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Abstract

:

Aiming to address the A* algorithm’s issues of traversing a large number of nodes, long search times, and large turning angles in path planning, a strategy for multiple improvements to the A* algorithm is proposed. Firstly, the calculation of the heuristic function is refined by utilizing the Octile distance instead of traditional distance, which more accurately predicts the optimal path length. Additionally, environmental constraints are introduced to adaptively adjust the weight of the heuristic function, balancing the trade-off between search speed and path length. Secondly, the bidirectional jump point search method is integrated, allowing simultaneous path searches from both directions. This significantly reduces path search times and the number of nodes traversed. Finally, the path undergoes two rounds of smoothing using a path smoothing strategy until the final path is generated. To validate the effectiveness of the improved A* algorithm, simulations are conducted on ten types of grid maps. Results demonstrate that the improved A* algorithm markedly decreases path search times while maintaining path length, with greater speed improvements observed as the map size increases. Furthermore, the improved algorithm is applied in experiments with mobile robots, achieving significant reductions in average path search times of 79.04% and 37.41% compared to the traditional A* algorithm and the JPS algorithm, respectively. This enhancement effectively meets the requirements for rapid path planning in mobile robotics applications.






Keywords:


robot; path planning; A* algorithm; heuristic function; jump point search












1. Introduction


In today’s society, with the continuous development of intelligent manufacturing technology, robots have received widespread attention and have permeated various aspects of human life. Currently, research on robot autonomous navigation is primarily divided into three parts: perception, planning, and execution. Among these, path planning, referred to as “planning”, serves as the bridge connecting the other two components and is also the core focus of robotics research [1,2]. The importance of path planning can be reflected in the framework diagram of navigation, as shown in Figure 1. The navigation framework is mainly composed of the following key components. The ‘Move_base’ node is the core of the navigation framework, being responsible for coordinating and managing other modules. It receives the target position, calls Global_Planner and Local_Planner to generate a path, and sends control commands to Base_controller. The ‘Global_Planner’ node calculates the optimal path from the start point to the target point based on the static map and the target position. The ‘Local_Planner’ node is responsible for generating local paths suitable for the current environment during the execution of the global path, performing real-time obstacle avoidance and path adjustment. The ‘Base_controller’ node transforms high-level path planning instructions into actual motion control signals to ensure that the robot can navigate accurately and safely to the target position. The ‘Costmap’ node consists of the Global_costmap node and Local_costmap node, representing the traversal costs of different locations in the environment. Global_costmap is based on a static map while Local_costmap is based on real-time sensor data. The ‘Recovery_behaviors’ node is used to handle faults in various modules during navigation. Recovery behaviors are activated when there are failures in global planning, local planning, or oscillations. The ‘Amcl’ node is responsible for robot localization based on sensor data and the map. The ‘Map_server’ node provides the static environment map, usually generated by SLAM. This map is used for path planning and localization. The ‘Odometry source’ node provides the robot’s position information and motion state in the environment, estimating the robot’s posture and position changes relative to its starting position. The ‘Sensor sources’ node collects data about the robot’s surroundings using sources such as LiDAR, depth cameras, and ultrasonic sensors. These data are used to build and update the costmap. The ‘Sensor transforms’ node converts the data collected by the sensors into a unified coordinate system or reference frame for consistent processing and decision making. Additionally, by using communication mechanisms such as topic communication with topics like “/map”, the nodes work collaboratively. The navigation framework achieves key autonomous navigation functions through the coordinated work of Global_Planner and Local_Planner. Path planning specifically means that the robot plans an optimal path from the start position to the goal position without any collision with obstacles in the space when the environment is known or unknown. Path planning according to the degree of mastery of the environment information is divided into two forms. One is global path planning with full knowledge of the environment; at present, the commonly used global path planning algorithms are the Dijkstra algorithm [3], A* algorithm [4,5,6,7,8], ACO algorithm [9], etc. The other is local path planning with only partial or no knowledge of the environment; local path planning algorithms mainly include the DWA algorithm [10,11], artificial potential field method [12], etc.



