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Abstract: The large number of images in the different areas and the possibilities of technologies lead to
various solutions in automatization using image data. In this paper, tattoo detection and identification
were analyzed. The combination of YOLOv5 object detection methods and similarity measures was
investigated. During the experimental research, various parameters have been investigated to
determine the best combination of parameters for tattoo detection. In this case, the influence of
data augmentation parameters, the size of the YOLOv5 models (n, s, m, l, x), and the three main
hyperparameters of YOLOv5 were analyzed. Also, the efficiency of the most popular similarity
distances cosine and Euclidean was analyzed in the tattoo identification process with the purpose
of matching the detected tattoo with the person’s tattoo in the database. Experiments have been
performed using the deMSI dataset, where images were manually labeled to be suitable for use by
the YOLOv5 algorithm. To validate the results obtained, the newly collected tattoo dataset was used.
The results have shown that the highest average accuracy of all tattoo detection experiments has been
obtained using the YOLOv5l model, where mAP@0.5:0.95 is equal to 0.60, and mAP@0.5 is equal
to 0.79. The accuracy for tattoo identification reaches 0.98, and the F-score is up to 0.52 when the
highest cosine similarity tattoo is associated. Meanwhile, to ensure that no suspects will be missed,
the cosine similarity threshold value of 0.15 should be applied. Then, photos with higher similarity
scores should be analyzed only. This would lead to a 1.0 recall and would reduce the manual tattoo
comparison by 20%.

Keywords: YOLOv5; tattoo detection; data augmentation; hyperparameters; similarity distance;
ResNet50

1. Introduction

The rapid growth of digital images that could be retrieved from different sources
has created a strong demand for efficient object localization and detection methods in
various fields, such as medicine, military, manufacturing, law enforcement, and forensics.
There is much research in the scientific literature that focuses on the detection of different
diseases by analyzing images using various object detection or localization algorithms.
For example, the research by Jucevičius et al. [1] and Verbukaitė et al. [2] focuses on the
analysis of the image of medicine in which the images of glaucoma and prostate cancer
images have been analyzed. In the research of Gupta et al. [3], the image data obtained
from an uncrewed aerial vehicle were analyzed. The main aim of the research was to detect
military vehicles. The Industry 4.0 context has led to many intelligences or automated
solutions based on object detection as well. The research by Usamentiaga et al. [4] used
deep learning algorithms to detect product defects in manufacturing. The other research
by Li et al. [5] analyzed metal surface defects using object detection methods, where the
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results are useful and can be applied to improve manufacturing lines. Object detection
and localization tasks are very popular and could be applied in different solutions, for
example, for the detection of construction details [6,7] or as a component of travel direction
recommendation systems [8].

In law enforcement and forensics, different types of hard biometric data can be used to
identify people in the image, such as the iris pattern, facial features, or fingerprint. Despite
significant advances in hard biometric identification, a single biometric characteristic cannot
guarantee the desired identification accuracy. Characteristics of people who are less unique
compared to traditional biometric data are called soft biometric data. As one of the soft
biometric features, tattoos are valuable in helping people identify associations, groups,
members, gangs, criminals, or victims. Tattoos are considered soft biometrics because, over
time, the tattoo on the human body may change, compared to hard biometric characteristics
such as fingerprints or iris [9]. However, the accuracy of automatic tattoo identification and
detection is challenged by a wide range of artistic compositions, colors, shapes, textures,
image conditions, and quality [10]. Therefore, it is more difficult to choose the right model
to solve this problem. The concept of tattoo detection and identification using deep learning
involves the use of machine learning techniques, specifically deep learning, to identify and
locate tattoos on the human body, as well as object detection methods. This is a relatively
new area of research, as tattoos have traditionally been difficult to analyze and classify
using automated techniques due to their complex and highly variable visual appearance.
In the context of tattoo detection and recognition, deep learning techniques can be used to
analyze images of the human body and identify the presence and location of tattoos. This
can be useful in a variety of applications, including law enforcement, forensic analysis, and
medical research. In general, the use of deep learning for tattoo detection and recognition
represents a significant advance in the field of machine learning and has the potential to
revolutionize the way tattoos are analyzed and understood.

The main aim of this paper is to detect tattoos on a person’s body and then link them
with the data available in the database to identify to whom it belongs. An experimental
investigation has been performed to find out the influence of various hyperparameters of
YOLOv5, data augmentation, and similarity distances on tattoo detection and identification.
The main contributions of the paper are as follows:

(1) A total of 135 models have been trained to detect which model of YOLOv5 (n, s, m, l,
x) allows obtaining the highest results in tattoo detection. The different combinations
of hyperparameters, such as learning rate, momentum, and decay weight, were
investigated;

(2) The influence of the data enhancement parameters on the final results of tattoo detec-
tion has been investigated. There is a lack of this kind of research, especially in the
context of the tattoo dataset;

(3) The efficiency of the YOLOv5 algorithm and similarity distances combination have
been experimentally investigated to detect tattoos on the person’s body and link them
to the database of tattoos.

