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Abstract: Futures commodity prices are affected by many factors, and traditional forecasting methods
require close attention from professionals and suffer from high subjectivity, slowness, and low forecasting
accuracy. In this paper, we propose a new method for predicting the fluctuation in futures commodity
prices accurately. We solve the problem of the slow convergence of ordinary artificial bee colony
algorithms by introducing a population chaotic mapping initialization operator and use the resulting
chaotic mapping artificial bee colony algorithm as a trainer to learn long short-term memory neural
network hyperparameters. With the combination of gate structures learned by the algorithm, the long
short-term memory network can accurately characterize the basic rules of futures market prices. Finally,
we conduct a series of backtesting experiments on gold and natural gas futures commodity prices to
demonstrate the effectiveness of the proposed model. The experimental results show that, compared
with various existing optimization models, our proposed model is able to obtain the lowest mean
absolute error, mean square error, and root mean square error in the least number of iterations. In
summary, the model can be used to predict the prices of a wide range of futures commodities.

Keywords: chaotic mapping; artificial bee colony algorithm; long short-term memory; futures
price prediction

1. Introduction

Predicting commodities prices in the futures market has always been a classic and
challenging problem that has an impact on many countries and even the whole world [1].
Economists and computer scientists are interested in predicting futures commodity prices
in economic market research [2,3]. Known for its extensive hedging capabilities and
stable value, gold holds a prominent place in the investment and financial markets. The
development and export of the natural gas industry play a key role in the economic growth
of many countries, and natural gas exports can generate significant foreign exchange
earnings for the country. Forecasts suggest that natural gas is poised to supersede coal and
oil as the predominant fossil fuel post-2030 in terms of its share of the world’s primary
energy consumption [4,5]. The world economy, geopolitics, inflation, and other factors all
have an impact on commodities futures. Therefore, when predicting the value of these
futures commodities, traditional methods require careful attention to market dynamics
and relevant macroeconomic data. At the same time, researchers also face the challenge
of improving the accuracy of futures commodity price volatility prediction models, as
improving predictive performance is crucial for related companies and stakeholders [6].
For the investor to grasp futures commodity prices in advance of the day before the opening
of the market so that they can decide whether to continue to buy or sell, thereby affecting
the return on the capital, it is crucial to design an accurate forecasting model to predict
commodity price trends.
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During exploration and exploitation, the ABC optimization algorithm can easily slip
into local optima due to its poor convergence speed [7,8]. Simultaneously, optimizing
neural network hyperparameters for the faster training of high-precision prediction models
is another complicated issue. Hyperparameter adjustments take a large amount of time in
traditional methods, and even minor alterations can exert a huge impact on the outcome of
the prediction [9,10]. In this paper, we propose a novel approach for enhancing the ABC
technique by introducing a chaotic bee colony initialization operator. This operator can
speed up the optimization process and be used as a hyperparameter selection for LSTM
neural networks. The overarching objective is to automatically adjust the LSTM neural
network’s numerous combinations of hyperparameters when forecasting various futures
commodities, allowing the model to withstand market fluctuations better and adjust to
changing market trends. The significance of hyperparameters in neural network training
is emphasized in much research. For instance, Chen et al. [11] claim that choosing the
right hyperparameters is primarily responsible for the LSTM’s performance. Similarly, Qi
et al. [12] contend that hyperparameters wield substantial influence over machine learning
algorithms, and that optimizing them can be computationally costly. They suggest using a
Q-learning approach to find optimal neural network hyperparameter setups. Moreover,
the hyperparameter exploration LSTM predictor (HELP), a superior stochastic exploration
technique introduced by Li et al. [13], further corroborates the profound impact of LSTM
hyperparameters on neural network performance. Furthermore, Albahli et al. [14] employ
advanced techniques for hyperparameter adjustment to evaluate model efficacy, demon-
strating how neural network hyperparameters affect the recognition of handwritten digits.