The A* algorithm is a path planning algorithm based on graph search that is widely used in global path planning due to its fast computation speed, high efficiency, and maturity, being the most established path planning algorithm known so far. However, the A* algorithm still has many shortcomings. For example, it constantly visits the surrounding eight neighboring nodes during pathfinding, adding them to OpenList; selects the node with the smallest cost as the current node for expansion after calculating its evaluation function value; and adds it to CloseList after expansion, resulting in a large number of redundant nodes being stored and accessed. When the map scene is large, it will lead to the wastage of both storage space as well as time due to the increase in computation, resulting in inefficient pathfinding. Therefore, many scholars have made a series of improvements to the A* algorithm through research based on these problems. Zhang Mo et al. [13] reduced the number of turns in diagonally planning paths by changing the equation for total cost, i.e., increasing the influence of the predicted cost on the total cost, and smoothed the paths by introducing the five-point cubic smoothing method, but the algorithm still suffers from the problem of having too many redundant nodes. Gong Yunxin et al. [14] used an extension to include convex corner points that satisfy the adjacency relationship as the pattern of adjacency extension for the A* algorithm. This modification reduces access to unnecessary nodes and effectively improves the algorithm’s search efficiency. However, the improved A* algorithm’s efficiency is still not high in scenarios with too many convex corner points, and it fails to meet real-time demands. Harabor et al. [15] proposed a jump point search algorithm that removes non-essential nodes through screening and pruning rules, enables jumping between nodes with variable step sizes, and improves the pathfinding speed. However, the path planned by this method still suffers from the problem that the turning angles are not smooth and cannot satisfy the robot’s motion characteristics. In Zhao Xiao et al.’s [16] method, which combines the A* algorithm with the JPS algorithm to improve the A* algorithm, a series of representative nodes are screened for expansion by preprocessing the nodes, which not only saves memory but also enhances the algorithm’s efficiency. In this paper, we analyze and study the existing improved A* algorithms and a new strategy for the improvement of the A* algorithm is proposed. It involves the following steps:




	
Improve the heuristic function of the A* algorithm: firstly, utilize the Octile distance formula instead of the commonly used distance formula to approximate the predicted cost of the heuristic function to the actual path length. Afterward, environmental constraints, i.e., the percentage of obstacles, are introduced to make the algorithm adaptive to the changes of the environmental map;



	
Incorporating a bidirectional JPS search strategy: the searched jump points are added to OpenList for access and expansion. This replaces the need to access and compute a large number of neighboring nodes in the A* algorithm, thereby reducing memory consumption and significantly accelerating the path search speed through a bidirectional search strategy;



	
Further optimize the generated paths: first reduce the number of redundant nodes on the paths, then eliminate unnecessary inflection points on the paths, and, finally, smooth the paths further using the dynamic circular cutting method to improve the turning angles of the paths.









2. Traditional A* Algorithm


2.1. Modeling of Grid Maps


Establishing a map model of the environment is the primary prerequisite for path planning, and commonly used methods for map modeling include the grid method, visual graphic method, topological map method, Voronoi diagram, and others [17]. The grid method is widely adopted for its intuitive representation, simple operation, and ease of implementation. In this paper, 2D grids of uniform size are used to abstractly represent information about the actual environment, with each grid corresponding to a unique coordinate. Each grid is classified into two states based on whether it is occupied by an obstacle [18]. One is the free state, represented by white grids in Figure 2, indicating areas where the robot can freely pass; the other is the occupied state, represented by black grids in Figure 2, indicating areas impassable for the robot.



Commonly used neighborhood expansion patterns in A* algorithms include four-neighborhood expansion and eight-neighborhood expansion [19]. In actual robot operations, the model’s complexity is increased due to uncertainties in the robot’s operational state, which affect its movement direction. To mitigate this complexity, this paper selects an eight-neighborhood expansion pattern when there are no boundaries or obstacles around the robot, as depicted in Figure 3.




2.2. Traditional A* Algorithm


The A* algorithm is a heuristic path planning algorithm designed for static scenarios that introduces a Best First Search algorithm, i.e., heuristic function, based on the Dijkstra algorithm, which enhances the heuristic of the algorithm, makes the algorithm more purposeful in searching towards the goal point, and reduces the algorithm’s traversal of the redundant nodes. The evaluation function of the A* algorithm is given in the following equation:


  f  ( n )  = g  ( n )  + h  ( n )   



(1)







In Equation (1), g(n) denotes the total actual cost accumulated from the start node to the current node n; h(n) is a heuristic function representing the predicted cost from the current node n to the target node; and f(n) is an evaluation function representing the total predicted cost for the start node to reach the target node via node n.



