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Abstract: Curved grid stiffeners, compared to straight stiffeners, offer greater flexibility in adjusting
the force transmission paths and give better structural performance. In this paper, a level-set-based
density method is employed to generate layouts of curved grid stiffeners so that the critical buckling
load factor (BLF) of the stiffened structures is improved. During the optimization process, volume
constraint is incorporated to control material utilization, and gradient constraints are employed to
maintain uniformity in the width of the stiffeners. Finally, the proposed method is demonstrated
through several numerical examples.
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1. Introduction

Stiffeners can effectively enhance structures in bending stiffness, strength. There-
fore, they have been widely utilized in aerospace, automotive, architectural, and other
fields [1–3]. Curved grid stiffeners typically consist of many curved and crossed ribs, and
they can adjust the load paths according to the different requirements of different local
regions of the structure. Therefore, they have greater potential in reducing structural weight
and improving structural performance [4–10], and there has been growing interests in the
layout optimization of curved grid stiffeners [6,8,11–15].

The stability of a structure is an important indicator of its performance. When subjected
to axial compression and the load reaches a certain value, structures often experience
buckling failure [16]. Therefore, the buckling performance of structures becomes a key
factor in design and optimization. In related studies, Cai et al. [17] employed generalized
beam theory to analyze buckling in thin-walled structures. Ferrari et al. [18] presented a
topology optimization of structures under plane stress condition for linear buckling with
250 lines of code. Xu and others [19] presented an innovative linear interpolation approach
to improve the buckling resistance of structures in topology optimization. In related
experimental research of buckling response, Falkowicz [20] performed both linear and
nonlinear buckling analyses, as well as experimental tests, on a thin-walled composite plate
with a central cutout under axial compression. In latest developments [21,22], asymmetric
systems and their mechanical couplings have been utilized to create elements that can
function as elastic components, and comprehensive experimental and numerical studies
have been conducted using multiple detection techniques and interdisciplinary approaches.

For stiffened structures, the introduction of stiffeners significantly improves the buck-
ling resistance. In addition, optimizing the layout of stiffeners can further amplify this
advantage [4,7,8,23]. The design optimization of stiffened structures considering buck-
ling characteristic has become an important research topic. Kapania et al. [4] optimized
stiffened plates primarily governed by buckling phenomena and demonstrated that, com-
pared to straight stiffeners, curved stiffeners provide enhanced design space, resulting
in better design outcomes. A buckling analysis of composite plates was proposed [8],
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indicating that arranging curved stiffeners for composite plates can improve buckling
load compared to straight stiffeners. Shi and co-workers [24] explored the static, vibra-
tion, and buckling behaviors of stiffened plates under in-plane compressive and tensile
stresses. Hao et al. [25] and Wang et al. [26] utilized the smeared stiffener method (SSM)
and the Rayleigh–Ritz method to forecast and determine the buckling load of hierarchical
stiffened plates. Paschero and Hyer [5] significantly improved the buckling performance
for elliptical lattice cylinders by adjusting the distribution of circumferential stiffeners.
An effective optimization strategy for cylindrical structure with reinforced cutouts was
proposed by Hao et al. [7], employing curved stiffeners to enhance the load distribution
and local stiffness of cylindrical stiffened shells. Luo et al. [27] proposed an approach for
optimizing the arrangement of stiffeners in slender structure, considering the maximum
critical buckling load under geometric uncertainties that vary spatially. Wang et al. [13,28]
calculated the global and local buckling loads of periodically grid-stiffened composite
plates and shells and optimized the layout of curved stiffeners. A data-driven optimiza-
tion approach was presented to maximize the critical BLF [29]. These research works on
the design optimization considering buckling of stiffened structures further promote the
progress and development of structural optimization, especially in the field of structures
with curved stiffeners.

Theoretically, structures have many linear buckling modes linked to relevant critical
load values. But in engineering applications, the smallest critical load value, namely, the
critical buckling load factor (BLF), is under consideration, as exceeding this load leads to
structural instability and failure. Therefore, in optimization, it is essential to maximize the
critical BLF of the structure to enhance its stability [16,28,30,31]. However, it should also be
considered that in practice, structural instability often occurs before reaching the critical
buckling load. This is due to the potential presence of imperfections in the structure or the
material reaching its yield point.

