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Abstract: Technologies for the detection of dim and small targets in infrared images play an increas-
ingly important role in various applications, including military early warning, precise guidance,
military reconnaissance, environmental monitoring, and aerospace applications. This paper proposes
a new approach for the detection of infrared multi-scale small targets based on a feature pyramid
network. Three pyramid segmentation–connection modules are incorporated into the proposed pyra-
mid network to capture both local and global context information across various layers. Furthermore,
a dual attention fusion module is proposed to fuse the feature maps containing context information
and the deep features that have been upsampled twice through the attention mechanism of the dual
attention fusion module to highlight important semantic information. Experimental results on two
benchmark datasets show that the proposed method can generate results with good accuracy on both
datasets and outperforms several other state-of-the-art methods for small-target detection in terms of
accuracy and robustness.

Keywords: object detection; deep learning; feature pyramid network; attention mechanism fusion

1. Introduction

In the field of computer vision, object detection plays a crucial role in tasks such as
object tracking, image segmentation, and scene understanding. It is not only the core
element for determining the presence or absence of an object in an image and establishing
its specific location, but also the foundation for significant advancements in intelligent
video surveillance, autonomous driving, medical image analysis, and other fields [1].
Through image processing technology, the location and spatial information of a target can
be efficiently and accurately extracted from a large amount of digital image data. Such
information can be subsequently processed by other applications for the accurate analysis
of the target.

Traditional target detection methods mainly include three types. Detection methods
based on a background estimation approach model the background information and treat
the target as an abnormal object deviated from the background [2–6]. Detection methods
based on human vision understand and perceive targets in ways that are similar to those of
human vision [7–11]. Detection techniques based on the low-rank sparse decomposition
model decompose a target into low-rank signals, while decomposing the background and
noise into sparse signals [12–16]. Traditional object detection methods mainly rely on
features manually extracted from an object to achieve object detection. However, these
traditional methods often require a large amount of prior information on the background
statistics. These methods thus are easily affected by factors such as noise and inhomogeneity
and cannot adapt to changes in the target scale.

Recently, deep learning-based approaches have been employed to detect dim and
small targets in infrared images. An important advantage of deep learning-based methods
over other methods is their ability to extract features automatically. Most of the deep
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learning-based methods can be divided into two types in the early stages. One type of
method utilizes candidate boxes to perform detections in two stages [17], and the other type
of method detects infrared small targets in one stage based on regression [18,19]. However,
due to the scarcity of infrared dim small-target datasets, the challenges in training network
models, and the degradation of infrared dim small-target features as the number of network
layers increases, further improvements still need to be achieved in the performance of
infrared dim small-target detection.

In the realm of target detection, infrared small-target detection can also be accom-
plished as an object segmentation task. Applying RGB image segmentation based on deep
convolutional neural networks to the segmentation of small targets in infrared images
remains a challenge that requires further exploration [20].

Recognizing objects of various sizes is a fundamental challenge in object detection.
Pyramid networks have been a fundamental component of multi-scale object detection.
However, the pyramid network involves a significant amount of computation, which
could potentially slow down the entire detection process. Therefore, in order to enhance
detection speed, many methods opt to avoid using pyramid networks and instead rely
solely on high-level features for prediction. High-level features contain rich semantic
information, but accurately capturing the position of the object is challenging due to the
low resolution [21]. On the contrary, although low-level features contain less semantic
information, they offer high resolution and rich details, enabling accurate representation
of object locations. Therefore, the fusion of low-level and high-level features can achieve
accurate recognition and localization in object detection systems. This fusion can combine
the rich semantic information in high-level features with the accurate location information
in low-level features to achieve more precise target detection and localization.