The results of this research may be useful for law enforcement and the field of forensics,
as well as for other researchers who focus on object detection tasks. During the research, a
large number of parameter combinations were used and five different size YOLOv5 models
(n, s, m, l, x) were thoroughly investigated.

The remainder of the paper is organized as follows. In Section 2, related works are
reviewed. In Section 3, the background of the experimental investigation is presented.
The YOLOv5 algorithm was introduced for tattoo detection. Also, similarity distances
have been described that have been used for the person identification process. Section 4
describes the main steps of the tattoo detection and identification process. The experimental
investigation of the data augmentation and selection of hyperparameters for YOLOv5 was
presented. The limitation of the research performed was discussed in Section 5. Section 6
concludes the paper.
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2. Related Works

The literature analysis performed has shown that one of the first tattoo identification
forensics was the keyword-based matching method. Law enforcement authorities followed
the ANSI/NIST-ITL 1-2011 standard, which defines eight major classes (human, animal,
plant, flag, object, abstract, symbol, and other) and a total of 70 subclasses (including
male face, cat, narcotics, American flag, fire, figure, national symbols, and wording) to
categorize tattoos [11] to assign a single keyword to the tattoo image in the database.
However, as Jain et al. [12] explain in their paper, in practice, searching for tattoo images
based on keywords has several limitations: (1) the ANSI/NIST classes define a limited
vocabulary that is not sufficient to describe different tattoo patterns; (2) several keywords
may be required to accurately describe the tattoo image; (3) human annotation is subjective,
meaning that different people can give quite different labels to the same tattoo. These
deficiencies in the keyword-based tattoo image search system have led to the development
of a Content-Based Image Recovery System (CBIR) to improve the efficiency and accuracy of
tattoo search. To overcome the limitations of keyword-based tattoo matching, Jain et al. [13]
proposed the CBIR called Tattoo-ID to match tattoos using the image-to-image method.
Tattoo-ID extracts key points from tattoo images with scale-invariant feature transform
(SIFT) (Lowe) and uses an unsupervised ensemble ranking algorithm to measure visual
similarities between two tattoos [14].

A brief review of the literature on tattoo detection and identification is presented in
Table 1. Research, where the main aim was tattoo detection, was usually motivated by
forensic applications aimed at building tattoo-content-based image search systems to help
law enforcement. Therefore, Han and Jain [15] proposed a system in which a cropped tattoo
is segmented, represented by color, shape, and texture characteristics, and matched to the
database. Duangphasuk and Kurutach [16] proposed an approach to the detection and
segmentation of tattoo skin using image-negative methods in pre-processing to improve
the retrieval and matching of tattoo images. The first step in this process was skin detection.
The authors used various skin patches to perform the tasks of separating human skin color
using the HSV model (hue, saturation, and value (or lightning)) model. In the second step,
the negative image method was used to detect clear graphical images of the tattoo. In the
third step, they extract the tattoo segment from the skin area of the negative image, and, as a
result, negative images of the tattoos are obtained and can be used for further identification.
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Table 1. Summary of tattoo detection and identification on related studies.

Authors
Object

Detection/Localization
Methods

Identification Methods Dataset Name Number of Tattoo Images Non-Tattoo
Images Results

Sun et al.
[10] Faster R-CNN n/a Tatt-C: tattoo vs. non-tattoo;

Flickr: tattoo vs. non-tattoo
1349
5740

1000
4260

Tatt-C (tattoo vs.
non-tattoo): 98.25%; Tatt-C
(localization):
45%@0.1FPPI; Flickr (tattoo
vs. non-tattoo): 80.66%.

Silva and Lopes
[9]

A deep learning model
based on transfer learning n/a TattDetectB;

TattDetectF
1000
1000

1000
1000

96.82% acc.@dense neural
network as a classifier, with
10-fold cross-validation.

Han and Jain
[15] Pre-cropped tattoos SIFT features; Sparse

representation classification MSU Sketch Tattoo 100 101,000 48% acc.@rank-100

Duangphasuk and
Kurutach

[16]
Image negative n/a Royal Thai Police n/a n/a

98.3% acc.@SIFT with image
negative; 80.1% acc.@SIFT
with original RGB image.