In this paper, a level-set-based density method proposed in our previous study [15] is
used to optimize the critical BLF of structures with curved grid stiffeners. This provides
new insights for the buckling research of stiffened structures. Two level set functions
are converted by cosine function, combined using the maximum function, and projected
to real densities using an approximate Heaviside function. The Mindlin plate theory is
employed for finite element analysis of buckling. After that, the sensitivity analysis is
performed, and the design variables are updated. Ultimately, the optimized results are
obtained. The effectiveness of this approach in enhancing structural stability is proven by
several numerical examples.

The main structure of the paper is outlined as follows. Section 2 presents the definition
of the grid stiffener structure. Section 3 discusses the relevant constraints for stiffener
optimization. The optimization framework and sensitivity analysis are detailed in Section 4.
Several numerical examples and result analyses are presented in Section 5. Section 6 gives
the conclusions.

2. Representation of Grid-Stiffener Model
2.1. Definition of Stiffener Height

The total height he at the center of the e-th element of the grid-stiffened structure is
obtained by adding the base height hb and the stiffener height hs. he is calculated from the
function h(x) at the element center xe = (xe, ye), and h(x) is given by

h(x) = hb + ρ̃(x)hs (1)

where ρ̃(x) is regarded as the real density of stiffeners, describing their layout. When ρ̃(x)
is 1, it is considered as stiffeners being present, while values close to 0 indicate the absence
of stiffeners.
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The real density ρ̃(x) is derived through a threshold projection of the function ρ(x).
The threshold projection employed in this paper is an approximate Heaviside function [32]

ρ̃(x) =
tanh(τη) + tanh[τ(ρ(x)− η)]

tanh(τη) + tanh[τ(1 − η)]
(2)

where the value of parameter τ affects the approximation of Equation (2) to the ideal
Heaviside function; η controls the location of the step point of the function. As shown in
Figure 1, as τ increases, this function approaches the ideal Heaviside function more closely.
In this paper, τ is set to 7. In addition, as depicted in Figure 1, when η = 0.5, the Step Point 1
is positioned at x = 0.5. When η = 0.8, Step Point 2 of the approximate Heaviside function
is located at x = 0.8. Moreover, this parameter is related to the width of the stiffeners, as
discussed later, and can be treated as a design variable in the optimization.
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Figure 1. The effect of parameters τ and η on the approximate Heaviside function.

The function ρ(x) is obtained by taking the maximum value from two functions, Γ(x)
and Θ(x), i.e.,

ρ(x) = max{Γ(x), Θ(x)} (3)

where the function max{·, ·} is described as [15]

max{s, t} =
1
2
[s + t + absε(s − t)] (4)

where absε(a) =
√

a2 + ε; and ε is set to 0.01. The functions Γ(x) and Θ(x) are derived
from two functions γ(x) and θ(x) through cosine transformations [33], i.e.,

Γ(x) =
1
2
+

1
2

cos
(

2π

µ1
γ(x)

)
(5)

Θ(x) =
1
2
+

1
2

cos
(

2π

µ2
θ(x)

)
(6)

where γ(x) and θ(x) represent fundamental level set functions; µ1 and µ2 correspond to
the wavelengths of two cosine functions. It can be easily observed that the ranges of the
functions Γ(x) and Θ(x) are both between 0 and 1. When τ in Equation (2) is sufficiently
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large and the norms of gradient vector of the fundamental level set functions γ(x) and θ(x)
equal 1, the width ws of the stiffeners can be expressed as [15]

ws =
µ

π
arccos(2η − 1) (7)

where µ can be µ1 or µ2. From Equation (7), it can be observed that the width ws varies in
proportion to the wavelength µ of the cosine functions, and there is a relationship between
the parameters ws and η. Therefore, η can be used as a design variable to change the width
of the stiffeners.