The heuristic function h(n) is crucial in determining the efficiency of the algorithm. When h(n) is smaller than the actual cost h*(n), the algorithm can definitely plan the optimal path, but it may traverse more nodes, slowing down the search speed; when h(n) is 0, h(n) must be less than or equal to h*(n), i.e., when the algorithm degenerates into the Dijkstra algorithm; when h(n) is greater than the actual cost h*(n), the algorithm reduces the number of traversed nodes, speeding up the search, but it will ensure that the path planning result is not the optimal solution; when h(n) is much larger than h*(n), the algorithm evolves to the Best First Search algorithm; the A* algorithm needs to consider the search speed during the search process while ensuring that the optimal path is found. Therefore, for optimal efficiency, h(n) should closely approximate h*(n).



Commonly used representations of heuristic functions are Euclidean distance and Manhattan distance. Let the coordinates of the current node be (    x   n    ,    y   n    ) and the coordinates of the target point be (    x   g    ,    y   g    ); then, the Euclidean distance formula is as below:


  h ( n ) =     (  x g  −  x n  )  2  +   (  y g  −  y n  )  2     



(2)







The Manhattan distance formula is as follows:


  h ( n ) = |  x g  −  x n  | + |  y g  −  y n  |  



(3)







Due to the presence of obstacles in the actual environment and the selected expansion method in this paper being eight-neighborhood expansion, when using a Euclidean distance of h(n), the distance value must be smaller than the actual cost h*(n); when using a Manhattan distance of h(n), the distance value is larger than the actual cost h*(n). In this paper, we need to select an appropriate distance formula that makes h(n) closer to h*(n).



The A* algorithm will add the node with the smallest value of the current evaluation function as the current node to CloseList during the path search and, at the same time, visit the neighboring nodes reachable by this node and add them to OpenList, then calculate the node with the smallest value of the evaluation function in OpenList to add it to CloseList. It will repeat this process until the target point becomes the current node, completing the pathfinding. Finally, the final path is generated by backtracking the parent–child relationships of the nodes. The pathfinding process is illustrated in Figure 4, which highlights that the A* algorithm generates a large number of redundant nodes, represented by the light blue grids in the figure. Maintaining and accessing these nodes increases the computational workload of the algorithm and wastes storage space, thereby impacting the efficiency of path planning.





3. Improved A* Algorithm


3.1. Improvement of the Heuristic Function


3.1.1. Selection of Heuristic Function


The heuristic function, as the core of the A* algorithm, significantly impacts the result of the planned path. In response to the issues with the general heuristic function’s expression mentioned above, this paper proposes a new distance expression for the heuristic function, namely Octile distance. Octile distance is a combination of Euclidean distance and Manhattan distance that brings the predicted distance closer to the actual distance, thus improving the efficiency of the algorithmic search. Octile distance is illustrated in Figure 5, where the yellow grid indicates the starting point, the purple grid indicates the target point, the gray grid indicates the actual path, the blue straight line indicates the Octile distance, the red straight line indicates the Euclidean distance, and the green straight line indicates the Manhattan distance. From the figure, it can be seen that Euclidean distance is suitable for multi-neighborhood expansion, Manhattan distance is suitable for four-neighborhood expansion, and Octile distance is more suitable for the eight-neighborhood expansion proposed in this paper.



The Octile distance formula is as below:


  h ( n ) = ( |  x g  −  x n  | + |  y g  −  y n  | ) + (  2  − 2 ) min ( |  x g  −  x n  | , |  y g  −  y n  | )  



(4)







In Equation (4), (    x   n    ,    y   n    ) are the coordinates of the current node and (    x   g    ,    y   g    ) are the coordinates of the target point.



To verify the effect of the heuristic function of the A* algorithm on pathfinding efficiency, a simulation test was performed on a 20 × 20 grid map, as shown in Figure 6. Figure 6a represents the result of using Octile distance as the heuristic function, Figure 6b represents the result of using Euclidean distance as the heuristic function, and Figure 6c represents the result of using Manhattan distance as the heuristic function. By comparing the three graphs, it can be seen that the paths obtained in Figure 6a,b are equal in length and shorter than the paths obtained in Figure 6c while the number of nodes traversed in Figure 6a is less than the number of nodes traversed in Figure 6b. In summary, it can be concluded that Octile distance as a heuristic function is more efficient than the traditional distance formulas when choosing the eight-neighborhood expansion for path planning.