Jain et al.
[12,13] Gradient thresholding

Color histogram and
correlogram; Shape
moments; Edge direction
coherence; Fusion of
per-feature similarities

Tattoos from the web 2157 43,140 46% prec.@60% recall

Wilber et al.
[17] Pre-cropped tattoos

Exemplary code using HoG
features; Random Forest
classifier

238 tattoos from 5 classes 238 n/a 63.8% avg. acc. for 5 classes

Di and Patel
[18]

AlexNet and SVM (tattoo vs.
non-tattoo)

Siamese network with
triplet or contrastive loss

Tatt-C: tattoo vs. non-tattoo;
Mixed media

1349
181

1000
55

Tattoo vs. non-tattoo:
99.83%
Mixed media: 56.9%
acc.@rank-10

Manger
[19] n/a

SIFT features; Bag-of-words,
hamming embedding, and
weak geometry consistency

German police 417 327,049 78% acc.@rank-1

Han et al.
[20] Faster R-CNN n/a

Tatt-C;
NTU_Flickr;
WebTattoo;

1349
5740

300,000

1000
260
n/a

87.10% recall (WebTattoo)
61.70% recall (Tatt-C)
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Table 1. Cont.

Authors
Object

Detection/Localization
Methods

Identification Methods Dataset Name Number of Tattoo Images Non-Tattoo
Images Results

Qingyong Xu et al.
[21] CNN n/a Tatt-C

NTU_Flickr
1349
5740

1000
4260 98.80% acc.

Xu and Kong
[22] Decision tree Shape Matching algorithm Unidentified 547 n/a 52.38% acc.

Kim et al.
[23] GraphCut n/a Tatt-C (Detection);

Evil (Detection)
6308
1105 n/a

Tatt-C: 70.5%
acc.@41%recall
Evil: 69.9% acc.@67.0%recall

Heflin et al.
[24]

Automatic GraphCut and
quasi-connected
components

LBP-like features, SVM Tattoo classification 50 500 85% acc.@10% FAR, on
average, for 15 classes.

Allen et al.
[25] Segmentation algorithm n/a GANGINK tattoo database 256 n/a ~90% acc.
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The Bag-of-Words (BoW) model, which uses SIFT functions, was probably the most
popular in the early CBIR system for tattoo search [19]. In addition to SIFT features, local
binary patterns (LBP) and histograms of oriented gradients (HoG) features were also used
in the research by Wilber et al. [17] and Heflin et al. [24] with support vector machine (SVM)
and random forest classifiers for tattoo classification. Although these CBIR systems have
been reported to provide quite high accuracy on various benchmarks, they require careful
manipulation of characteristic descriptors, vocabulary sizes, and indexing algorithms. The
success of deep learning has led to the point where CBIR’s methods are shifting from
handcrafted features and models to deep learning methods. The AlexNet method has been
successfully used for tattoo vs. non-tattoo classification in the work of Di and Patel [18].

Sun et al. [10] also focused on the tasks of tattoo image detection and localization. The
authors developed TATT-RBDL, a tattoo detector that can classify images with one or more
tattoos. Then, the region-based deep learning method (Faster R-CNN) was applied to the
domain-specific data, and a tattoo detector was trained using two datasets, one with tattoo
images and one with non-tattoo images. Xu and Kong [22] presented another decision
tree-based approach. It achieved only 53.38% accuracy in its own dataset, resulting in a
less expressive result. Recently, Han et al. [20] have also presented a detection model using
faster R-CNN. This model classified detection problems as examples of image recovery
systems in which learning and detection were performed simultaneously. Another basic
tattoo detection method [23] uses a GraphCut-based method, with an accuracy of 70.5%.
Silva and Lopes [9] presented a deep learning model based on transfer learning for tattoo
detection problems.

Due to the wide diversity of tattoo types and the lack of image capture standards, the
datasets may be quite different. Therefore, it is difficult or even unreasonable to compare
the results. Since the datasets are real-world samples, it is especially important for the
efficiency of machine learning methods that the datasets that are used reflect the same
diversity. In addition, for multiclass datasets, class samples are another prominent issue,
as classifiers tend to be strongly biased. Unfortunately, many real-world datasets do not
follow this principle. For example, the Tatt-C dataset presented in the previous table, which
is widely used in the literature, consists of images of faces in non-tattoo classes. This
may prejudice a classified trained with this dataset, which may acquire a false concept
that images without tattoos are face-type images. Nevertheless, this database was the
most used database for tattoo studies to date [9]. The first results on the Tatt-C dataset
were published in response to the challenges issued by NIST [26]. According to the report
by Ngan et al. [26], four institutions participated in this challenge, with MorphoTrek as
the best performance, with 96.3% accuracy. Unfortunately, the algorithms developed by
the participants in the NIST challenge have not been published. This was criticized by
Qingyong Xu et al. [21] in their work, and it emerged that it was impossible to perform
external validation tests.

