tasks the slowest when using the BSIE and when they were not fatigued.
Muscle fatigue in the back and leg regions may have impacted the ability to sustain stable
muscle force generation, possibly leading to higher force generation and faster movement.

Similar to previous studies [19,38], we assessed the COP distances and velocities to
study the effects on the balance. The findings showed that the BSIE led to a lower mean
(~40% (p < 0.01)) COP velocity during all three task portions. The trunk movement was also
reflected in the whole-body stability measures, with a higher mean COP velocity occurring
during retraction vs. bending. A 12% decrease in the maximum COP distance from the
initial position during the transition portion was seen when the tasks were performed with
the BSIE. Interestingly, the BSIE did not affect the mean COP during the performance of the
asymmetric vs. symmetric postures. However, when the BSIE was not worn, the mean COP
velocities in all three task portions were ~15–17% (p < 0.01) higher during the asymmetric
vs. symmetric postures. Fatigue is known to impact stability measures [39]. The presence
of fatigue equally affected the mean COP velocity when the tasks were performed with and
without the BSIE, with a similar rate of increase between the beginning and end conditions.
However, the values without the BSIE at the end were almost twice those of when the tasks
were performed with BSIE assistance. Thus, contrary to our hypothesis, using the BSIE led
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to more stable postures during the bending tasks, especially in the presence of asymmetric
and fatiguing conditions.

This study utilized a controlled experiment in which the study participants performed
repeated cycles of trunk flexion. In addition, fatigued states were attained for all the partici-
pants through intermittent trunk flexion tasks involving static standing, bending/retraction,
and sustained trunk flexion in symmetric and asymmetric postures. This was performed to
understand the effects of using a BSIE on the muscle demands, kinematics, and stability.
While we simulated realistic scenarios in a controlled fashion with standard body move-
ments, real-world tasks may include much more variability in body movement. In such
cases, we recommend that practitioners thoroughly evaluate the types of body movements,
as well as the proportion (considering duration and frequency) of body postures, where a
BSIE is designed to be beneficial (sustaining a posture with trunk flexion) across activities
within tasks.

While our study has shed light on diverse aspects of the physical demands concerning
the spatial and temporal dimensions, it is essential to acknowledge certain limitations
inherent in our research. Firstly, our participant group primarily consisted of young adults,
and extending the investigation to encompass gender and anthropometric variations would
enhance the study’s applicability to a broader demographic. Another critical component
is the variability introduced by different exoskeleton designs, ranging from soft to rigid
and encompassing passive, active, and hybrid systems [40]. These structural and actuation
differences among exoskeletons can significantly impact the observed variations in the
physical-demand measures. As the BSIEs were helpful for reducing the leg demands during
the repetitive trunk flexion–extension tasks, our future steps may compare the efficacies of
BSIEs and their lower-limb counterparts that enable sitting/leaning postures to negate the
need for trunk flexion–extension tasks [41]. Future work could delve into field evaluations,
focusing on the muscle demands in the trunk musculature, such as the trapezius and
oblique muscles, which are especially relevant for tasks involving asymmetric postures.
Additionally, lower-body kinematics, stability measures based on the foot contact area
derived from marker positions, and a comparative analysis between the demands imposed
on wearers of BSIEs across newer and different types of these wearable assistive devices
could be explored.

5. Conclusions

This study conducted an in-depth assessment of BSIEs to assess the variations in
the measures of the muscle demands in the erector spinae (LES/RES) and bicep femoris
(LBF/RBF), the trunk movement, and the stability across the bending, retraction, and
transition phases within each cycle of 30 repetitive trunk flexion–extension cycles. In
addition, our study emulated realistic conditions by considering intermittent task cycles
to fatigue the study participants, as well as asymmetric postures. The overall findings
indicated minor benefits in the back region (0–1.8%) but rather substantial advantages in
the leg region (10–18%) during repetitive bending. The distribution of the muscle demands
across the dynamic spatial movement revealed that although most benefits of the BSIE
in the back region occurred during the bending phase, the demands were much higher
during the retraction portions. The asymmetric postures led to decreased activation in the
LES but increased activity in the RES, LBF, and RBF, aligning with our expectations. After
examining the fatigue effects, we found increased back activity (8–12%) during bending
and retraction. The BSIE particularly reduced the movement velocities, especially in the
lower-back region (~up to 60%). A consistent reduction in the COP velocity (mean ~40%)
with the BSIE was also seen across all the task portions, as well as with asymmetry and over
time, highlighting the positive impact of using BSIEs on the whole-body stability. Future
research could explore the differences across exoskeleton designs and examine effects across
diverse genders and demographics, providing a more generalizable understanding of the
wearable assistive devices’ implications during repetitive trunk flexion–extension activities.
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Appendix A

Table A1. Summary statistics showing p-values for measures of muscle activity, trunk movement,
and whole-body stability for main effects of assistance (A), posture (P), and time (T) and their
two factor interaction effects of A*P, A*T, and P*T during the task portions of bending (BD). (Note:
bold numbers denote statistical significance).