Based on the aforementioned theories, an example process for generating grid stiff-
eners is provided. Figure 2 shows the images of the fundamental level set functions γ(x)
and θ(x). And Figure 3 shows their corresponding contours. It can be observed that the
contours of the level set functions are at 0◦ and 90◦. The colors transition from blue to
green from bottom to top, indicating a gradual change from smaller to larger values in
Figures 2 and 4.

(a) γ(x) (b) θ(x)

Figure 2. Examples of the fundamental level set functions γ(x) and θ(x).

0 5 10
0

5

10

(a) contour lines of γ(x)

0 5 10
0

5

10

(b) contour lines of θ(x)

Figure 3. Contour lines of the level set functions.

Figure 4 shows the images of functions Γ(x) and Θ(x), which are obtained by applying
the cosine transformation in Equations (5) and (6) to the level set functions γ(x) and θ(x),
respectively. When projected onto a horizontal plane, it contains width information. The
grayscale images of Γ(x) and Θ(x) are shown in Figure 5.

After applying the maximum combination from Equations (3) and (4), Figure 6a is
obtained. Subsequently, the threshold projection in Equation (2) is used to generate the final
real density distribution map, as seen in Figure 6b. It can be observed that the threshold
projection effectively reduces the amount of intermediate density, making the grid stiffener
structure clearer and more visually intuitive.
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(a) Γ(x) (b) Θ(x)

Figure 4. The functions after the cosine transformation.

(a) Γ(x) (b) Θ(x)

Figure 5. The grayscale images of functions Γ(x) and Θ(x).

(a) ρ(x) (b) ρ̃(x)

Figure 6. The images of the function after maximization combination and threshold projection.
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2.2. Fundamental Level Set Function Based on RBFs

The radial basis functions (RBFs) [34–38] are utilized here to construct the fundamental
level set functions γ(x) and θ(x), i.e.,

γ(x) =
m

∑
i=1

αi φ(x, qi) (8)

θ(x) =
m

∑
i=1

βi φ(x, qi) (9)

where αi and βi represent the coefficients of the i-th RBF; qi is the knot of the i-th RBF; m
stands for the total number of RBFs. The RBF at knot qi is denoted as

φ(x, qi) = φ(∥x − qi∥) (10)

where the ∥ · ∥ represents the Euclidean norm.
In this study, the compactly supported RBF (CS-RBF) with C2 continuity is utilized. It

is expressed as [37]
φ(t) = (1 − t)4

+(4t + 1) (11)

where (·)+ represents max{·, 0}; t is formulated as

t(x, qi) =
1
ds

√
∥x − qi∥

2 + κ2 (12)

where ds is the support radius of CS-RBF; κ is set as 10−4 to prevent division by zero.

3. Constraints of Stiffeners
3.1. Constraint of Volume

In order to ensure that the optimization meets practical volume or mass requirements,
material volume constraint for stiffeners is defined as

V =
n

∑
e=1

ρ̃(xe)hs Ae ≤ V (13)

where V denotes the total volume of stiffeners; hs is the thickness of stiffener; Ae denotes
the area of the e-th element; and V stands for the maximum allowable volume of stiffeners.

3.2. Constraint of Uniform Width

The uniformity of stiffener width holds substantial significance for practical engineer-
ing manufacturing because in some applications, stiffeners with uniform widths are easier
to manufacture. One effective approach to achieve this goal is to ensure that the norm of
the gradient vector of the fundamental level set functions is equal to 1 across nearly all
points. The norm of the gradient vector of γ(x) is provided by

∥∇γ(x)∥ =

√√√√( m

∑
i=1

αi
∂φ

∂x
(x, qi)

)2

+

(
m

∑
i=1

αi
∂φ

∂y
(x, qi)

)2

(14)

where ∂φ/∂x and ∂φ/∂y are, respectively, the partial derivatives of φ with respect to x and
y. According to Equation (11), they are defined as [37]

∂φ

∂x
(x, qi) = −20 · t(x, qi) · (1 − t(x, qi))

3
+

∂t
∂x

(x, qi) (15)

∂φ

∂y
(x, qi) = −20 · t(x, qi) · (1 − t(x, qi))

3
+

∂t
∂y

(x, qi) (16)
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The ∥∇θ(x)∥ of the function θ(x) can be obtained similarly.
The subsequent two constraints can ensure that at the center point xe of each element,