The originality of this study lies in its innovative use of a tent chaotic mapping
artificial bee colony (TCM-ABC) technique to optimize the hyperparameters of LSTM
neural networks, including critical parameters such as window size and neuron count.
By harnessing the capabilities of the ABC algorithm, this study endeavors to find robust
LSTM hyperparameters within vast decision spaces, thus enabling the effective training of
neural networks for the precise prediction of futures commodity prices. Overall, the salient
characteristics of this pioneering approach can be summarized as follows:

• Employing the globally optimized chaotic mapping artificial bee colony algorithm,
this study endeavors to tune essential LSTM layer hyperparameters such as window
size and neuron count.

• TCM-ABC-LSTM is a new combination of meta-heuristic algorithm and neural net-
work, deployed for the precise prediction of daily closing prices in gold and natural
gas futures commodities markets.

• By contrasting the anticipated closing price with actual values and forecasts based
on statistical error measurements (such as MSE, MAE, and RMSE), the proposed
TCM-ABC-LSTM model is assessed.

• To our best knowledge, this is the first time that machine learning technology has been
used to predict commodity price fluctuations in the futures market.

This paper is organized as follows: Section 2 reviews past research related to our work.
Section 3 describes the deep learning algorithms used in our study and our proposed TCM-
ABC-LSTM architecture. Section 4 describes the experiment and discussion, including an
introduction to the equipment used, data description and preprocessing, model parameter
settings, results, and discussion. Section 5 concludes.

2. Related Works

Financial forecasting involves a diverse array of methodologies because the futures
market, and indeed the entire financial market, are dynamic systems rife with noise and
non-parameters [15]. A variety of models have been used by researchers to forecast price
volatility. Four key types of price prediction methods currently in use include statistical
methods, artificial intelligence methods, hybrid models, and Bayesian methods. As a
result, the applications of numerous methods in the field of financial forecasting are briefly
reviewed in this section.
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2.1. Using Statistical Methods to Predict

Over the preceding decades, the autoregressive integrated moving average (ARIMA)
model has emerged as a cornerstone within the domain of time series forecasting, garnering
widespread acclaim across diverse disciplines. Predicting issues in the fields of medicine,
engineering, social sciences, stocks, and futures are among its uses [16–20]. One of the
most popular classical econometric methods for time series prediction is multiple linear
regression. Multiple linear regression was employed by Jyothi Manoj et al. [21] to forecast
gold prices. Ruslan et al. [22] used a series of univariate GARCH models to examine
oil prices and shipping stock prices in 2021, and the study provides a realistic view for
regulators and investors to predict market sentiment in the shipping market in response
to global oil prices. Wahyuny et al. [23] analyzed the comparison of the accuracy of the
asset pricing model (CAPM) and the arbitrage pricing theory (APT) in predicting the stock
returns of manufacturing companies listed on the Indonesian stock exchange, where the
outcomes of the data analysis demonstrated that the CAPM model outperforms the APT
model in predicting stock returns.

2.2. Using Artificial Intelligence Methods to Predict

Artificial intelligence methods, including machine learning and deep learning meth-
ods, have been introduced and used to predict time series [24]. In 2020, Wang and Zhao [25]
developed, tested, and validated suitable support vector regression (SVR) models for ship
price prediction based on the advantages of support vector machine frameworks. They
pointed out that this model provides satisfactory, robust, and promising results. Yu and
Yan [26] used a deep neural network for predicting stock prices, which uses the time series
phase space reconstruction (PSR) method to reconstruct the price series, and they claimed
that the proposed prediction model has high prediction accuracy. In order to predict the
opening price, the minimum price, and the maximum price of a stock at the same time,
Guangyu Ding and Liangxi Qin designed a multiple-input–output model based on LSTM
and experimentally demonstrated that the model outperforms other models in predicting
multiple values at the same time [27]. To extract and forecast future properties of these mar-
kets, Ehsan et al. [28] suggested a CNN-based framework that can be applied to datasets
from many sources (including different marketplaces). Wang et al. [29] used the most recent
deep learning framework, the Transformer model, in 2022 to predict stock market indices.
They showed that the Transformer model outperforms other neural network methods in
multiple stock indices and better characterizes the fundamental rules of the stock market
thanks to its encoder–decoder architecture and multi-head attention mechanism.