Although the concept of tattoo detection and identification is theoretically uncom-
plicated, the process is not simple and depends on various factors. There are no defined
standards of what tattoos are in terms of shape, color, size, proportion of individuals,
and their location on the body. Additionally, a single image may have several tattoos.
Furthermore, the background of an image can introduce significant noise into the detection
process because its complexity can be confused with the tattoo itself. Furthermore, it is
difficult to compare different studies due to differences in the test procedures, metrics,
and datasets used. There are relatively few publications dealing with tattoo detection and
identification problems using deep learning. It should also be noted that most previous
tattoo studies were based on the NIST Tatt-C dataset, which was discontinued over time
and is no longer available for download and use. The lack of standardized datasets for
the detection of tattoos is one of the problems in this field of research. Methods such as
Faster R-CNN, RetinaNet, YOLO, and SSD, coupled with feature extraction models such
as VGG, ResNet, Siamese Networks, and Triplet Networks, collectively contribute to the
intricate landscape of tattoo detection and identification [27]. Furthermore, a diverse set
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of similarity measures, including Euclidean distance, cosine similarity, and others, form a
versatile toolkit for evaluating similarities across various data types.

3. Background of the Experimental Investigation

The review of related works has shown (Table 1) that various deep learning-based
algorithms can be used for tattoo detection or localization tasks. In our research, the focus
is on a real-time object detection task, so CNN and R-CNN methods are not entirely appro-
priate. When comparing real-time object detector algorithms YOLO, SSD, and RetinaNet, it
should be noted that SSD has low accuracy compared to other alternatives. Furthermore,
RetinaNet exhibits better accuracy compared to YOLO or SSD, but lower efficiency for
real-time object detection due to its high computational cost. Although YOLOv5 continues
to be a widely acclaimed real-time object detection algorithm, boasting improved accuracy
over its predecessors and retaining the ability to identify even diminutive objects. So, based
on related works, the YOLOv5 object detection algorithm was used in the experimental
investigation for tattoo detection. The pre-trained models of YOLOv5 were used as a
base [28] (Table 2).

Table 2. The specification of the pre-trained YOLOv5 models used [28].

Models Image Size
(Pixels)

mAPval

(50–95)
mAPval

(50)
Speed (ms)

CPU bl
Speed (ms)

V100 bl
Speed (ms)
V100 b32 Params (M) FLOPs

@640 (B)

YOLOv5n 640 28.0 45.7 45 6.3 0.6 1.9 4.5

YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5

YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49.0

YOLOv5l 640 49.0 67.3 430 10.1 2.7 46.5 109.1

YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7

During the experimental investigation, all models were trained in an environment
with the following specifications: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz (20 Threads,
10 Cores). The environment had a Linux operating system with 32 GB DDR4 RAM and
GPU, called Tesla P100 PCIe 12GB.

After the tattoo has been detected, the person’s identification in the database based on
similarity distance has been analyzed. In this investigation, two similarity distances were
analyzed: cosine and Euclidean distances. Suppose that we have two images: the tattoo de-
tected in image X = (x1, x2, . . . , xN), and the tattoo from the database Y = (y1, y2, . . . , yN),
where N is the dimensionality of the vector corresponding to each datum. In this case, the
Euclidean similarity distance can be calculated (1).

d(X, Y) =

√√√√ N

∑
k=1

(xk − yk)
2 (1)

The Euclidean distance is the distance between two data points in Euclidean space. In
the context of data analysis, it is often used to find the dissimilarity or similarity between
data. Smaller values of the Euclidean distance indicate greater similarity. The cosine
similarity distance (2) is useful in the analysis of high-dimensional data, such as in the
detection of pairwise similarities in images. The value of cosine similarity indicates the
cosine of the angle between two vectors in a multidimensional space.

d(X, Y) = 1 − ∑N
k=1 xkyk√

∑N
k=1 x2

k ×
√

∑N
k=1 y2

k

(2)
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4. The Experimental Investigation

The idea of automated person identification based on their tattoo is divided into
five steps:

1. Preparation of the tattoo dataset;
2. The experiments performed on the influence of data augmentation parameters;
3. The experiments performed on the influence of hyperparameters of YOLOv5;
4. Preparation of the identification dataset;
5. Estimation of similarity threshold.

All five steps and the principles of it are presented in Figure 1 and are detailed in
further sections.

Appl. Sci. 2024, 14, 5576 8 of 16 
 

4. The Experimental Investigation 
The idea of automated person identification based on their tattoo is divided into five 

steps: 
1. Preparation of the tattoo dataset; 
2. The experiments performed on the influence of data augmentation parameters; 
3. The experiments performed on the influence of hyperparameters of YOLOv5; 
4. Preparation of the identification dataset; 
5. Estimation of similarity threshold. 

All five steps and the principles of it are presented in Figure 1 and are detailed in 
further sections. 