∥∇γ(xe)∥ and ∥∇θ(xe)∥ are close to 1. Let dϕ
e and dψ

e denote the constraints of the e-th
element on γ(x) and θ(x). Following the methods in [39–41], equality constraints can be
transformed into inequality constraints as

dγ
e = (∥∇γ(xe)∥ − 1)2 ≤ ξ, e = 1 . . . n (17)

dθ
e = (∥∇θ(xe)∥ − 1)2 ≤ ξ, e = 1 . . . n (18)

The p-norm approach [42] is utilized to consolidate the constraints as

gγ =

(
n

∑
e=1

(
dγ

e
)p2

)1/p2

≤ ξ (19)

gθ =

(
n

∑
e=1

(
dθ

e

)p2

)1/p2

≤ ξ (20)

where ξ is the upper limit of the two constraints; n is the amount of finite elements; and
p2 > 0 is the parameter of the p-norm.

4. Optimization Framework and Sensitivity Analysis
4.1. Definition of Buckling Load Optimization Problem

The buckling optimization problem is defined as

min
αi ,βi ,η

J = −λ1

s.t. (K − λ1G)φ1 = 0
δmin ≤ αi, βi ≤ δmax
ηmin ≤ η ≤ ηmax
V ≤ V
gγ, gθ ≤ ξ

(21)

where λ1 represents the fundamental BLF; φ1 denotes the eigenvector corresponding to
the eigenvalue λ1; K stands for the global stiffness matrix, while G represents the global
geometric stiffness matrix; δmin and δmax, respectively, stand for the lower and upper limits
of the design variables αi and βi; ηmin and ηmax indicate the minimum and maximum
values of the design parameter η; gγ and gθ are the gradient constraint functions for the
two fundamental level set functions, and ξ represents the maximum value of the gradient
constraints; V denotes the total volume of stiffeners, while V indicates the volume constraint
of stiffeners.

4.2. Finite Element Analysis

The Mindlin plate theory [43–46] is used in the finite element analysis. Additionally,
we assumed the substrate and stiffeners are made of the same material. Therefore, the
stiffness matrix ke for each element is defined as

ke = kb + ks + km (22)
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where kb, ks and km represent the bending, shear, and axial stiffness matrices of the element,
respectively, and they can be specified as

kb = h3
e ·
∫

Ωe

1
12

· BT
b DbBb dx = h3

e · k1 (23)

ks = he ·
∫

Ωe
BT

s DsBs dx = he · k2 (24)

km = he ·
∫

Ωe
BT

mDmBm dx = he · k3 (25)

where Bb, Bs and Bm are the strain-displacement matrices for bending, shearing, and
axial deformation, respectively; Db, Ds and Dm are the corresponding elastic matrices. Ωe
represents the element domain. The stiffness matrix of finite element in Equation (22) can
be modified to

ke = h3
e k1 + he(k2 + k3) (26)

The geometric stiffness matrix is defined as

ge =
∫

Ωe
gT
[

−σx −τxy
−τxy −σy

]
g hedx (27)

where g represents the partial derivative of the shape functions, and σx, σy, and τxy are the
plane axial and shear stresses. The expression for ge in Equation (27) can be modified to

ge = heg1 (28)

where g1 depicts the geometric stiffness matrix of unit thickness.

4.3. Sensitivity Analysis

The sensitivity of the optimization objective J with respect to the design variables αi is
given by

∂J
∂αi

= −∂λ1

∂αi
(29)

From Equation (21), the partial derivative of the critical BLF λ1 with respect to αi can
be acquired as (likewise, the partial derivative of λ1 regarding the design variables βi can
be derived)

∂λ1

∂αi
=

1
φT

1 Gφ1

(
n

∑
e=1

φT
1e

∂ke

∂αi
φ1e − λ1

n

∑
e=1

φT
1e

∂ge

∂αi
φ1e

)
(30)

From Equations (26) and (28), we have

∂ke

∂αi
=

∂he

∂αi

(
3h2

e k1 + k2 + k3

)
(31)