3.1.2. Introduction of Environmental Constraints


Environmental constraints, i.e., the percentage of obstacles, are also critical factors that affect the efficiency of path planning. When the percentage of obstacles in the environment is high, the planned path is prone to local optimization issues, leading to path search failures. Conversely, when the percentage of obstacles is low, the search speed may decrease due to the broader path search range. To address these issues, this paper introduces an obstacle percentage coefficient     O   s     to adaptively adjust the heuristic function. Additionally, to ensure data smoothness, the obstacle percentage coefficient     O   s     is first logarithmically transformed and then taken in its absolute value to ensure non-negativity. The improved heuristic function formula is as follows:


  h ′ ( n ) = α h ( n )  



(5)






  α =  |  ln  O s   |   



(6)






   O s  =  N  ( |  x g  −  x s  | + 1 ) × ( |  y g  −  y s  | + 1 )    



(7)




Here, N is the number of obstacle grids between the starting point and the endpoint and (    x   s   ,   y   s    ) and (    x   g   ,   y   g    ) are the coordinates of the starting point and the endpoint, respectively.



From the improved heuristic function, it is evident that as the percentage of obstacles increases (i.e., the occupancy factor of obstacles becomes larger), α decreases. A smaller α indicates a reduced weight of the heuristic function in the evaluation function. At this point, the A* algorithm tends to behave more like the Dijkstra algorithm, expanding its search range and thus avoiding local optimization problems. Conversely, when the percentage of obstacles decreases (i.e., there is a smaller occupancy factor of obstacles), α increases. A larger α indicates a greater weight of the heuristic function in the evaluation function. In this scenario, the A* algorithm leans towards behaving more like the BFS algorithm, narrowing its search range and resulting in a faster search.



The test results of the algorithm before and after the introduction of environmental constraints on a grid map of 20 × 20 are shown in Figure 7. Figure 7a shows the test results before introducing environmental constraints and Figure 7b shows the results after their introduction. From the figures, it can be observed that the nodes expanded by the algorithm increase after the introduction of environmental constraints, resulting in a larger search range. However, the final path length obtained is shorter than that achieved without environmental constraints.





3.2. Combining the Bidirectional JPS Algorithm


3.2.1. Traditional JPS Algorithm


Jump Point Search (JPS) is a more efficient path planning algorithm that screens natural neighbor nodes and forced neighbor nodes through specific screening rules and further screens to obtain the jump points needed for path planning, which well solves the problem of the A* algorithm accessing more redundant nodes.



Natural neighbor nodes are nodes that extend directly along the current search direction in the hopping point search algorithm; using these nodes can efficiently skip intermediate invalid nodes, reduce the search space, and improve the speed of path planning.



Forced neighbor nodes are the nodes that must be considered in the jump point search algorithm in order to bypass obstacles. By checking these nodes, JPS can effectively avoid obstacles in path search and ensure that it remains the optimal path.



The screening rules are as follows.



(1) No obstacles around the node



As shown in Figure 8, node x represents the current node, node P(x) is the parent of node x, and n is a neighboring node of x. The length of the path taken by the parent node P(x) to reach node n through x, when moving horizontally, must be shorter than the lengths of other paths that do not pass through x to reach node n. Similarly, the length of the path taken by the parent node P(x) to reach node n through x, when moving diagonally, must be less than or equal to the lengths of other paths that do not pass through x to reach node n.



Therefore, the following screening rules for natural neighbor nodes can be derived:




	
When moving horizontally, the natural neighbor node n satisfies the following equation:










  L ( < P ( x ) , x , … , n > ) < L ( < P ( x ) , … , n > | x )  



(8)




Here, L(<P(x), x, …, n>) denotes the length of the path from the starting point P(x) through x to reach n and L(<P(x), …,n>|x) denotes the length of the path from the starting point P(x) to reach n without passing through x.



	
When moving diagonally, the natural neighbor node n satisfies the following equation:








   L ( < P ( x ) , x , … , n > ) ≤ L ( < P ( x ) , … , n > | x )   



(9)







(2) Presence of obstacles around the node



As shown in Figure 9, the black grid indicates the obstacles. At this time, in addition to screening the natural neighbor nodes, it is also necessary to screen out the forced neighbor nodes. The forced neighbor nodes are shown in the green grid in the figure.



