A Level-Set-Based Density Method for Buckling Optimization of Structure with Curved Grid Stiffeners
Abstract
:1. Introduction
2. Representation of Grid-Stiffener Model
2.1. Definition of Stiffener Height
2.2. Fundamental Level Set Function Based on RBFs
3. Constraints of Stiffeners
3.1. Constraint of Volume
3.2. Constraint of Uniform Width
4. Optimization Framework and Sensitivity Analysis
4.1. Definition of Buckling Load Optimization Problem
4.2. Finite Element Analysis
4.3. Sensitivity Analysis
5. Numerical Examples
5.1. Example 1
5.2. Example 2
5.3. Example 3
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jadhav, P.; Mantena, P.R. Parametric optimization of grid-stiffened composite panels for maximizing their performance under transverse loading. Compos. Struct. 2007, 77, 353–363. [Google Scholar] [CrossRef]
- Wang, B.; Tian, K.; Hao, P.; Cai, Y.; Li, Y.; Sun, Y. Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method. Compos. Struct. 2015, 132, 136–147. [Google Scholar] [CrossRef]
- Zhu, J.H.; Zhang, W.H.; Xia, L. Topology Optimization in Aircraft and Aerospace Structures Design. Arch. Comput. Method Eng. 2016, 23, 595–622. [Google Scholar] [CrossRef]
- Kapania, R.; Li, J.; Kapoor, H. Optimal design of unitized panels with curvilinear stiffeners. In Proceedings of the AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences, Arlington, VA, USA, 26–28 September 2005; p. 7482. [Google Scholar]
- Paschero, M.; Hyer, M.W. Improvement of Axial Buckling Capacity of Elliptical Lattice Cylinders. AIAA J. 2011, 49, 396–410. [Google Scholar] [CrossRef]
- Totaro, G.; De Nicola, F. Recent advance on design and manufacturing of composite anisogrid structures for space launchers. Acta Astronaut. 2012, 81, 570–577. [Google Scholar] [CrossRef]
- Hao, P.; Wang, B.; Tian, K.; Li, G.; Du, K.; Niu, F. Efficient Optimization of Cylindrical Stiffened Shells with Reinforced Cutouts by Curvilinear Stiffeners. AIAA J. 2016, 54, 1350–1363. [Google Scholar] [CrossRef]
- Zhao, W.; Kapania, R.K. Buckling analysis of unitized curvilinearly stiffened composite panels. Compos. Struct. 2016, 135, 365–382. [Google Scholar] [CrossRef]
- Gil-Ureta, F.; Pietroni, N.; Zorin, D. Reinforcement of General Shell Structures. ACM Trans. Graph. 2020, 39, 1–19. [Google Scholar] [CrossRef]
- Laccone, F.; Pietroni, N.; Cignoni, P.; Malomo, L. Bending-Reinforced Grid Shells for Free-form Architectural Surfaces. Comput.-Aided Des. 2024, 168, 103670. [Google Scholar] [CrossRef]
- Mulani, S.; Locatelli, D.; Kapania, R. Grid-stiffened panel optimization using curvilinear stiffeners. In Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t, Denver, CO, USA, 4–7 April 2011; p. 1895. [Google Scholar]
- Mulani, S.B.; Slemp, W.C.H.; Kapania, R.K. EBF3PanelOpt: An optimization framework for curvilinear blade-stiffened panels. Thin-Walled Struct. 2013, 63, 13–26. [Google Scholar] [CrossRef]
- Wang, D.; Abdalla, M.M.; Zhang, W. Buckling optimization design of curved stiffeners for grid-stiffened composite structures. Compos. Struct. 2017, 159, 656–666. [Google Scholar] [CrossRef]
- Wang, D.; Abdalla, M.M.; Wang, Z.P.; Su, Z. Streamline stiffener path optimization (SSPO) for embedded stiffener layout design of non-uniform curved grid-stiffened composite (NCGC) structures. Comput. Meth. Appl. Mech. Eng. 2019, 344, 1021–1050. [Google Scholar] [CrossRef]
- Yang, K.; Tian, Y.; Shi, T.; Xia, Q. A Level Set Based Density Method for Optimizing Structures with Curved Grid Stiffeners. Comput.-Aided Des. 2022, 153, 103407. [Google Scholar] [CrossRef]