2.3. Using Hybrid Models to Predict

To predict the Bitcoin price, Kazeminia et al. proposed a hybrid model that mixes a
2D-CNN and LSTM in 2023, using a 2D-CNN for feature extraction and giving it to LSTM
for prediction [30]. The results show that the hybrid model can outperform any single deep
learning model. Lu et al. [31] suggested a convolutional neural network (CNN)- and LSTM-
based stock price prediction technique in 2020. Effective information was extracted from
the data using the CNN, and the extracted features were predicted using LSTM. According
to the results, the model has the best prediction accuracy on the Shanghai Stock Exchange
composite index. In 2021, Farah et al. [32] proposed a new genetic long short-term memory
framework consisting of long short-term memory and a genetic algorithm to predict short-
term wind power generation. The LSTM layer’s window size and neuron count were
optimized using the genetic algorithm’s global optimization technique. The model is 30%
more accurate than the current technology. In 2022, Gourav et al. [33] proposed a hybrid
deep learning model based on an LSTM network and adaptive particle swarm optimization
(PSO), which uses PSO to evolve the weights and biases of LSTM and a fully connected
layer (FCL) for predicting the short-term and long-term stock prices of Sensex, S&P 500,
and Nifty 50 stock indices. Compared with the Elman neural network and standard LSTM
neural network, it achieved better prediction accuracy.
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2.4. Using Bayesian Methods to Predict

In 2020, Massari [34] examined the impact of the market choice hypothesis on the
accuracy of the probabilities implied by equilibrium prices and on the market’s “learning”
mechanism, using the standard machinery of dynamic general equilibrium models to
generate a rich class of price probabilities, and showed that Bayes’ rule is the only rational
way to learn. A major limitation of traditional deep learning is the quantification of
uncertainty in predictions, which can affect investor confidence. To this end, Chandra
et al. [35] used a new Bayesian neural network to forecast multi-stage stock prices before
and during the New Crown Pneumonia in 2021. The results show that the Bayesian neural
network can provide reasonable forecasts with uncertainty quantification, despite the high
market volatility during the first peak of the new crown pneumonia pandemic. Chuang
and Lee [36] empirically analyzed historical block data using a Gaussian process model
and compare its performance with GasStation-Express and the Geth gas price oracles. The
results show that the Gaussian process model provides better estimates when trading
volumes are volatile.

3. Methodology

In our study, we enhance the conventional artificial swarm meta-heuristic algorithm by
introducing a novel swarm initialization operator, which uses a chaotic mapping algorithm
to generate the initial population, and by applying this algorithm to generate optimal
hyperparameters for long short-term memory neural networks. Our primary objective is to
employ this optimized model to forecast the prices of gold and natural gas futures. This sec-
tion provides a comprehensive exposition of our model architecture and the methodological
approaches employed therein. Figure 1 shows the created TCM-ABC-LSTM model.

Figure 1. TCM-ABC-LSTM model structure. The data are first preprocessed and divided into training
and testing sets. The training set is input into TCM-ABC for training. TCM-ABC continuously
generates LSTM hyperparameter vectors to train the LSTM model, and the prediction accuracy of the
LSTM model is returned as fitness to TCM-ABC. Finally, the LSTM model is trained using the optimal
hyperparameter vector obtained after meeting the termination conditions, and predictions are made.
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3.1. Tent Chaotic Mapping Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm is an effective optimization algorithm that is
a natural heuristic algorithm proposed by Karaboga D et al. in 2005 [37]. Functioning akin
to the organic processes observed within bee colonies, the ABC categorizes bees into three
distinct groups: worker bees, onlooker bees, and scout bees.