The screening rules for natural neighbor nodes are the same as the screening rules when there are no obstacles around a node. The screening rules for the forced neighbor nodes are as follows:




	
n is not a natural neighbor of node x;



	
n satisfies the following equation:










   L ( < P ( x ) , x , … , n > ) < L ( < P ( x ) , … , n > | x )   



(10)







For the natural neighbor nodes and forced neighbor nodes obtained by the above screening rules, it is necessary to further screen them to obtain the jump point. The jump point screening rules are as follows:




	
If node n is a starting or goal point, then n is a jump point;



	
If node n has at least one forced neighbor, then n is a jump point;



	
A node n is a jump point if the parent node P(x) is in a diagonal direction from node n and n has nodes in the horizontal or vertical directions that satisfy conditions (1) and (2) above.








The purpose of the integration of the A* algorithm with the JPS algorithm is to first use the JPS algorithm to preprocess to obtain representative jump points, then add these jump points to OpenList and select the node with the smallest cost as the current node for expansion, then continue to screen its jump points to be added to OpenList. At the same time, the jump points after the expansion is completed are added to CloseList. This process is repeated until the current node is the target point, at which point the path planning is complete.




3.2.2. Bidirectional JPS Algorithm


The traditional JPS algorithm can better deal with the problems of the A* algorithm accessing more redundant nodes and having a high computation and memory consumption. However, in larger scenes or with more obstacles, a substantial number of jump points can still be generated, leading to slower pathfinding. Therefore, this paper proposes to improve the A* algorithm by using the bidirectional JPS algorithm on the basis of the traditional JPS algorithm.



Using the bidirectional JPS algorithm means that both the starting point and the goal point are used as the starting point and each takes the other as the goal point for path planning. Typically, the search from the starting point to the goal point is referred to as the forward search while the search from the goal point to the starting point is known as the reverse search. A successful path search is indicated when the currently expanded node of one party is the currently expanded node of the other party or exists in the CloseList of the other party.



The pathfinding process of the A* algorithm incorporating the bidirectional JPS algorithm is shown in Figure 10. Node s represents the start node, node g represents the target node, the black grids denote obstacles, and the red arrows and green arrows represent the paths for the forward and reverse searches, respectively. The flow of the algorithm is as follows:




	
Create four lists, OpenList1, OpenList2, CloseList1, and CloseList2. Place node s into OpenList1 and node g into OpenList2;



	
Start the bidirectional search; during the forward search, place jump point a into OpenList1; during the reverse search, place jump point b into OpenList2. Place node s into CloseList1 and node g into CloseList2;



	
Continuing the forward search with a as the current node yields jump points c and d, which are added to OpenList1. In the reverse search, jump point e is found for b and added to OpenList2. Nodes a and b are placed into CloseList1 and CloseList2, respectively;



	
Since d is the node with the smallest value of f(n) in OpenList1, the forward search expands d to obtain jump points e and f, which are added to OpenList1. In the reverse search, jump point h is found for e and added to OpenList2. Nodes d and e are placed into CloseList1 and CloseList2, respectively;



	
Node e has the smallest value of f(n) in OpenList1, so e is selected as the current node for forward expansion. Since e exists in CloseList2, the path search is successful.








According to the process diagram of pathfinding using bidirectional JPS shown in Figure 10, theoretically, bidirectional JPS can double the efficiency compared to unidirectional JPS. However, bidirectional JPS also has drawbacks. When there is symmetry in the environment map, bidirectional JPS may plan two symmetric paths. This results in the paths searched in the forward direction not intersecting with the paths searched in the reverse direction. At this time, each search may independently plan a path, which not only fails to improve the efficiency of path planning but may even reduce it. To address this issue, this paper proposes an improved method where each search considers the other’s current extended node as the target node.