Lin et al. [22] proposed the feature pyramid network (FPN) in 2017, which has sig-
nificantly improved the performance of small-object detection without increasing the
original computational load. Ronneberger et al. [23] proposed the U-Net architecture in
2015. Although the U-Net architecture is not specifically designed for detecting infrared
small targets, it has demonstrated excellent performance in infrared small-target detection.
Zhao et al. [24] proposed the TBC-Net in 2021, which consists of a target extraction module
(TEM) and a semantic constraint module (SCM). It can effectively reduce false alarms
caused by complex backgrounds. Dai et al. [25] proposed ALC-Net, which contains a
bottom-up attention modulation module to integrate detailed information from low-level
features into deeper high-level features. It also utilizes multi-scale local contrast measures
to address the issue of target scale variations. Li et al. [26] proposed DNA-Net, which
implements progressive interaction between high-level and low-level features and can
adaptively enhance multi-level features. In addition, some other methods based on deep
learning and feature pyramid networks [27–29] have also yielded promising results. How-
ever, further improvements in detection accuracy are still required for applications where
infrared multi-scale small targets need to be accurately recognized and analyzed.

Therefore, this paper proposes an infrared multi-scale small-target detection method
based on a dual attention fusion mechanism of a feature pyramid network to improve the
detection accuracy of infrared multi-scale small target images. The main contributions of
the paper are as follows.

(1) Three pyramid segmentation–connection (PSC) modules are incorporated into the
feature pyramid network to obtain both local and global context information from
various shallow and deep features.

(2) A dual attention fusion (DAF) module is proposed to fuse the feature maps containing
context information and the deep features that have been upsampled twice through the
attention mechanism of the DAF module. The module is used to highlight important
semantic information.



Appl. Sci. 2024, 14, 5587 3 of 13

2. Materials and Methods

Although many current methods employ various techniques to enhance detection
performance, there is still the issue of small targets disappearing in the deep network in
many methods. Therefore, considering the limitations of the current detection algorithm,
this paper proposes a dual attention fusion mechanism based on a pyramid network for
infrared multi-scale small-target detection. It is mainly divided into three parts: pyramid
segmentation–connection (PSC), context semantic expression (CSE), and dual attention
fusion (DAF) modules. The context semantic representation module includes a global
semantic relevance (GSR) module and a local semantic stitching (LSS) module.

2.1. Overall Algorithm Architecture

Figure 1 illustrates the overall architecture of the proposed infrared multi-scale small-
target detection model. In the first step, the image that contains an infrared multi-scale
small target is processed using a deep convolutional neural network, and feature maps of
1/2, 1/4, and 1/8 of the original image are obtained. The feature maps from various stages
of feature extraction are processed by the PSC module. Then, the feature map generated by
the PSC module in each stage is upsampled by a factor of 2 and fused with the feature map
obtained in the previous stage with the PSC module to extract the portion that encapsulates
information crucial for small-target identification. The fusion is performed with a DAF
module. After two fusions, the final fused feature map is used to segment the small target,
resulting in the acquisition of the small target in an infrared image.
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In this paper, ResNet18 [30] is chosen as the backbone network for the feature ex-
traction stage. The input infrared small-target image is downsampled to extract detailed
and rich small-target features. After multiple operations of downsampling and feature
extraction, the deep semantic features of small targets are obtained. The low-level feature
map retains detailed information such as the location and specifics of the small target,
while the high-level features can capture the semantic information of the small target. The
feature map obtained through the fusion of low-level features and high-level features not
only preserves the benefits of low-level feature maps but also maintains the advantages of
high-level feature maps. The final feature map can detect the position and shape of small
targets more accurately, with higher detection accuracy and a lower false-alarm rate.
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2.2. Pyramid Segmentation–Connection Module

The pyramid segmentation–connection module takes the feature map X obtained from
feature extraction as its input and processes it to produce the output feature map Z. The
detailed structure of PSC is shown in Figure 2. PSC feeds the feature map X into multiple
scales of CSE, and the scale is denoted as b ∈ {b1, b2, . . . , bn}. For each scale, CSE preserves
the essential details of small targets by incorporating contextual information, as illustrated
in Figure 3, depicting the structural diagram of the CSE model. It can be seen in the figure
that CSE is divided into two parallel processing flows, namely, LSS and GSR. The feature
maps processed by LSS and GSR are convolved, and then the convolved feature maps are
added to X to obtain the final output M. Subsequently, M and X obtained at different scales
are concatenated together. Finally, the information from multiple scales is integrated, and
the feature map Z is obtained through 1 × 1 convolution. As can be seen from the model
architecture of infrared multi-scale small-target detection in Figure 1, the PSC model has
been processed three times throughout the entire process. Although the size of the input
feature map X varies across different stages, the selected scale b remains consistent.
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2.3. Local Semantic Stitching Module