However, despite its efficacy, the algorithm for the ABC remains subject to continual
refinement. The conventional approach for the ABC is to create worker bee placements in
the solution space at random to start the bee population. We found that the traditional ABC
algorithm’s randomly initialized bee colonies may be too concentrated, leading to poor
performance. Therefore, in our research, we use tent chaotic mapping as the bee colony
initialization operator, which effectively solves the inherent inefficiency problem of this
traditional method [38].

Our proposed initialization operator markedly reduces exploration time by systemat-
ically distributing worker bees across the solution space. This strategy results in shorter
distances for worker bee exploration, consequently enhancing search speed and efficiency.
Equation (1) provides the representation of tent chaotic mapping, where µ is typically
2. We iteratively generate a series of chaotic numbers through Equation (2) and map the
generated chaotic sequence x0, x1, . . . , xn to the search space of the problem in Equation (3),
where xij represents the jth component of the current solution vector for worker bee i and
[a, b] is the solution space. The symbol bc denotes downward rounding.

T(x) =

{
µx , 0 ≤ x < µ

µ(1− x) , µ ≤ x ≤ 1.
(1)

xn+1 = T(xn) (2)

xij = aj + bxi ∗ (bj − aj)c (3)

We use the mapping results obtained from the above steps as the initial population
for the artificial bee colony algorithm. The fitness value of the objective function f it is
calculated by Equation (4), where fi is the objective function value and f iti is the fitness of
bee i.

f iti =
1

1 + fi
(4)

We use the roulette method to calculate the probability pi that a worker bee is selected
by an onlooker bee, which is obtained from Equation (5):

pi =
fi

∑n
i=1 f iti

(5)

Onlooker bees searching for new solutions are calculated using Equation (6), where
xkj is the solution vector of a randomly selected other worker bee k.

x′ij = xij + rand[−1, 1](xij − xkj) (6)

Scouter bees use Equation (7) to randomly generate new solutions to avoid falling into
local optima, where x′′ij is the position of the scouter bee and xmin

j and xmax
j represent the

minimum and maximum of the jth component, respectively.

x′′ij = xmin
j + rand[−1, 1](xmax

j − xmin
j ) (7)

3.2. Long Short-Term Memory

The long short-term memory network stands as a seminal and highly effective model
for time series prediction [39]. The memory cell of the LSTM model is shown in Figure 2.
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The LSTM model incorporates a sophisticated gate structure to mitigate the challenges
of gradient vanishing and explosion. This gate structure comprises forget gates, input
gates, and output gates, and each structure has its unique role. Three gate structures are
represented mathematically by Equations (8)–(11):

ft = σ(W f xt + Wh f ht−1 + b f ) (8)

it = σ(Wixt + Whiht−1 + bi) (9)

ot = σ(Woxt + Whoht−1 + bo) (10)

ht = tanh(Ct−1)
⊗

ot (11)

Ct = Ct−1
⊗

ft + tanh(WCxt + WhCht−1 + bC)
⊗

it (12)

In Equations (8)–(12), matrices wx f , wxi, wxo, wxc denote the appropriate input weight
matrices, wh f , whi, who, whc are the recursive weight matrices, and b f , bi, bo, bc denote the
corresponding bias vectors. The hidden state, denoted by the ht in Equation (11), passes
through the activation function tanh to produce a new hidden state after combining the
input and the previous hidden state into a vector. Long-term memory is represented by Ct,
which is the outcome of the input gate, forget gate, and memory Ct−1 from the previous
moment combined. The symbol

⊗
represents the multiplication of elements by elements

between units. The tanh and sigmoid kernel functions are represented as tanh and σ,
respectively, and are defined mathematically as follows:

tanh(x) =
ex − e−x

ex + e−x (13)

σ(x) =
1

1 + e−x (14)

The output yt of the LSTM is computed using Equation (15), where why is the recursive
weight matrix and by is the corresponding bias vector:

yt = σ(whyht + by) (15)

Figure 2. LSTM memory cell structure.
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3.3. TCM-ABC-LSTM