 
Figure 1. Main principle of automated suspect identification model development based on tattoo 
photos. 

4.1. Preparation of Tattoo Dataset 
The analysis of related works has shown that the availability of publicly available 

tattoo datasets is not very high. In some of the studies, several authors have created their 
datasets, but the datasets are not publicly available. Additionally, as mentioned, the Tatt-
C dataset was frequently used in related studies, but this dataset has been discontinued 
and can no longer be downloaded. Other equally popular datasets, such as the NTU Tat-
too dataset and WebTattoo, require a special agreement to be used for research purposes, 
which has not been obtained. Therefore, in this paper, only one publicly available deMSI 
(Hrkać et al., 2016 [27]) dataset was chosen for model training. The sample of the dataset 
is presented in Figure 2. 

 
Figure 2. Sample of the deMSI tattoo dataset used in the research. 

Figure 1. Main principle of automated suspect identification model development based on tattoo photos.

4.1. Preparation of Tattoo Dataset

The analysis of related works has shown that the availability of publicly available
tattoo datasets is not very high. In some of the studies, several authors have created their
datasets, but the datasets are not publicly available. Additionally, as mentioned, the Tatt-C
dataset was frequently used in related studies, but this dataset has been discontinued
and can no longer be downloaded. Other equally popular datasets, such as the NTU
Tattoo dataset and WebTattoo, require a special agreement to be used for research purposes,
which has not been obtained. Therefore, in this paper, only one publicly available deMSI
(Hrkać et al., 2016 [27]) dataset was chosen for model training. The sample of the dataset is
presented in Figure 2.
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To facilitate the development and testing of their proposed method, the authors have
assembled their dataset by collecting and manually labeling 450 tattoo images from the
ImageNet database. Each of the collected images contains one or more tattoos. The authors
of this dataset used the ConvNet model in their research and, therefore, annotated each
tattoo using a series of connected line segments. However, in the case of this study, such an
annotation will not be suitable for our research because the chosen object detection model
for tattoo detection is YOLOv5. The chosen model accepts bounding box annotations for
each object, where each object in an image is surrounded by a rectangular box that can be
described by the coordinates of its top-left corner and its width and height. Therefore, the
images in the dataset have been manually annotated. In this study, a dataset was created
that contained a total of 1000 images.

4.2. The Experiments Performed on the Influence of Data Augmentation Parameters

As mentioned, the results of tattoo detection can depend on various parameters. First
of all, the influence of data augmentation parameters has been analyzed using the pre-
trained YOLOv5l model, as according to the related work analysis performed, for such
types of tasks, it is the most suitable model. The results of the experiment are presented in
the table below (Table 3).

Table 3. Augmentation experiment results.

Augmentation Augmentation Specifications Precision Recall mAP@ 0.5 mAP@0.5:0.95

No augmentation applied 0.735 0.733 0.739 0.454

Flip Horizontal and vertical 0.819 0.748 0.799 0.582

90◦ Rotate Clockwise, counterclockwise, and
upside down 0.834 0.726 0.801 0.608

Crop 0% minimum zoom and
30% maximum zoom 0.884 0.735 0.82 0.585

Rotation Between −15◦ and +15◦ 0.861 0.741 0.788 0.51

Shear ±15◦ horizontal and ±15◦ vertical 0.811 0.733 0.794 0.548

Grayscale Applied to 25% of images 0.788 0.674 0.735 0.46

Hue Between −25◦ and +25◦ 0.835 0.8 0.794 0.568

Saturation Between −30% and +30% 0.818 0.756 0.804 0.583

Brightness Between −25% and +25% 0.849 0.689 0.77 0.543

Exposure Between −15% and +15% 0.816 0.723 0.786 0.551

Blur Up to 2px 0.814 0.756 0.8 0.566

Noise Up to 1.49% of pixels 0.78 0.763 0.78 0.572

All augmentation variations were trained on the deMSI dataset with 300 epochs. On
the basis of the provided experimental results, some considerations were made. Crop
augmentation allowed us to obtain the highest mAP@0.5 (0.82) and good precision and
recall scores. It would be an effective option in this study. When talking about balanced
precision and recall, hue augmentation showed a good balance between precision and recall,
with a decent mAP@0.50 score (0.794). So, this augmentation should also be considered. In
addition, computational efficiency must be considered: flip, 90-degree rotation, and blur.
These enhancements showed a good balance between precision and recall with moderate
mAP@0.5 scores. They may be computationally efficient. Also, it should be mentioned
that it is a good practice to avoid low-performing augmentations; in this case, it would be
grayscale and rotation. These augmentations had lower mAP@0.5 scores. Depending on
priorities, it might be good to consider excluding them from the final augmentation strategy.
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To achieve even higher results, it was decided to try to combine multiple augmentations
(Table 4).