∂ge

∂αi
=

∂he

∂αi
g1 (32)

Based on Equations (1)–(6) and Equations (8) and (9), we have

∂he

∂αi
=

∂he

∂ρ̃e

∂ρ̃e

∂ρe

∂ρe

∂Γe

∂Γe

∂γe

∂γe

∂αi
(33)
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where

∂he

∂ρ̃e
= hs (34)

∂ρ̃e

∂ρe
=

τ sech2[τ(ρe − η)]

tanh(τη) + tanh[τ(1 − η)]
(35)

∂ρe

∂Γe
=

1
2
+

Γe − Θe

2
√
(Γe − Θe)

2 + χ
(36)

∂Γe

∂γe
= − π

µ1
sin
(

2π

µ1
γe

)
(37)

∂γe

∂αi
= φ(xe, qi) (38)

Next, the sensitivity of the optimization objective J with respect to the design variable
η is formulated as

∂J
∂η

= −∂λ1

∂η
(39)

∂λ1

∂η
=

1
φT

1 Gφ1

(
n

∑
e=1

φT
1e

∂ke

∂η
φ1e − λ1

n

∑
e=1

φT
1e

∂ge

∂η
φ1e

)
(40)

Similarly, based on Equations (26) and (28), we have

∂ke

∂η
=

∂he

∂η

(
3h2

e k1 + k2 + k3

)
(41)

∂ge

∂η
=

∂he

∂η
g1 (42)

According to Equations (1) and (2), we have

∂he

∂η
=

∂he

∂ρ̃e

∂ρ̃e

∂η
(43)

where
∂ρ̃e

∂η
=

τ((Q′ − L′)(Q + R)− (Q′ − R′)(Q + L))
(Q + R)2 (44)

where

Q = tanh(τη), L = tanh[τ(ρe − η)], R = tanh[τ(1 − η)] (45)

Q′ = 1 − Q2, L′ = 1 − L2, R′ = 1 − R2 (46)

In accordance with Equation (13), the sensitivity of the volume constraint to αi, βi, and
η are

∂V
∂αi

=
n

∑
e=1

∂ρ̃e

∂ρe

∂ρe

∂Γe

∂Γe

∂γe

∂γe

∂αi
hs Ae (47)

∂V
∂βi

=
n

∑
e=1

∂ρ̃e

∂ρe

∂ρe

∂Γe

∂Γe

∂γe

∂γe

∂βi
hs Ae (48)

∂V
∂η

=
n

∑
e=1

∂ρ̃e

∂η
hs Ae (49)
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Based on Equation (19), the sensitivity of the gradient constraint gγ to αi is

∂gγ

∂αi
= g(1−p2)

γ

n

∑
e=1

(
dγ

e
)(p2−1) ∂dγ

e
∂αi

(50)

According to Equations (14)–(17), we have

∂dγ
e

∂αi
= 2

(
1 − 1

∥∇γ∥

)[( m

∑
j=1

αj
∂φj

∂x

)
∂φi
∂x

+

(
m

∑
j=1

αj
∂φj

∂y

)
∂φi
∂y

]
(51)

Under the same conditions, the sensitivity of the gradient constraint gθ concerning the
design variables βi can be acquired. All design variables are updated by using the method
of move asymptote (MMA) [47].

5. Numerical Examples

In this part, several numerical examples of optimizing the fundamental BLF for the
structures with grid stiffeners are provided. For all examples, the Young’s modulus is set to
200 GPa, the Poisson’s ratio is set to 0.3, the thickness of the base plate hb is 0.5 mm, and
the thickness of the stiffener hs is 1 mm. The parameter τ in Equation (2) is set to 7, the
parameter p2 in Equations (19) and (20) is 12, the support radius parameter ds of CS-RBF is
set to 8, and the maximum and minimum limits for the design variables in optimization
problem are set as follows: αmin = −50, αmax = 50, βmin = −50, βmax = 50, ηmin = 0,
ηmax = 2.