The structure of the local semantic stitching module is shown in the upper part of
Figure 3, and is used to extract the features of the local block of the feature map, referred
to as LSS. For the feature map, X ∈ RC×H×W , obtained through feature extraction at a
given scale, b, X is divided into b × b blocks to obtain b2 feature maps di ∈ RC× H

b ×
W
b and

i ∈
{

1, 2, . . . , b2}. The b2 feature map di is processed by non-local blocks to obtain the b2

feature blocks ei ∈ RC× H
b ×

W
b and i ∈

{
1, 2, . . . , b2}. Subsequently, the b2 feature blocks are

merged based on the position of the feature map X to obtain the feature map Q ∈ RC×H×W
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with the semantic splicing information of the local blocks. The non-local block captures
long-distance dependencies by calculating the similarity between each position in the
feature graph d and all other positions. The operations in the process are described by
Equations (1) and (2):

Qi
k = β∑HW/b2

j=1 ωi
kj φ

(
Xi

k

)
+ Xi

k (1)

ωi
kj =

exp
(

θ
(
Xi

k
)T

ϕ
(

Xi
j

))
∑HW/b2

j=1 exp
(

θ
(
Xi

k
)T

ϕ
(

Xi
j

)) (2)

where Qi
k represents k elements, β represents the scalar that can be learned, ωi

kj represents

the element of the kth row and jth column of the coefficient matrix ωi, and φ(.), θ(.), and
ϕ(.) are all 1 × 1 convolution operations.

2.4. Global Semantic Relevance Module

The global semantic correlation module is shown in the lower part of Figure 3. It is
used to estimate the levels of dependency among blocks and will be referred to as GSR.
For feature map X ∈ RC×H×W , obtained through feature extraction at a given scale b, X
is processed by adaptive pooling to obtain a feature map S ∈ RC×b×b of size C × b × b.
Each point in set S corresponds to the feature block at the corresponding position in the
LSS module. The non-local block then estimates the similarity between each position in S
and all other positions, capturing long-range dependencies by estimating the correlation
between each block in feature map d. Afterward, the obtained features are input into
the pixel attention module. This module adjusts the weight of each pixel dynamically,
highlighting important pixel regions and suppressing unimportant ones, thus enhancing
the representation ability of pixel-level features. Finally, the feature map D ∈ Rc×b×b

is obtained by the sigmoid function, and the operations performed in the process are
described by Equations (3)–(5):

Dm = δ(PA(β∑b2

j=1 ωmjψ(Sm) + Sm)) (3)

ωmj =
1

Zm
exp

(
θ(Sm)

Tϕ
(
Sj
))

(4)

Zm = ∑b2

j=1 exp
(

θ(Sm)
Tϕ

(
Sj
))

(5)

where Dm represents the mth element of D, PA represents the pixel-level attention module,
δ(.) represents the sigmoid function, ωmj represents the element in the mth row and jth
column of the coefficient matrix, and ψ(.) is the 1 × 1 convolution operation.

The feature map Q obtained after processing the feature map X with the LSS module
represents the semantic associations at the local level, while the feature map D obtained
after the GSR module represents the correlations between feature blocks. To integrate
the two types of information, the obtained D was used as the convolution kernel, and
the feature map Q was convolved. In order to preserve the information conveyed by the
original feature map X, the final output m of the context semantic expression module
is obtained by adding and fusing the result of the convolution operation with X. The
operation in the process is shown in Equation (6).

Mi = Qj
k ∗ Di + Xi (6)

2.5. Dual Attention Fusion Module

The area of infrared small targets contains only a few pixels, and as the network
deepens, the targets are likely to be lost in deeper networks. Shallow networks capture
detailed information about small objects, such as their location, size, and edges. However,
they lack a deep understanding of small objects. Deep networks capture various semantic
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information about small targets, but may lose the details of these small targets. Feature
representation is extremely challenging when the final feature map lacks information from
the different network stages. Therefore, knowing how to integrate shallow features and
deep features is crucial for accurately detecting infrared small targets. Previous studies
have shown that the fusion of spatial attention and channel attention [31] can highlight
the optimal semantic feature regions and reduce the computational complexity [32]. This
fusion enables the retention and extraction of the original features of small targets in deep
networks [33].