3.3. Path Smoothing


3.3.1. Primary Smoothing


The paths planned by the improved algorithm still exhibit issues such as having numerous redundant nodes and excessive turning points. Therefore, this paper employs a redundant point removal strategy to enhance path smoothness by reducing both the number of redundant nodes and excessive turning angles. The steps of the redundant point removal strategy, i.e., primary smoothing, are as follows:




	
Plan the optimal path using the improved algorithm and save information such as the path length and number of nodes;



	
Create a collection of path nodes, R = {    N   i    }, i    ∈   [0, n], where     N   0     is the start node,     N   n     is the goal node, and     N   1    , …,     N   n − 1     are the intermediate nodes;



	
Determine whether the vectors       N   0     N   1    →    and       N   1     N   2    →    formed by points     N   0    ,     N   1    , and     N   2     are parallel using the principle of vector parallelism. If they are parallel, the three points are collinear, and the redundant node     N   1     is removed. If they are not parallel, then the three points are not collinear, and there is no redundant node. If node     N   1     is removed, then continue to evaluate nodes     N   2    ,     N   3    , and     N   4     to determine whether they are collinear. Otherwise, evaluate nodes     N   1    ,     N   2    , and     N   3     for collinearity. Repeat this process until no more collinear nodes exist in the path. Create a new set P of path nodes and add the reserved nodes to set P. Set P = {    p   j    }, j    ∈   [0, m], where     p   0     is the start node,     p   m     is the goal node, and     p   1    , …,     p   m − 1     are the intermediate nodes;



	
Create the set K of nodes that the path must pass through. Add     p   0     to set K and consider     p   0     as the current point for evaluation. First, connect nodes     p   0     and     p   m     to determine whether the straight line segment     p   0     p   m     passes through obstacles. If it does not,     p   0     p   m     is considered a viable path, and one should add     p   m     to set K. If     p   0     p   m     is obstructed, connect     p   0     to     p   m − 1     and continue the evaluation. If     p   0     p   m − 1     is clear, add     p   m − 1     to set K. If     p   0     p   m − 1     is obstructed, connect     p   0     to     p   m − 2     and continue evaluating. Continue this process until the must-pass node     p   t 1     is identified and added to set K. Then, use     p   t 1     as the current point and repeat the evaluation process. Repeat these steps until     p   m     is added to set K;



	
Connect the nodes extracted from set K sequentially; the resulting path is the path after one smoothing. The schematic diagram of the redundant node removal process is shown in Figure 11.









3.3.2. Quadratic Smoothing


Although the path after primary smoothing reduces the number of redundant nodes and inflection points, it still exhibits problems such as unsmooth turning angles, which do not satisfy the motion characteristics of the robot. Therefore, to enhance the smoothness of the path, this paper adopts the dynamic circular cutting method for secondary smoothing. The schematic diagram of the dynamic circular cut method is shown in Figure 12.



For the turning corner shown in Figure 12   ∠ A B C  , the steps of the dynamic circular cut method are as follows:



Compare the lengths of the sides of   ∠ A B C  . Choose the endpoint A of the shorter side AB as the tangent point and draw a perpendicular line through A to intersect the angle bisector   B   O   0     of   ∠ A B C   at point     O   1    . Then proceed to step 2;



Make a circle with     O   1     as the center and     A O   1     as the radius. Judge whether the arc AQ crosses obstacles or not. If it does, perform step 3; otherwise, use the arc AQ instead of the straight lines AB and BQ;



The tangent point A is moved upward along AB by a length λ (the value of λ is chosen according to the actual situation), denoted as     A   1    . Use     A   1     as the tangent point to perform step 1;



	
Determine whether all the turning corners have been smoothed. If yes, the secondary smoothing is completed; otherwise, continue with step 1.









4. Simulation Analysis and Experimental Validation


4.1. Simulation Analysis


In order to verify the effectiveness of the improved algorithm, this paper simulates and tests the A* algorithm, the JPS algorithm, and the improved A* algorithm on ten different grid maps. The computer we use is configured with a Windows 11 operating system, an R7-5800H processor with 3.2 GHz, and 16 GB of RAM.



The results of the three algorithms tested on a grid map of size 40 × 40 with a 30% obstacle ratio are shown in Figure 13. In the figure, the green grid indicates the start node, the red grid indicates the target node, the black grids indicate obstacles, the blue grids indicate nodes added to OpenList, and the yellow grids indicate nodes added to CloseList. The blue solid line represents the planned path, the green solid line represents the path obtained by primary smoothing, and the red solid line represents the final path obtained after secondary smoothing. As can be seen from Figure 13, the length and the number of turns of the optimal path obtained by the improved A* algorithm are better than those of the other two algorithms in the same environment. Other data obtained from the simulations are shown in Table 1 and Table 2.