The convergence condition for optimization is characterized as

Eerr =

∣∣∣∑5
f=1

∣∣∣Ek− f+1 − Ek−5− f+1
∣∣∣∣∣∣

∑5
f=1 Ek− f+1

≤ δE (52)

where Eerr represents the error between the relevant objective functions during the opti-
mization process; k indicates the current iteration step; δE is the upper limit of the error, and
it is set to 0.2%. Additionally, if the iteration step k reaches 600, the optimization procedure
will be terminated.

5.1. Example 1

Within this example, a square plate with dimensions of 10 mm × 10 mm, supported
on both sides with simply supported boundary conditions, is considered. Uniform com-
pressive loads of magnitude F = 1 N/mm are applied simultaneously on both sides. The
boundary conditions are illustrated in Figure 7: the bottom-left corner of the plate is re-
stricted in the x and y-direction translational degrees of freedom (i.e., u = 0 and v = 0), the
translational degree of freedom in the y-direction at the bottom-right corner is constrained,
and the z-direction degrees of freedom on all four sides of the plate are fixed (i.e., w = 0).
The wavelength parameters in Equations (5) and (6) are set to µ1 = µ2 = 1.4. The design
domain consists of 200× 200 finite element elements, with 20× 20 CS-RBF knots distributed
uniformly within the design domain. To maintain uniformity in the width of the stiffeners
post-optimization, the parameter ξ in Equations (19) and (20) is set to 0.3.

Several upper bounds of volume are applied in this example, and the stiffeners of
the initial design are set in two directions: horizontal (0◦) and vertical (90◦), as shown in
Figure 8a. In Equation (13), the volume constraints for stiffeners are defined as V = 0.8V0,
V = V0, and V = 1.2V0, respectively, where V0 is the initial volume of the stiffeners. The
optimization results are illustrated in Figure 8b–d.
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w = 0

w = 0 w = 0

w = 0

10mmu,v = 0 v = 0

F = 1N/mm

w = 0

w = 0 w = 0

w = 0

10mmu,v = 0 v = 0

F = 1N/mm

Figure 7. The design domain and boundary conditions for Example 1.

It can be seen that despite varying volume constraints on the stiffeners, the layout
of the stiffeners remains essentially consistent. The effect of volume constraint manifests
in the width of the stiffeners, where a larger volume leads to wider stiffeners. Regarding
the layout, it is notable that the distance between stiffeners increases in the central region.
This enhances the structural strength in the central region. The path of the stiffeners
forms outwardly curved arcs, aiming to enhance the load-bearing capacity against axial
compression loads on both sides. Figure 9a–c depict the corresponding first buckling
modes of the three optimized structures, and it should be noted that the buckling mode in
this example, as well as in all subsequent examples, represents the structure’s normalized
displacement in the w-direction.

Figure 10a–c depict the first two BLFs and volume variation curves under three
different volume constraint scenarios. It is apparent that there is no intersection between
the curves of the first and second BLFs, indicating the absence of repeated first BLFs.
Additionally, the volume changes for each case follow the prescribed volume constraint
values, eventually reaching their respective maximum allowable volume. Furthermore, it
can be seen that the optimization of the critical BLF converges under all three constraint
conditions, demonstrating the validity of the optimization.

Table 1 presents the corresponding outcomes of the optimization, indicating a clear
trend where increasing volume leads to higher buckling load. Under the maximum allow-
able volumes of 1 times and 1.2 times the initial volume, the increment in critical buckling
load reaches 13.3% and 44.5%, respectively. When V = 0.8V0, the buckling load decreases
on account of the reduced volume of the stiffeners.

Table 1. Comparison of results under divergent volume constraints (λ0
1, V0: initial critical BLF and

total volume of stiffeners; λ#
1, V#: final critical BLF and total volume of stiffeners; ∆λ1 = λ#

1 − λ0
1;

V0 = 50.55 and λ0
1 = 5586.5).

V λ#
1 V# V#/V0 ∆λ1/λ0

1

0.8V0 4916.3 40.44 80.00% −12.0%
V0 6330.8 50.54 99.98% 13.3%

1.2V0 8070.1 60.64 119.96% 44.5%
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(a) initial design (b) optimized with V = 0.8V0

(c) optimized with V = V0 (d) optimized with V = 1.2V0

Figure 8. Optimization results under different volume constraints on stiffeners. (a) Initial design,
(b) optimized design under volume constraint V = 0.8V0, (c) optimized design under volume
constraint V = V0, and (d) optimization results under volume constraint V = 1.2V0.