Table 4. Result of the combined augmentation experiment.

Augmentation Augmentation Specifications Precision Recall mAP@0.5 mAP@0.5:0.95

Flip Horizontal and vertical

0.881 0.71 0.793 0.584Crop 0% minimum zoom and
30% maximum zoom

Hue Between −25◦ and +25◦

Hue Between −25◦ and +25◦

0.796 0.733 0.763 0.533Saturation Between −30% and +30%

Brightness Between −25% and +25%

Flip Horizontal and vertical

0.827 0.726 0.81 0.532Crop 0% minimum zoom and
30% maximum zoom

Rotation Between −15◦ and +15◦

90◦ Rotate Clockwise, counterclockwise, and
upside down

0.878 0.744 0.829 0.593Shear ±15◦ horizontal and ±15◦ vertical

Blur Up to 2px

Crop 0% minimum zoom and
30% maximum zoom

0.8 0.756 0.784 0.586Exposure Between −15% and +15%

Noise Up to 1.49% of pixels

Taking into account the metrics mAP@0.5 and mAP@0.5:0.95 metrics, group 4 (90◦ ro-
tation, shear, and blur) appears to have the best overall performance, with the highest
values of mAP@0.5 and mAP@0.5:0.95 values. Therefore, group 4 was chosen as the best-
performing augmentation strategy. Based on the results of the experiments provided, the
following pre-processing and augmentation steps were applied in this study.

• Resize. The images were resized to a uniform dimension of 320 × 320 pixels, which is
a common choice for the YOLOv5 models. This step not only standardizes the input
size but also enhances training efficiency;

• 90◦ Rotate. The images were rotated 90 degrees during the augmentation process. This
rotation can help the model become more robust to object orientations in the training
data. It introduces variations in the orientation of objects, making the model more
versatile;

• Shear. Shearing involves shifting one part of an image in a certain direction, creating
a “tilted” effect. In this study, shear was applied horizontally and vertically in a
range of ±15◦. Shearing introduces distortions that can improve the model’s ability to
recognize objects from different perspectives;

• Blur. A blur filter was applied to the images, with a maximum blur of up to 2 pixels.
Blur helps simulate real-world conditions where images may not be perfectly sharp. It
can prevent the model from relying too heavily on fine details and encourage a more
generalized understanding of the objects in the images.

Collectively, these pre-processing and augmentation techniques aim to increase the
robustness and ability of the model to handle tattoo detection in a wide range of real-
world scenarios.
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4.3. The Experiments Performed on the Influence of Hyperparameters of YOLOv5

To find out which size of the YOLOv5 model (n, s, m, l, x) and which hyperparameters
allow to obtain the highest tattoo detection results, an additional experiment has been
performed using the data augmentation options from previous experiment results. Related
works have shown that, in various investigations, usually only three hyperparameters are
changed to improve the results: learning rate, momentum, and weight decay. Therefore, in
this investigation, the combination of five YOLOv5 models and three hyperparameters has
been analyzed. The hyperparameters changed in this way:

� learning rate: 0.01; 0.001; 0.0001;
� momentum: 0.9; 0.935; 0.95;
� weight decay: 0.0001; 0.0005; 0.0007.

In this way, a total of 135 models were trained and tested (26 models for each size of
the YOLOv5). The other parameters have been chosen considering the primary research
performed and have not been changed during the training of all 135 models. This ensured
the same condition during the experimental investigations in this research. The fixed
parameters of YOLOv5 are as follows:

� image size: 320 × 320;
� batch size: 32;
� number of epochs: 300;
� optimizer: SGD.

In Table 5, the average results for each size of the YOLOv5 model are presented. As we
can see (Table 5), the highest averaged precision results are obtained by YOLOv5m (0.87).
Slightly small results are obtained by YOLOv5l (0.86), YOLOv5s (0.85), and YOLOv5x
(0.81). The smallest averaged precision is obtained by YOLOv5n, which is equal to 0.67. All
estimation measures are significantly smaller using YOLOv5n compared to other sizes of
the models. The highest average recall value is obtained by the YOLOv5l model (0.70). In
the case of mAP values, slightly better results are also obtained using the YOLOv5l model,
where mAP@0.5 is equal to 0.79 and mAP@0.5:0.95 is equal to 0.60. In Table 6, the standard
deviation for each size of the YOLOv5 model is presented. As we can see, the deviation is
not high, so it means that there is no very high influence on which hyperparameters will be
used to train the tattoo detection model.

Table 5. The average results of 26 model estimations for each size of the YOLOv5 model.