Table 1 compares the three algorithms in terms of the nodes traversed, path lengths, numbers of turns, and search times in grid maps of different sizes with a consistent obstacle percentage of 30%. It is evident that the number of nodes traversed by the improved algorithm is better than that of the A* algorithm and worse than that of the JPS algorithm. However, due to the nature of bidirectional search, it is guaranteed that the search time will outperform the other two algorithms. In 20 × 20 maps, the improved algorithm’s search time efficiency improves by 50.29% and 26.37%, respectively, relative to the other algorithms; in 40 × 40 maps, it improves by 62.07% and 30.59%, respectively; in 60 × 60 maps, it improves by 68.66% and 37.13%, respectively; in 80 × 80 maps, it improves by 72.62% and 42.41%, respectively; and in 100 × 100 maps, it improves by 78.37% and 50.43%, respectively. From these data, it can be concluded that as the map size increases, the algorithm’s improvement in search speed becomes more significant. However, in some cases, this improvement may lead to longer path lengths. Additionally, the improved algorithm’s paths also exhibit significantly fewer turns compared to the other two algorithms.



Table 2 compares the three algorithms in terms of the nodes traversed, path lengths, numbers of turns, and search times in grid maps of varying sizes with a consistent obstacle percentage of 70%. It shows that the improved algorithm can generally plan optimal paths, as evidenced by shorter path lengths and fewer turns compared to the other two algorithms. According to Table 2, the search time efficiency of our algorithm improves by 26.14% and 12.70% relative to the other two algorithms in 20 × 20 maps, 39.25% and 20.80% in 40 × 40 maps, 52.47% and 32.10% in 60 × 60 maps, 58.21% and 39.79% in 80 × 80 maps, and 66.58% and 48.22% in 100 × 100 maps. It can be seen that the larger the size of the map is, the more effective the algorithm is in improving search speed. But in cases where the proportion of obstacles is higher, the improvement in search speed is not as significant as when the proportion of obstacles is lower. However, the optimal path is guaranteed to be obtained when the proportion of obstacles is higher.



The simulation results indicate that the efficiency of the improved A* algorithm is influenced by the size of the environment map and the ratio of obstacles. Specifically, the improved algorithm demonstrates greater efficiency in improving the search speed with larger maps. Conversely, with smaller maps, the efficiency of the improved algorithm in enhancing the search speed diminishes. When the ratio of obstacles in the map varies, due to the introduction of environmental constraints, if the percentage of obstacles is low, the improved algorithm shows less noticeable improvement in path length, and in some cases, the path length may even worsen. However, the improvement in search time is significant. Conversely, when the percentage of obstacles is higher, the improved algorithm demonstrates more pronounced improvement in path length, but the improvement in search time deteriorates compared to the scenario with a lower obstacle percentage. However, in general, compared to the other two algorithms, the improved A* algorithm has significantly enhanced both the efficiency of pathfinding and algorithm optimization.




4.2. Experimental Validation


In order to verify the feasibility of the improved A* algorithm in the actual operation of the mobile robot, the algorithm was applied to the two-wheel-drive differential robot built by our team, as shown in Figure 14a.The differential robot utilizes the RPLIDAR A1 laser rangefinder to obtain the 2D point cloud data of the external environment. It integrates odometer data for localization and constructs a 2D map using the Amcl and Gmapping function packages. Finally, it performs global path planning using the global planner in the Move Base function package [20]. The experimental scene described in this paper was a section of aisles in the laboratory, as shown in Figure 14b.



The two path plannings performed by the differential robot at the experimental site are shown in Figure 15. The results of the planning have been displayed using the ROS visualization tool Rviz, where the orange square represents the model of the cart and the green solid line depicts the path planned by the improved A* algorithm.



The search times of the three algorithms for the two paths are shown in Table 3 and Table 4, respectively. It can be concluded that the improved algorithm proposed in this paper further enhances search speed while essentially producing optimal paths. Therefore, the improved algorithm outperforms the other two algorithms significantly.