Measure Effect p-Value Measure Effect p-Value

Muscle Activity

nPeak_LES

A 0.000

nPeak_RES

A 0.020
A*P 0.000 A*P 0.000
A*T 0.036 A*T 0.002

P 0.000 P 0.008
P*T 0.000 P*T 0.008
T 0.000 T 0.000

nPeak_LBF

A 0.000

nPeak_RBF

A 0.000
A*P 0.000 A*P 0.004
A*T 0.043 A*T 0.139

P 0.000 P 0.000
P*T 0.000 P*T 0.000
T 0.009 T 0.000

Trunk Movement Whole-Body Stability

Mean_normVelHIP1

A 0.000

MeanCOPvel

A 0.000
A*P 0.000 A*P 0.000
A*T 0.006 A*T 0.641

P 0.000 P 0.001
P*T 0.084 P*T 0.753
T 0.180 T 0.000

Mean_normVelLB1

A 0.000

Peak_COPvel

A 0.000
A*P 0.045 A*P 0.000
A*T 0.007 A*T 0.888

P 0.000 P 0.002
P*T 0.618 P*T 0.161
T 0.035 T 0.000
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Table A1. Cont.

Measure Effect p-Value Measure Effect p-Value

Mean_normVelUB1

A 0.000

Max_COPDist

A 0.000
A*P 0.465 A*P 0.000
A*T 0.106 A*T 0.000

P 0.000 P 0.000
P*T 0.000 P*T 0.003
T 0.000 T 0.148

Table A2. Summary statistics showing p-values for measures of muscle activity, trunk movement,
and whole-body stability for main effects of assistance (A), posture (P), and time (T) and their
two factor interaction effects of A*P, A*T, and P*T during the task portions of transition (TS) between
bending and retraction. (Note: bold numbers denote statistical significance).

Measure Effect p-Value Measure Effect p-Value

Muscle Activity

nPeak_LES

A 0.005

nPeak_RES

A 0.939
A*P 0.000 A*P 0.000
A*T 0.630 A*T 0.263

P 0.000 P 0.000
P*T 0.000 P*T 0.000
T 0.000 T 0.000

nPeak_LBF

A 0.000

nPeak_RBF

A 0.000
A*P 0.001 A*P 0.000
A*T 0.851 A*T 0.419

P 0.000 P 0.000
P*T 0.000 P*T 0.000
T 0.000 T 0.000

Trunk Movement Whole-Body Stability

Mean_normVelHIP1

A 0.000

Peak_COPvel

A 0.000
A*P 0.000 A*P 0.000
A*T 0.990 A*T 0.622

P 0.000 P 0.000
P*T 0.001 P*T 0.487
T 0.000 T 0.000

Mean_normVelLB1

A 0.000

MeanCOPvel

A 0.000
A*P 0.002 A*P 0.000
A*T 0.001 A*T 0.646

P 0.000 P 0.002
P*T 0.000 P*T 0.742
T 0.000 T 0.000

Mean_normVelUB1

A 0.061

Max_COPDist

A 0.000
A*P 0.000 A*P 0.000
A*T 0.116 A*T 0.000

P 0.001 P 0.000
P*T 0.000 P*T 0.077
T 0.000 T 0.000
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Table A3. Summary statistics showing p-values for measures of muscle activity, trunk movement,
and whole-body stability for the main effects of assistance (A), posture (P), and time (T) and their
two factor interaction effects of A*P, A*T, and P*T during the task portions of the retraction (RT) task
portion. (Note: bold numbers denote statistical significance).

Measure Effect p-Value Measure Effect p-Value

Muscle Activity

nPeak_LES

A 0.000

nPeak_RES

A 0.000
A*P 0.000 A*P 0.000
A*T 0.398 A*T 0.003

P 0.000 P 0.000
P*T 0.021 P*T 0.074
T 0.000 T 0.000

nPeak_LBF

A 0.000

nPeak_RBF

A 0.000
A*P 0.060 A*P 0.000
A*T 0.037 A*T 0.419

P 0.000 P 0.000
P*T 0.025 P*T 0.000
T 0.033 T 0.000

Trunk Movement Whole-Body Stability

Mean_normVelHIP1

A 0.403

Peak_COPvel

A 0.000
A*P 0.000 A*P 0.000
A*T 0.038 A*T 0.898

P 0.000 P 0.008
P*T 0.302 P*T 0.532
T 0.003 T 0.001

Mean_normVelLB1

A 0.000

MeanCOPvel

A 0.000
A*P 0.000 A*P 0.000
A*T 0.000 A*T 0.608

P 0.000 P 0.003
P*T 0.026 P*T 0.686
T 0.002 T 0.000

Mean_normVelUB1

A 0.000

Max_COPDist

A 0.000
A*P 0.164 A*P 0.002
A*T 0.046 A*T 0.000

P 0.001 P 0.000
P*T 0.039 P*T 0.000
T 0.000 T 0.858
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