To better address the difficulties associated with hyperparameter tuning in LSTM net-
works, this section describes an improved artificial bee colony optimization algorithm as a
hyperparameter selector for LSTM networks, which is called TCM-ABC-LSTM. Leveraging
the inherent strengths of the ABC algorithm as a hyperparameter selector, our proposed
methodology ensures expedited convergence, heightened prediction accuracy, and en-
hanced robustness of the resultant LSTM network models. Notably, the ABC algorithm’s
aptitude for tackling NP-hard problems and swiftly identifying global optimal solutions
or approximate global optima highlights its effectiveness in the complex environment of
hyperparametric optimization. Tent chaotic mapping group initialization further improves
the efficiency of the algorithm, allowing it to quickly traverse the solution space and find the
global optimal or near-global-optimal solution faster than other meta-heuristic algorithms.
The pseudo-code of the TCM-ABC algorithm is shown in Algorithm 1.

Algorithm 1 Pseudocode of TCM-ABC-LSTM

1: Initialize population using Tent chaotic mapping
2: Evaluate the fitness of the population
3: Set Iteration = 1
4: while Iteration < Maximum number of Iteration do
5: Employee Bee Phase
6: Probability Calculation Phase
7: Onlooker Bee Phase
8: Scout Bee Phase
9: Enroll the best solution obtained so far

10: Iteration = Iteration + 1
11: end while
12: Training LSTM with Optimal Population

First, the ABC initializes the worker bee population by tent chaotic mapping (TCM),
which serves to distribute the population uniformly in the solution space, to accelerate the
bee’s search process and to avoid falling into local optima. The pseudo-code of the TCM
initialization operator is shown in Algorithm 2.

Algorithm 2 Pseudocode of TCM initialization operator

1: while i = 1, 2,. . . ,n do
2: while j = 1, 2,. . . ,m do
3: Initialize population of worker bees W by Equations (1)–(3)
4: end while
5: end while

In the worker bee phase following the initialization process, the worker bee evaluates
the fitness value of the newly generated nectar source. Under the support of the TCM
initialization operator, the searchability of the solution is enhanced. The described bee
phase is demonstrated in Algorithm 3.

Algorithm 3 Worker Bee Phase

1: for all worker bee w in W do
2: Evaluate the fitness of w
3: end for

In the onlooker bee phase, worker bees share information about the location of the
nectar source with onlooker bees in the beehive. The onlooker bee selects the worker bee to
continue exploring the new solution based on the roulette probability. The pseudo-code for
this process is represented in Algorithm 4:
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Algorithm 4 Onlooker Bee Phase

1: for all worker bee w in W do
2: Execute roulette selection based on Equation (5)
3: if w selected then
4: Add w to O
5: end if
6: end for
7: for all onlooker bee o in O do
8: Generate onew by fine-tuning the value of o
9: Evaluate the fitness of onew

10: if f (o) < f (onew) then
11: Replace o with onew
12: end if
13: end for

Finally, the ABC enters the Scout Bee Phase if the adaptation does not improve after n
iterations, replacing the current solution with a randomly generated one to avoid falling
into a local optimum. We argue that the behavior of bees in the ABC algorithm has
some similarities with LSTM neural network parameter tuning and that the behavior
of worker bees exploiting a nectar source corresponds to finding a solution within the
hyperparametric feasible solution space of the neural network. Onlooker bees can decide
whether to exploit or not and are capable of small-scale fine-tuning. The scout bees
randomly search for nectar sources and are able to prevent falling into a local optimum.
Therefore, we choose to combine the ABC algorithm with LSTM in an attempt to achieve
excellent prediction results.