- Bostan, B.; Kusbeci, M.; Cetin, M.; Kirca, M. Buckling performance of fuselage panels reinforced with Voronoi-type stiffeners. Int. J. Mech. Sci. 2023, 240, 107923. [Google Scholar] [CrossRef]
- Cai, J.; Moen, C.D. Elastic buckling analysis of thin-walled structural members with rectangular holes using generalized beam theory. Thin-Walled Struct. 2016, 107, 274–286. [Google Scholar] [CrossRef]
- Ferrari, F.; Sigmund, O.; Guest, J.K. Topology optimization with linearized buckling criteria in 250 lines of Matlab. Struct. Multidiscip. Optim. 2021, 63, 3045–3066. [Google Scholar] [CrossRef]
- Xu, T.; Huang, X.; Lin, X.; Xie, Y.M. Topology optimization for maximizing buckling strength using a linear material model. Comput. Meth. Appl. Mech. Eng. 2023, 417, 107923. [Google Scholar] [CrossRef]
- Falkowicz, K. Experimental and numerical analysis of compression thin-walled composite plates weakened by cut-outs. Arch. Civ. Eng. 2017, 63, 161–172. [Google Scholar] [CrossRef]
- Falkowicz, K.; Debski, H.; Teter, A. Design solutions for improving the lowest buckling loads of a thin laminate plate with notch. In AIP Conference Proceedings, Proceedings of the 22nd International Conference on Computer Methods in Mechanics, Lublin, Poland, 13–16 September 2017; AIP Publishing: Melville, NY, USA, 2017; Volume 1922. [Google Scholar]
- Falkowicz, K. Stability and Failure of Thin-Walled Composite Plate Elements with Asymmetric Configurations. Materials 2024, 17, 1943. [Google Scholar] [CrossRef]
- Wang, D.; Abdalla, M.M.; Zhang, W. Sensitivity analysis for optimization design of non-uniform curved grid-stiffened composite (NCGC) structures. Compos. Struct. 2018, 193, 224–236. [Google Scholar] [CrossRef]
- Shi, P.; Kapania, R.K.; Dong, C.Y. Vibration and Buckling Analysis of Curvilinearly Stiffened Plates Using Finite Element Method. AIAA J. 2015, 53, 1319–1335. [Google Scholar] [CrossRef]
- Hao, P.; Wang, B.; Li, G.; Meng, Z.; Tian, K.; Tang, X. Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method. Thin-Walled Struct. 2014, 82, 46–54. [Google Scholar] [CrossRef]
- Wang, B.; Hao, P.; Li, G.; Tian, K.; Du, K.; Wang, X.; Zhang, X.; Tang, X. Two-stage size-layout optimization of axially compressed stiffened panels. Struct. Multidiscip. Optim. 2014, 50, 313–327. [Google Scholar] [CrossRef]
- Luo, Y.; Zhan, J. Linear buckling topology optimization of reinforced thin-walled structures considering uncertain geometrical imperfections. Struct. Multidiscip. Optim. 2020, 62, 3367–3382. [Google Scholar] [CrossRef]
- Wang, D.; Abdalla, M.M. Global and local buckling analysis of grid-stiffened composite panels. Compos. Struct. 2015, 119, 767–776. [Google Scholar] [CrossRef]
- Wang, D.; Yeo, S.Y.; Su, Z.; Wang, Z.P.; Abdalla, M.M. Data-driven streamline stiffener path optimization (SSPO) for sparse stiffener layout design of non-uniform curved grid-stiffened composite (NCGC) structures. Comput. Meth. Appl. Mech. Eng. 2020, 365, 113001. [Google Scholar] [CrossRef]
- Zheng, Q.; Jiang, D.; Huang, C.; Shang, X.; Ju, S. Analysis of failure loads and optimal design of composite lattice cylinder under axial compression. Compos. Struct. 2015, 131, 885–894. [Google Scholar] [CrossRef]
- Singh, K.; Kapania, R.K. Accelerated optimization of curvilinearly stiffened panels using deep learning. Thin-Walled Struct. 2021, 161, 107418. [Google Scholar] [CrossRef]
- Wang, F.; Lazarov, B.S.; Sigmund, O. On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 2010, 43, 767–784. [Google Scholar] [CrossRef]
- Groen, J.P.; Sigmund, O. Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int. J. Numer. Methods Eng. 2017, 113, 1148–1163. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.Y. Radial basis functions and level set method for structural topology optimization. Int. J. Numer. Methods Eng. 2006, 65, 2060–2090. [Google Scholar] [CrossRef]