Estimation
YOLOv5 Model

YOLOv5n YOLOv5s YOLOv5m YOLOv5l YOLOv5x

Precision 0.67 0.84 0.87 0.86 0.81

Recall 0.46 0.67 0.68 0.70 0.67

mAP@0.5 0.52 0.75 0.78 0.79 0.76

mAP@0.5:0.95 0.31 0.51 0.58 0.60 0.59

Table 6. The standard deviation results of 26 model estimations for each size of the YOLOv5 model.

Estimation
YOLOv5 Model

YOLOv5n YOLOv5s YOLOv5m YOLOv5l YOLOv5x

Precision 0.16 0.06 0.04 0.06 0.07

Recall 0.17 0.02 0.03 0.05 0.03

mAP@0.5 0.19 0.02 0.02 0.03 0.02

mAP@0.5:0.95 0.13 0.02 0.03 0.02 0.01

Summarizing the results of the experimental investigation on the influence of hyper-
parameters, the YOLOv5l model has been chosen as the basis for tattoo detection. The
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highest values of mAP@0.5 (0.82) and mAP0.5:0.95 (0.63) have been obtained using such
hyperparameters of YOLOv5l: the learning rate is set at 0.001; momentum is set at 0.95;
the weight decay is set at 0.0001. In this case, the precision is equal to 0.87, and the recall is
0.75. In addition, in Figure 3, the graphs of precision, recall, mAP@0.5, and map@0.5:0.95
are presented.
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4.4. Preparation of Identification Dataset

To correspond to real conditions, an additional dataset was constructed for identity
estimation. Twelve persons were asked to provide at least 6 photos of each of their tattoos.
The tattoos had to be taken under good conditions, when the full tattoo is visible, as well
as in lower quality when only part of the tattoo is visible, it is partially covered, etc. An
ID was assigned to each tattoo. The best photo of the tattoo was selected as a reference
model, while other photos of the tattoo were added to the suspect dataset. Additionally,
10 random unused photos from the deMSI dataset were added to the reference dataset and
44 to the suspect dataset. This allows us to reflect on situations when no reference tattoo
exists for the analyzed one. There were 43 reference photos and 209 suspect photos.

Using the best model for tattoo detection, both datasets were processed to obtain only
the cropped version of the localized tattoo in each photo. After the detection, the reference
dataset contained 49 photos, while the suspect dataset contained 245 photos (167 of the
tattoos in the reference dataset and 78 not listed in the reference dataset). The increase
was affected by the fact that in some photos multiple areas were detected. Sometimes,
one tattoo was divided into several parts. In other cases, non-tattoo areas were localized
as tattoos.

The suspect dataset was left as it was because this part will have to be performed
completely automatically. Meanwhile, the reference dataset was manually revised to leave
only photos of good quality. During the revision, redundant or not full photos were
eliminated, leaving only 39 reference tattoos, 1 photo for each of the tattoos.

4.5. Estimation of the Similarity Threshold

For further analysis, each photo was resized to a dimension of 224 × 224 px and
pre-processed for ResNet50 suitable feature extraction. Each photo is represented as a (7, 7,
2048) dimension output, where, after flattening, it contains 100,352 values for comparison.
This vector was used to estimate the similarity between each suspect and each reference
photo. For similarity estimation two most often used similarity methods were used: cosine
and Euclidean similarity. Usually, F-score and accuracy metrics are used to define the
best model. Using cosine similarity, the threshold value should be 0.45–0.5 to achieve a
48% F-score and 99% accuracy (Figure 4, left chart). For Euclidean distance, the F-score
and accuracy optimal threshold value would be 525 and would allow us to achieve a
0.46% F-score and 99% accuracy (Figure 4, right chart).
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However, for suspect linking to reference photo task, accuracy and F-score are not
the best measurements as the automation should work as decision support and workload
reduction, but not a human replacement solution. The final results will have to be verified
by a person in any case to ensure that no false results are provided. Therefore, False-positive
(FP) and False-negative (FN) values are important. Table 7 presents the threshold values
under which tattoo identification achieves 100% recall or precision. Accordingly, it provides
numbers that indicate how much workload could be reduced in the case of suspect photos
and comparisons. Suspect photos define the suspect photos, which do not require any
revision, as all similarity scores to reference tattoos are below or above the threshold value
and, therefore, will for sure not be linked to any of the reference photos. Meanwhile,
comparison reduction indicates that some of the threshold values do not meet the interval;
therefore, the suspect photo has to be compared not to all but just to some reference tattoos.
The result indicates that cosine similarity is better for recall assurance situations as it allows
a reduction of 2% of photos and 20% of comparisons. Meanwhile, if the task is oriented
toward precision assurance, it is better to use the Euclidean distance. The difference to
cosine similarity is not very high, but under the same 100% precision, it provides a lower
False negative, higher True-positive, and the same True-negative rate.