TCM-ABC is used to train LSTM networks to solve nonlinear regression (predicting
price fluctuations). The main difficulty in developing accurate neural network models
lies in finding the most appropriate hyperparameters to train the neural network. The
main drawbacks of traditional training algorithms include local optimum stagnation, slow
convergence, and poor accuracy, thus motivating researchers to look for reliable alternatives
to address these drawbacks. From this point of view, TCM-ABC intelligently chooses the
hyperparameters of LSTM. The proposed model uses LSTM as the objective function of
TCM-ABC and evaluates its solution in the training phase. This evaluation uses the current
solution as hyperparameters, passes it to the LSTM, and subsequently calculates the fitness
based on the predictive performance of the LSTM. This scenario is repeated until the
maximum number of iterations is reached. The best solution is finally passed to the LSTM
as a hyperparameter vector for the testing phase.

Using an improved artificial bee colony technique, we were able to determine the
hidden layer size, number of hidden layers, time step, batch size, and epoch of LSTM in
our work. Determining these ideal settings is crucial since, for instance, if the time step size
is set to 1, hardly any information is transmitted. If we consider a large time step, then this
means that early-sequence terms will act as noise. Thus, the appropriate optimization of
these hyperparameters is indispensable for ensuring the efficacy and reliability of LSTM
network models. Figure 3 displays the TCM-ABC-LSTM model’s concrete flowchart.
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Figure 3. The flow chart of TCM-ABC-LSTM.

4. Experiment and Discussion

Gold and natural gas stand as pivotal commodities that command significant attention
within the global futures market landscape. Often regarded as barometers of the world
economy, fluctuations in the prices of gold and natural gas are closely scrutinized by
investors and analysts alike. Changes in monetary policy, geopolitical threats, and inflation
predictions are typically reflected in the direction of gold prices. Weather variations,
geopolitical events, and supply–demand relationships all have an impact on natural gas
prices. Recognizing the importance of comprehending market trends and making informed
investment decisions, investors and stakeholders seek predictive models that can effectively
anticipate price movements in these key commodities. To this end, our study opted to
evaluate the predictive performance of the TCM-ABC-LSTM algorithm by focusing on
futures prices for gold and natural gas commodities. By conducting a series of rigorous back-
testing experiments on the next-day closing price indices of gold and natural gas futures,
we aimed to elucidate the algorithm’s efficacy in forecasting commodity prices within the
futures market domain. Table 1 provides a comprehensive overview of the hardware and
software configurations utilized in our experimental setup, ensuring transparency and
reproducibility in our methodology.

Table 1. The main hardware and software configurations.

Hardware/Software Configuration

CPU Kaggle CPU
GPU NVIDIA Tesla P100
DISK Max 73.1 GB
RAM Max 29 GB

GPU memory Max 16 GB
Python version Python 3.7
Pytorch version Pytorch 1.7.0
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4.1. Data Description and Preprocessing

The opening, closing, highest, and lowest trade prices for natural gas from 4 April
1990–26 October 2023, and for gold from 2 January 1990–26 October 2023, are among the
data analyzed in this study. Investing Financial Information provides the data instance for
each index. Renowned as one of the premier financial websites globally, Investing Financial
Information offers real-time updates and comprehensive market data on a diverse array
of financial instruments, including stocks, funds, foreign currencies, futures, bonds, and
digital currencies. One can download all of the experiment’s data at https://www.investing.
com/commodities/real-time-futures, accessed on 11 June 2024. To facilitate effective model
training and evaluation, the closing price data were partitioned into training and test sets.
Specifically, the training set comprises the initial 80% of the data, employed to train the
LSTM model parameters. Then, the remaining 20% of the data are reserved as a test set,
serving as a robust validation mechanism for assessing the performance and accuracy of the
proposed predictive model. It is worth noting that, in order to reduce the volatility of the
dataset and enhance the predictive performance and stability of the proposed model, we
normalize the raw data (both training and test sets) using Equation (16). This normalization
process ensures that the raw data, both in the training and test sets, are standardized to a
common scale, thereby facilitating more robust and reliable model training and evaluation,
where xmin and xmax are the minimum and maximum values of the original sequence,
respectively.

xi(norm) =
xi − xmin

xmax − xmin
(16)

To facilitate this predictive process, we adopt the moving window method, a widely
employed technique for feature extraction from observed time series data. The closing
prices of the previous t trading days are used in each prediction to forecast the closing
price of the following trading day t + 1. This method systematically constructs features and
labels by sliding a window over the time series data, as depicted in Figure 4.