In order to enhance detection effects and improve detection accuracy, this paper intro-
duces a dual attention fusion module, referred to as a DAF module. The module structure
is shown in Figure 4. The module can not only extract the deep semantic information of the
small target but also fuse detailed information, such as the location of the small target. It
can also solve the problems of information redundancy and inadequate feature fusion.
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The low-level features Z and high-level features Y′ represent different semantic in-
formation. The high-level features Y′ are obtained from Y in Figure 1 after two rounds of
upsampling operations. The low-level features contain the location information of multiple
small targets, and the spatial attention mechanism module can be used to process the local
location information. The high-level features can utilize the channel attention mechanism
module to process channel semantic information, prioritizing the semantic expression of
different channels. The low-level features and high-level features are incorporated together
and fused with the low-level features constrained by spatial attention and the high-level
features constrained by channel attention, respectively, as shown in Equation (7):

DAF
(
Z, Y′) = (Z + f (Y))

⊗
PA(Z)

⊙
CA

(
f
(
Y′)) (7)

where PA(.) and CA(.) represent the spatial and channel attention constraints, f (.) repre-
sents the convolution operation, and

⊗
and

⊙
represent the corresponding multiplication

operations of the element and vector tensors, respectively.
During upsampling, the DAF module fuses low-level and deep-level semantic in-

formation of 1/4 and 1/2 spatial sizes respectively. They are all preceded by a bilinear
interpolation operation. Finally, the segmentation network of fused features was used to
predict the final detection result of infrared small targets.

Aiming at the characteristics of class imbalance and weak texture differences between
infrared small targets and the infrared image background, the target detection network
needs to comprehensively consider spatial and channel features, as well as cross-layer
feature fusion. This implies that the network should not only capture the target features
within a single image layer but also focus on the information transfer and fusion between
different layers to improve the identification and localization of small infrared targets. This
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mechanism of cross-layer feature fusion is helpful for resolving the contrast between the
target and the background in the infrared image, enhancing the accuracy and robustness of
target detection.

3. Results

To demonstrate the effectiveness of the proposed algorithm in infrared multi-scale
small-target detection, experiments are conducted to validate its performance. Firstly, the
evaluation index used is introduced, and then the implementation details of the proposed
method are provided. Finally, ablation experiments and comparison experiments are
conducted, and the experimental results are analyzed. The experiment uses Ubuntu 18.04
operating system, Pytorch 1.8.0 deep learning framework, 3.00 GHz Intel Core i9-13900KF
CPU (Intel, Santa Clara, CA, USA), and CUDA version 11.1.1.

3.1. Evaluation Index

The approach proposed in this paper achieves the detection of infrared multi-scale
small targets through semantic segmentation. Therefore, the F1 score, intersection over
union (IoU), and normalized IoU(nIoU) are used as quantitative evaluation metrics for
semantic segmentation.

(1) F1 is the harmonic mean of precision and recall, which can be used to comprehensively
evaluate the performance of the model. The formula for F1 is shown in Equation (8):

F1 = (2 ∗ Precision ∗ Recall)/(Precision + Recall) (8)

where Precision refers to the proportion of samples predicted as positive by the model
that are actually positive, while Recall refers to the proportion of samples that are
actually positive and are predicted as positive. Higher values of Precision and Recall
indicate better performance of the network model, and their values are calculated with
Equations (9) and (10), respectively:

Precision = TP/(TP + FP) (9)

Recall = TP/(TP + FN) (10)

where true positive (TP) refers to the true examples. This is the number of pixels where
the predicted box intersects the true box. TP represents the number of samples that were
correctly predicted as positive by the model. On the other hand, false positive (FP) is the
number of false positives that the predicted box incorrectly contains outside the true box.
FP indicates the number of examples that the model incorrectly predicts to be positive.
False negative (FN) refers to the false-negative examples. It represents the number of pixels
in the true box that are not covered by the predicted box or the number of samples that are
incorrectly predicted as negative by the model.