Table 7. The summary of experimental results using cosine and Euclidean distances.

Task Type

Cosine Distance Euclidean Distance

Threshold
Values

Workload Reduction Threshold
Values

Workload Reduction

Suspect Photos Comparisons Suspect Photos Comparisons

Guarantee that no suspects
will be missed that should be
linked to reference tattoos (no
False-negatives, recall 100%)

[0.00; 0.15] 2% 20% [775; 900] 0% 2%

Guarantee that all links to
reference tattoos are accurate
(no False-positives,
precision 100%)

[0.60; 1.00] 12% 0% [300; 475] 14% 0%

The zero reduction in 100% precision-oriented task for comparisons indicates that
the similarity of the suspect photo was the highest among all reference tattoos; therefore,
only the True-positive values were left as candidates. If the models were adjusted to take
not the threshold value with multiple candidates but to link each photo with the highest
similarity/lowest distance reference tattoo, the false positive ratio would increase auto-
matically as not all suspect photos have a reference. Meanwhile, for the cosine similarity
case with the highest F-score, the F-score increases from 48% to 52%, while under those
conditions, the precision decreases to 42% from 56%, the recall increases from 42% to 65%,
and accuracy remains 98%. For Euclidean distance, the accuracy decreases from 99% to
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98%, precision from 82% to 41%, recall increases from 32% to 60%, while the F-score remains
46% (Figure 5).
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Figure 5. Tattoo identification accuracy scores for cosine similarity and Euclidean distance when only
the most similar reference tattoo is taken as the model prediction.

5. Discussion

In this paper, a solution for automated tattoo detection and identification was im-
plemented. The experimental investigation carried out in this research has focused on
different types (n, s, n, l, x) of YOLOv5 models, YOLOv5 hyperparameters, data augmen-
tation parameters, and similarity distances used in the identification stage. The newest
versions of YOLO have not been analyzed because these algorithms have not been officially
released and could be found in the public repository without any scientific investigation.
Therefore, in this research, the most popular YOLOv5 version has been used today. Taking
into account the research performed by other authors, some parameters have not been
investigated due to the cost of time for each model training. A total of 135 models have
been trained to find the influence of three main hyperparameters on the results of tattoo
detection. It is necessary to admit that a complete investigation using more combinations
has not been performed. Even with these research limitations, the results of this research
have shown that for such a type of object detection task, the most suitable models are
YOLOv5l.

The chosen similarity distances used in the identification stage are the most used
distances in various clustering algorithms, similarity detection tasks, recommendation
systems, etc. Related works have shown that similarity distances, such as Jaccard, Spearman
correlation, Manhattan, and others, can also be used for identification, but primary research
has shown that in our case, it was not suitable.

6. Conclusions

In this paper, a solution for automated tattoo detection and identification was imple-
mented. This task is multi-stage as it requires both tattoo detection, its bounds estimation,
as well as comparison to the reference tattoo. Such a solution, when the second stage is
implemented based on similarity rather than the trained model, has the advantage of the
easy extension of the reference dataset; there is no need to retrain the model for added
reference tattoos.

After investigation of photo augmentation and the impact of the YOLOv5 hyperpa-
rameter on tattoo detection, the highest values of mAP@0.5 (0.82) and mAP0.5:0.95 (0.63)
have been obtained. Those were obtained using the YOLOv5l model, with the learning rate
set at 0.001, momentum set at 0.95, and the weight decay set at 0.0001, while the photos
were augmented using 90◦ rotation, shear, and blur options. This model was not only
able to achieve the best detection but led to the highest recall. This is important as it is
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better to have a bigger set of instances for the next stage rather than miss some tattoos or
its elements.

In the similarity estimation between tattoos, the highest accuracy in linking the tattoo
photo with one reference tattoo with the highest similarity score reached 98%, while the
F-score is up to 52%. This would not be an acceptable accuracy for criminal identification or
similar tasks. However, the similarity score can be used for the reduction of manual work
revising the possible candidates. By applying cosine similarity, all cases where similarity is
less than the threshold value of 0.15 can be ignored. This would decrease the workload by
20% while no False-negative cases would be skipped.

The results obtained during the experimental investigation have shown that tattoo
detection and identification tasks require larger models than YOLOv5n. Additionally, the
learning rate, momentum, and decay weight parameters have not influenced the results
too much. Considering the possible implementation of the models obtained in the real
environment, such as real-time detection systems, the most suitable are YOLOv5m and
YOLOv5l. The training time of these models is lower compared to that of the YOLOv5x;
therefore, it would be easy to retrain the models using more tattoo images and improve the
quality of tattoo detection. In the future, the newest versions of YOLO could be trained
and tested under the same conditions to see how it influences the results of tattoo detection
and identification.
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