(a) λ1 = 4916.3 (b) λ1 = 6330.8 (c) λ1 = 8070.1

Figure 9. First-order buckling mode of the grid stiffener structure optimized under different volume
constraint conditions, (a) volume constraint V = 0.8V0, (b) volume constraint V = V0, and (c) volume
constraint V = 1.2V0.
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(a) volume constraint V = 0.8V0

0 50 100 150
4000

5000

6000

7000

8000

9000

10,000

11,000

12,000

0

20

40

60

80

100

1

2

volume

(b) volume constraint V = V0
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(c) volume constraint V = 1.2V0

Figure 10. History of the first two buckling load factors (BLFs) and stiffeners volume under different
volume constraints (λ1 and λ2 symbolize the first and second BLFs, respectively).

5.2. Example 2

In this case, the size of the design domain is the same as that in Example 1, with the
left end fixed and a uniform compressive load of magnitude F = 1 N/mm applied on the
right side, as shown in Figure 11. The wavelength parameters in Equations (5) and (6), as
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well as the finite element mesh division and the distribution of CS-RBF nodes, are the same
as those in Example 1. The maximum allowable volume V is configured as V0.

10mm

F = 1N/mm

10mm

Figure 11. The design domain and boundary conditions for Example 2.

The initial layout of the stiffeners is in two directions, 45◦ and −45◦, as shown in
Figure 12a. Both scenarios with and without gradient constraints are considered. In the
case of with gradient constraints, the gradient constraint values in Equations (19) and (20)
are set to ξ = 0.06 and ξ = 0.3, respectively. The optimization results are illustrated in
Figure 12b–d. It is clear that the optimization results with gradient constraints have more
uniform width of the stiffeners. Moreover, the stricter the gradient constraint, the more
pronounced this effect. Regarding the stiffener layout, it is evident that the stiffeners on
the left side are optimized to align with the direction of force transmission (horizontal
direction in the figure), with increased width, thereby enhancing the ability to withstand
axial compressive loads more effectively. Figure 13a–c, respectively, depict the first buckling
modes under gradient constraints of ξ = 0.06, ξ = 0.3, and without gradient constraints.

Figure 14 illustrates the variation of gradients of the level set functions during the op-
timization process. Figure 14a–c, respectively, represent the cases with gradient constraints
ξ = 0.06, ξ = 0.3, and without gradient constraints. One can see that under the gradient
constraint conditions, the gradients eventually reach the set values, satisfying the gradient
constraint requirements. In the absence of gradient constraints, the gradient values are
ultimately optimized to 0.54.

In Figure 15, the history of the objective function and volume are displayed under
three different cases. It can be observed that the volume remains close to a constant
value throughout, validating the effectiveness of the volume constraint. The optimization
magnitude of the critical BLF increases as the gradient constraint weakens. Particularly, the
optimization magnitude is greatest when there is no gradient constraint. Hence, relaxing
the gradient constraint can lead to better performance. In Table 2, it is clear to see the
optimization magnitude is 26.1% with a gradient constraint value of ξ = 0.06, 45.2% with
ξ = 0.3, and 47.1% without gradient constraints.
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(a) initial design (b) optimized with ξ = 0.06

(c) optimized with ξ = 0.3 (d) optimized without ξ

Figure 12. Results under different gradient constraints. (a) Initial design, (b) optimization design with
gradient constraint ξ = 0.06, (c) optimization design with gradient constraint ξ = 0.3, (d) optimization
design without gradient constraint.

(a) λ1 = 437.89 (b) λ1 = 503.96 (c) λ1 = 510.77

Figure 13. First-order buckling mode of the grid stiffener structure optimized under different gradient
constraint conditions, (a) gradient constraint ξ = 0.06, (b) gradient constraint ξ = 0.3, and (c) without
gradient constraint.
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(b) optimized with ξ = 0.3
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(c) optimized without ξ

Figure 14. Variation of different gradients during optimization processes.
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Figure 15. The variations of critical BLF and stiffeners volume under different gradient constraints.