(2) IoU is one of the pixel-level metrics used to evaluate the performance of image
segmentation models. It is used to evaluate the ability of an approach to describe the
contour. It represents the ratio of the intersection area to the union area between the
predicted segmentation results and the true segmentation results. It is calculated by
Equation (11).

IoU = TP/(TP + FP + FN) (11)

(3) nIoU is a normalized version of IoU and is commonly used to calculate the average
degree of overlap between multiple predicted boxes and multiple true boxes. It is the
index obtained by calculating the intersection over union (IoU) for each class and then
averaging the values. nIoU is an evaluation index specifically designed for infrared dim-
and small-target detection. It can be calculated based on Equation (12):

nIoU =
(
∑N

i=1 IoUi

)
/N (12)
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where N represents the number of classes, and IoUi represents the intersection over union
(IoU) value of the ith class.

3.2. Implementation Details

Two datasets, IRSTD-1k [34] and SIRST [25], are selected for experimental verification.
IRSTD-1k is a single-frame infrared small-target dataset. The dataset contains 1000 samples
with various backgrounds, distances, and types of small targets, as shown in Figure 5. SIRST
contains 427 samples and 480 small-target instances, many of which are blurred and hidden
in complex backgrounds such as sky or water, as shown in Figure 6. In real infrared scenes,
the network’s performance may be limited by differences in image sizes and the restricted
amount of data available, making it susceptible to overfitting and convergence failure.
In this case, it is necessary to design the network structure specifically to enhance the
generalization ability and stability of the model. Therefore, according to the characteristics
of the segmentation network designed in this paper, the size of the image in the dataset at
the input of the network is fixed at 256 × 256. The training and test sets are divided based
on a ratio of 8:2, as shown in Table 1.
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In the implementation process, the optimizer of the proposed method utilizes stochastic
gradient descent (SGD) with a momentum of 0.9. The initial learning rate is set to 0.05, the
weight decay coefficient is 0.0004, the batch size is 8, and the number of epochs is 300. The
loss function employed is soft IoU, and its value is calculated as shown in Equation (13).

So f tIoU = 1 − IoU (13)

The proposed model is compared with five data-driven methods, namely, FPN [22],
U-Net [23], TBC-Net [24], ALC-Net [25], and DNA-Net [26]. The parameter settings are
the same as those in the original paper. Table 2 shows the parameter settings involved in
various methods.

Table 2. Parameter settings for data-driven methods.

Methods
Parameter Setting

Learning Rate Batch Size Epochs

FPN 0.02 - -
U-Net - - -

TBC-Net 0.005 128 130
ALC-Net 0.1 10 400
DNA-Net 0.05 16 1500

3.3. Ablation Experiment

In this section, the ablation test is designed to verify the rationality and effectiveness
of each proposed or added module.

Compared with the original FPN [22], the PSC module and DAF module were added
based on it, with both modules being added simultaneously. Experiments are carried out on
two datasets: IRSTD-1k and SIRST. The nIoU and F1 scores obtained from the experiment
are displayed in Figure 7. Here, “None” refers to the original FPN network, “+PSC”
denotes the addition of the PSC module to the original FPN network, “+DAF” indicates
the integration of the DAF module into the original FPN network, and “+PSC + DAF”
represents the inclusion of both modules.