5. Conclusions


In this paper, for the traditional A* algorithm in path planning, there are many redundant nodes, which lead to problems such as high memory consumption and long search time, etc.; an improved A* algorithm under the combination of bidirectional JPS strategy is proposed. The effectiveness of the improved algorithm has been demonstrated by analyzing and comparing the results of the three algorithms for path planning under different grid maps. The simulation results in different grid maps demonstrate that while ensuring basic path length guarantees, the algorithm proposed in this paper not only significantly improves path search speed but also notably reduces the number of turns in a path. Especially in larger scenarios, the effect of improving the search speed is more pronounced. The improved algorithm has been applied to the robot platform for experiments, and the experimental results fully demonstrate that the improved algorithm meets the requirements for fast path planning, with noticeable optimization effects.
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Figure 1. Framework diagram of navigation. 
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Figure 2. Grid map. 
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Figure 3. Eight-neighborhood expansion. 
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Figure 4. Pathfinding process of A* algorithm. 
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Figure 5. Octile distance. 
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Figure 6. Simulation comparative testing of heuristic functions: (a) Octile distance; (b) Euclidean distance; (c) Manhattan distance. 
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Figure 7. Simulation comparative testing: (a) without environmental constraints; (b) with environmental constraints. 
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Figure 8. Screening rules without adjacent obstacles: (a) horizontal move; (b) diagonal move. 
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Figure 9. Screening rules with adjacent obstacles: (a) horizontal move; (b) diagonal move. 
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Figure 10. Schematic diagram of bidirectional JPS algorithm. 






Figure 10. Schematic diagram of bidirectional JPS algorithm.



[image: Applsci 14 05622 g010]







[image: Applsci 14 05622 g011] 





Figure 11. Schematic diagram for removing redundant nodes: (a) original path; (b) removing collinear nodes; (c) removing redundant turning nodes. 
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Figure 12. Schematic diagram of the dynamic circle cutting method. 
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Figure 13. Comparison diagram of simulation results for three algorithms: (a) traditional A* algorithm; (b) traditional JPS algorithm; (c) improved algorithm. 
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Figure 14. Mobile robots and experimental environments: (a) differential robot; (b) laboratory. 
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Figure 15. The results of path planning using the improved algorithm: (a) planning for Path 1; (b) planning for Path 2. 
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Table 1. Comparison of three algorithms on grid maps with low proportions of obstacles.
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Map Size

	
Experimental Algorithms

	
Number of Nodes Traversed (Number)

	
Path Length

(Meters)

	
Number of Turns (Times)

	
Search Time (Seconds)

	
Percentage of Obstacles






	
20 × 20

	
A*

algorithm

	
77

	
24.7279

	
7

	
0.233068

	
30%




	
JPS algorithm

	
20

	
24.7279

	
7

	
0.157325




	
Improved algorithm

	
26

	
24.1381

	
6

	
0.115842




	
40 × 40

	
A*

algorithm

	
326

	
61.0122

	
17

	
0.707153




	
JPS algorithm

	
39

	
61.0122

	
17

	
0.386459




	
Improved algorithm

	
32

	
58.0070

	
10

	
0.268241




	
60 × 60

	
A*

algorithm

	
290

	
88.3259

	
11

	
1.101714




	
JPS algorithm

	
38

	
88.3259

	
11

	
0.549135




	
Improved algorithm

	
30

	
93.5291

	
6

	
0.345265




	
80 × 80

	
A*

algorithm

	
836

	
131.6396

	
21

	
3.334070




	
JPS algorithm

	
51

	
131.6396

	
21

	
1.585116




	
Improved algorithm

	
52

	
134.3342

	
15

	
0.912868




	
100 × 100

	
A*

algorithm

	
876

	
160.5097

	
23

	
5.128762




	
JPS algorithm

	
55

	
160.5097

	
23

	
2.237949




	
Improved algorithm

	
48

	
159.7931

	
16

	
1.109351











 





Table 2. Comparison of three algorithms on grid maps with high proportions of obstacles.
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Map Size

	
Experimental Algorithms

	
Number of Nodes Traversed (Number)

	
Path Length

(Meters)

	
Number of Turns (Times)

	
Search Time (Seconds)

	
Percentage of Obstacles






	
20 × 20

	
A*

algorithm

	
131

	
29.3137

	
12

	
0.448762

	
70%




	
JPS algorithm

	
40

	
30.7279

	
9

	
0.379653




	
Improved algorithm

	
57

	
30.2587

	
9

	
0.331437




	
40 × 40

	
A*

algorithm

	
183

	
62.6274

	
25

	
1.247487




	
JPS algorithm

	
79

	
62.6274

	
25

	
0.956823




	
Improved algorithm

	
125

	
60.3749