- Luo, Z.; Tong, L.; Wang, M.Y.; Wang, S. Shape and topology optimization of compliant mechanisms using a parameterization level set method. J. Comput. Phys. 2007, 227, 680–705. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Z.; Kang, Z.; Zhang, N. A multi-material level set-based topology and shape optimization method. Comput. Meth. Appl. Mech. Eng. 2015, 283, 1570–1586. [Google Scholar] [CrossRef]
- Wei, P.; Li, Z.; Li, X.; Wang, M.Y. An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions. Struct. Multidiscip. Optim. 2018, 58, 831–849. [Google Scholar] [CrossRef]
- Shi, S.; Zhou, P.; Lü, Z. A density-based topology optimization method using radial basis function and its design variable reduction. Struct. Multidiscip. Optim. 2021, 64, 2149–2163. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, S. Parametric structural shape & topology optimization with a variational distance-regularized level set method. Comput. Meth. Appl. Mech. Eng. 2017, 321, 316–336. [Google Scholar] [CrossRef]
- Fernandez, F.; Compel, W.S.; Lewicki, J.P.; Tortorelli, D.A. Optimal design of fiber reinforced composite structures and their direct ink write fabrication. Comput. Meth. Appl. Mech. Eng. 2019, 353, 277–307. [Google Scholar] [CrossRef]
- Tian, Y.; Shi, T.; Xia, Q. Buckling optimization of curvilinear fiber-reinforced composite structures using a parametric level set method. Front. Mech. Eng. 2024, 19, 9. [Google Scholar] [CrossRef]
- Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D. Stress-based topology optimization for continua. Struct. Multidiscip. Optim. 2009, 41, 605–620. [Google Scholar] [CrossRef]
- Hughes, T.J.; Tezduyar, T. Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J. Appl. Mech. 1981, 48, 587–596. [Google Scholar] [CrossRef]
- Batista, M. An elementary derivation of basic equations of the Reissner and Mindlin plate theories. Eng. Struct. 2010, 32, 906–909. [Google Scholar] [CrossRef]
- Ma, H.M.; Gao, X.L.; Reddy, J.N. A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 2011, 220, 217–235. [Google Scholar] [CrossRef]
- Liu, H.; Chen, L.; Shi, T.; Xia, Q. M-VCUT level set method for the layout and shape optimization of stiffeners in plate. Compos. Struct. 2022, 293, 115614. [Google Scholar] [CrossRef]
- Svanberg, K. The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 2005, 24, 359–373. [Google Scholar] [CrossRef]
4916.3 | 40.44 | 80.00% | −12.0% | |
6330.8 | 50.54 | 99.98% | 13.3% | |
8070.1 | 60.64 | 119.96% | 44.5% |
437.89 | 50.76 | 100% | 26.1% | |
503.96 | 50.76 | 100% | 45.1% | |
none | 510.77 | 50.76 | 100% | 47.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tian, Y.; Xia, Q. A Level-Set-Based Density Method for Buckling Optimization of Structure with Curved Grid Stiffeners. Appl. Sci. 2024, 14, 5695. https://doi.org/10.3390/app14135695
Zhang Y, Tian Y, Xia Q. A Level-Set-Based Density Method for Buckling Optimization of Structure with Curved Grid Stiffeners. Applied Sciences. 2024; 14(13):5695. https://doi.org/10.3390/app14135695
Chicago/Turabian StyleZhang, Yifan, Ye Tian, and Qi Xia. 2024. "A Level-Set-Based Density Method for Buckling Optimization of Structure with Curved Grid Stiffeners" Applied Sciences 14, no. 13: 5695. https://doi.org/10.3390/app14135695
APA StyleZhang, Y., Tian, Y., & Xia, Q. (2024). A Level-Set-Based Density Method for Buckling Optimization of Structure with Curved Grid Stiffeners. Applied Sciences, 14(13), 5695. https://doi.org/10.3390/app14135695