Figure 4. Moving window method.

4.2. Model Parameter Settings

We carried out a great deal of testing on the training set, and the pertinent parameters
of the improved artificial bee colony algorithm were established as follows in light of many
tests and related studies [40–42]: 50 honey sources, 500 iterations, 25 worker bees, and
15 onlooker bees. The number of LSTM’s hidden layer cells is given in [30, 200], the number
of hidden layers is given in [1, 8], the time step is given in [20, 80], the batch size is given in
[30, 80], and the epoch is given in [10, 500].

We use the root mean square error to evaluate the prediction accuracy. Taking the pre-
diction of gold prices as an example, each algorithm’s loss function over time is displayed in
Figure 5. The graph shows that our suggested algorithm has the fastest convergence speed
and can reach the final result within approximately 10 iterations; second, the ABC-LSTM
model can reach the final result after about 50 iterations, showing that the effect of our
proposed swarm initialization operator on the speed of model training is effectual; and,
finally, the Transformer model has the worst prediction performance, suggesting that it has
limitations in capturing the intricate volatility patterns inherent in commodities traded on
futures markets.

https://www.investing.com/commodities/real-time-futures
https://www.investing.com/commodities/real-time-futures


Appl. Sci. 2024, 14, 5602 11 of 16

Figure 5. RMSE changes over time.

4.3. Evaluating Indicator

In this study, the model performance is evaluated by prediction accuracy, and we
compare the predicted values to the real data in the test set and calculate the prediction
error. The three prediction error evaluation metrics used in this study are as follows:

Mean Absolute Error (MAE):

MAE =
1
n

n

∑
i=1
|p− p̂| (17)

Mean Square Error (MSE):

MSE =
1
n

n

∑
i=1

(p− p̂)2 (18)

Root Mean Square Error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(p− p̂)2 (19)

where p is the true value, p̂ is the predicted value, and n is the sample size. MAE is the
mean absolute deviation between the predicted value and the true value, which ignores
the direction of the error and focuses only on the magnitude of the error [43]. MSE is a
common measure of time series forecasting performance. Similar to MAE, it also measures
the absolute error in the forecast, which is squared, making MSE more sensitive to outliers
but also more expressive of the distribution of the error [44]. RMSE is identical to the raw
data in terms of magnitude and is therefore easier to visualize and understand. Similar
to MSE, RMSE gives higher weight to large errors [45]. This study uses RMSE as the loss
function for model training.

4.4. Results and Discussion

The empirical results of this study confirm the utility and effectiveness of the TCM-
ABC-LSTM model. The same dataset is used to evaluate the prediction performance of the
designed models relative to traditional neural networks and various meta-heuristic trainers,
including ARIMA, LSTM, and GA-LSTM. Many researchers have demonstrated the high
accuracy of the compared models before and used these models to improve many problems.
Moreover, these models are among the most widely used and effective techniques in the
field of prediction [29,46–49]. The performance and precision of our proposed model are
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evaluated in comparison to other prediction models, employing well-established metrics
such as MAE, MSE, and RMSE. Among the diverse array of models compared in this study,
our proposed model stands out, gaining the lowest mean absolute error, mean square error,
and root mean square error, as shown in Tables 2 and 3, bold indicates the best result for
each indicator. Slight differences in these evaluation indicators have a big influence on
forecast accuracy because of data standardization. To provide a comprehensive insight
into the performance gains facilitated by our proposed model, using the MAE prediction
results as an example, Table 4 elucidates the marked enhancements in prediction accuracy
following inverse normalization. From the table, it can be seen that our model has a
significantly improved prediction accuracy, with improvements ranging from 26.79% to
82.16% compared to other models. This indicates that the data volatility has been well
captured in the fitted model, thereby affirming its robustness and efficacy as a futures
prediction model.