It can be seen from Figure 7 that both PSC and DAF modules have excellent perfor-
mance on the two datasets. Compared with the original FPN network, the nIoU and F1
values of the PSC module and DAF module have significantly improved. This suggests that
both modules contribute to enhancing detection performance. After adding two modules
simultaneously, the values of nIoU and F1 are higher than when adding each module sepa-
rately. This suggests that the best detection results are achieved only when both modules
are used together.
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Secondly, the proposed algorithm is compared with AGPCNet as proposed in [28].
Compared with AGPCNet, the proposed approach incorporates three PSC modules into
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the overall network. These modules are designed to repeatedly process shallow features,
enabling a profound fusion of local and global features. This approach is more beneficial
for feature representation. In addition, a DAF module is proposed to effectively integrate
shallow features and deep features to emphasize important semantic information while
downplaying or disregarding unimportant semantic information. The experimental results
of the two models on the two datasets are shown in Figure 8. The notation “+PSC” denotes
adding a single PSC module in the network, specifically in the module where the output is
at position Z3, as shown in Figure 1. In contrast, “+3PSC” indicates the inclusion of three
PSC modules in the network.
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As depicted in Figure 8, the quantity of PSC modules utilized has a specific influence
on the experimental outcomes. The utilization of three PSC modules is superior to using
just one, suggesting that employing PSC modules can preserve more intricate low-level
information like position and texture without generating excessive redundant data. How-
ever, this performance does not imply that adding more PSC modules to the detection
model will always result in better outcomes. It needs to be analyzed with respect to specific
problems in practical applications. The processing effect of the DAF module proposed in
this paper is better than that of AFM, which indicates the effectiveness of the DAF module
proposed in this thesis.

3.4. Comparative Experiment

The performance of the proposed approach is compared with that of several other
state-of-the-art methods for small-target detection. In order to accurately illustrate the
effectiveness of the proposed method, its detection accuracy is quantitatively compared
with that of the other state-of-the-art methods. Table 3 presents the values of the accuracy
measures of the six methods on the two datasets. Among them, the best result for a measure
is highlighted in bold, and the second place is marked with a horizontal line.

Table 3. The detection accuracy obtained with each tested method.

Method
IRSTD-1k SIRST

IoU (%) nIoU (%) F1 (%) AUC (%) IoU (%) nIoU (%) F1 (%) AUC (%)

FPN [22] 48.36 48.77 62.41 76.88 42.38 43.96 60.50 69.31
U-Net [23] 49.98 49.35 68.95 83.22 44.81 43.26 62.93 72.67

TBC-Net [24] 51.48 52.33 70.25 83.87 47.23 46.58 65.31 77.34
ALC-Net [25] 52.63 52.21 76.88 84.21 46.85 47.60 66.38 75.36
DNA-Net [26] 50.66 51.74 71.22 83.56 38.12 37.55 43.20 65.03

Proposed 54.63 55.26 77.69 84.33 48.32 49.71 67.42 76.48
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As shown in Table 3, there is minimal difference in performance between the FPN
method and the U-Net method on the two datasets. The performance of the U-Net method
surpasses that of the FPN method, suggesting that while the introduction of the FPN
method marks a milestone for infrared multi-scale small-target detection methods, the
U-Net network still maintains a competitive edge in infrared small-target detection due
to its encoder–decoder “U”-shaped network. The TBC-Net model incorporates seman-
tic constraint information from high-level classification tasks, effectively addressing the
imbalance issue between small targets and backgrounds. The ALC-Net model utilizes a
bottom-up attention mechanism to effectively preserve the features of small targets. The
DNA-Net model exhibited poor performance in this experiment. The method proposed in
this paper demonstrates the best performance compared to all other methods. Although
its AUC value on the SIRST dataset is not the highest, the method proposed in this paper
achieves the best overall performance and is the most effective of all tested methods for
infrared multi-scale small-target detection.

4. Conclusions

In this paper, an infrared multi-scale small-target detection method based on a feature
pyramid network is proposed. The proposed approach incorporates two new components
into the ResNet18 architecture. Firstly, three PSC modules are added to the feature pyramid
network to obtain features that can enhance the detection ability. Secondly, the DAF module
is utilized to improve the detection accuracy.

The infrared small-target detection architecture proposed in this paper is more accurate
and robust compared to other methods. It is capable of retaining the location information
of small targets while extracting deep semantic information, resulting in higher detection
accuracy and lower false-alarm rates. However, it requires high GPU and memory resources
and may not be suitable for resource-constrained environments. As the use of infrared small-
target detection technology increases in detecting and tracking targets at long distances or
under low-light conditions, there is a need to continuously improve the speed and accuracy
of model detection to meet the requirements of real-world scenarios in the future.
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