Table 2. Comparison of results under divergent gradient constraints (λ0
1, V0: critical BLF and initial

total volume of stiffeners; λ#
1, V#: critical BLF and final total volume of stiffeners; ∆λ1 = λ#

1 − λ0
1;

λ0
1 = 347.20 and V0 = 50.76).

ξ λ#
1 V# V#/V0 ∆λ1/λ0

1

0.06 437.89 50.76 100% 26.1%
0.3 503.96 50.76 100% 45.1%

none 510.77 50.76 100% 47.1%

5.3. Example 3

The design domain of this case study is a rectangular shape with dimensions of
10 mm× 20 mm. The bottom edge is completely fixed, and a vertically downward distributed
load is applied on top with a length of 2 mm and a magnitude of F = 1 N/mm. Boundary
conditions are depicted in Figure 16. The wavelength parameters in Equations (5) and (6)
are set to µ1 = µ2 = 2.1; 200 × 400 finite elements is used; and 20 × 40 CS-RBF knots are
uniformly distributed. The gradient constraint parameter ξ in Equations (19) and (20) is
configured as 0.3. The maximum allowable volume V is set to be V0.
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2mm

10mm
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F = 1N/mm

Figure 16. The design domain and boundary conditions for Example 3.

In this example, the initial layout of the stiffeners is oriented in two directions, at 45◦

and −45◦, as illustrated in Figure 17a. Figure 17b exhibits the final outcome, where the
stiffeners distribution at the bottom, near the center region, resembles that of Example 2,
optimized in the direction of the load path, thereby enhancing the load-bearing capacity.
The stiffeners in the upper region follow an arch-shaped path, similarly aimed at improving
the load-bearing capacity. Figure 18a–c represents the first-, second-, and third-order
buckling modes corresponding to the optimization results, respectively, demonstrating the
absence of duplicate first-order BLFs.

The plots depicting the evolution of the critical BLF and the volume of stiffeners are
illustrated in Figure 19. The optimization procedure converged eventually, with the critical
BLF λ1 increasing by 29.8%.
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(a) initial design (b) optimized design

Figure 17. Initial design and optimized result.

(a) λ1 = 569.94 (b) λ2 = 3493.5 (c) λ3 = 7913.8

Figure 18. Optimization of the first three buckling modes for the grid stiffener structure. (a) First
buckling mode, (b) second buckling mode, (c) third buckling mode.
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Figure 19. Convergence history of critical BLF and stiffeners volume.
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6. Conclusions

In this study, we optimized the critical buckling load of curved grid stiffener structures
based on a level-set-based density method. By transforming two fundamental level set
functions, two clusters of stiffeners were obtained, and the real density of each element
was obtained using density-based methods. Then, the overall structural element height
distribution was obtained by adding the heights of the matrix and stiffeners. The Mindlin
plate theory was used for finite element analysis of buckling, and the stiffness matrix
and geometric stiffness matrix of each element were determined and assembled into the
overall matrix. After that, the eigenvalue equation was solved to obtain the corresponding
eigenvalues and eigenvectors. Combining this with the optimization objective, relevant
sensitivity analysis calculations were performed. Simultaneously, volume and gradient con-
straints were added to improve material utilization and maintain uniform stiffeners width.
Finally, the MMA algorithm was used to update the design variables. The effectiveness of
the proposed method was validated through several numerical examples.

In practical applications, this research method improves the stability of grid stiffener
structures under specific load conditions in engineering applications. Optimizing the
stiffener layout instead of increasing the stiffener thickness or base wall thickness helps
the structure move towards lightweight development. In addition, introducing gradient
constraints to control the minimum spacing between stiffeners enhances the manufactura-
bility of the structure. In the future, the layout and shape of the obtained grid stiffener
structure can be subjected to certain post-processing to meet further requirements, and
specific experimental analysis can be added for verification and explanation. In addition,
the method can be combined with topology optimization to change the shape of base
structure while optimizing the layout of curved grid stiffeners.
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