Figures 6 and 7 illustrate how well the ARIMA, FNN, LSTM, Transformer, GA-LSTM,
and TCM-ABC-LSTM models predict the prices of gold and natural gas, respectively. It
is evident from the graph that the TCM-ABC-LSTM-predicted futures commodity prices
closely match the actual data.

Figure 6. Prediction results of gold prices for various models.
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Figure 7. Prediction results of natural gas prices for various models.

Table 2. Performance comparison of gold price prediction models.

MAE MSE RMSE

ARIMA 0.01188 3.0× 10−4 0.0174
FNN 0.01902 4.0× 10−4 0.0216
LSTM 0.00906 1.2× 10−4 0.0110

Transformer 0.03253 4.2× 10−3 0.6531
GA-LSTM 0.00755 9.2× 10−5 0.0095

TCM-ABC-LSTM 0.00619 6.7× 10−5 0.0077

Table 3. Performance comparison of natural gas price prediction models.

MAE MSE RMSE

ARIMA 0.01148 2.2× 10−4 0.0149
FNN 0.00621 1.1× 10−4 0.0109
LSTM 0.00630 1.2× 10−4 0.0110

Transformer 0.02451 1.3× 10−3 0.0368
GA-LSTM 0.00620 7.8× 10−5 0.0088

TCM-ABC-LSTM 0.00250 1.2× 10−5 0.0035

Table 4. Model MAE performance improvement.

ARIMA FNN LSTM Transformer GA-LSTM

MAE (decline) 57.18% 81.24% 56.59% 82.16% 26.79%
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5. Conclusions

In this paper, we present a new model for predicting price fluctuations of futures
commodities using an improved meta-heuristic algorithm TCM-ABC to train LSTM neural
networks and apply it to predict the daily closing prices of gold and natural gas, comparing
the obtained prediction results with those of classical neural networks and other meta-
heuristic trainers such as ARIMA, Transformer, GA- LSTM, etc. The results show that the
TCM-ABC-LSTM model outperforms the other models. The evaluation metrics reveal that
the TCM-ABC-LSTM network model achieved the lowest MAE, MSE, and RMSE errors of
6.19× 10−3, 6.7× 10−5, and 7.7× 10−3, respectively. So far, the TCM-ABC-LSTM model is
considered as a promising technique for high-precision commodity price prediction. We
will explore more theoretical results in the future and expect that, in practice, investors can
obtain higher excess returns through predictions of TCM-ABC-LSTM.

The gold and natural gas data used in this study are classical data from futures markets,
and our proposed model performs very well on these datasets; we believe that the superior
performance of TCM-ABC-LSTM is mainly attributed to the innovative improvement of the
artificial bee colony algorithm and its application to LSTM networks. Compared with the
traditional LSTM model, the proposed TCM-ABC-LSTM model has better generalization
ability because it can adaptively find the optimal hyperparameters. However, there are
some limitations in this study, such as that this paper only predicts the closing price of
the commodity on the following day alone, but, in fact, the longer the prediction time, the
more insight into the future trend of the commodity for further analysis. These will be
discussed in our future research. In the future, additional research will be carried out on
the following points:

1. Extending the application of the TCM-ABC-LSTM model to diverse time series pre-
diction tasks encompassing domains such as electricity consumption, wind power
generation, and stock market dynamics.

2. Exploring alternative optimization algorithms to serve as hyperparameter selectors
for LSTM models in the quest for better hybrid models.

3. Applying long-term sequence prediction using the proposed model.
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ABC Artificial bee colony
ARIMA Autoregressive integrated moving average
FNN Feed-forward neural network
GA-LSTM Genetic algorithm long short-term memory
LSTM Long short-term memory
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MAE Mean absolute error
MSE Mean square error
TCM-ABC-LSTM Tent chaotic mapping artificial bee colony long short-term memory
RMSE Root mean square error
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