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Abstract: Malware classification stands as a crucial element in establishing robust computer secu-
rity protocols, encompassing the segmentation of malware into discrete groupings. Recently, the
emergence of machine learning has presented itself as an apt approach for addressing this challenge.
Models can undergo training employing diverse malware attributes, such as opcodes and API calls,
to distill valuable insights for effective classification. Within the realm of natural language processing,
word embeddings assume a pivotal role by representing text in a manner that aligns closely with the
proximity of similar words. These embeddings facilitate the quantification of word resemblances.
This research embarks on a series of experiments that harness hybrid machine learning methodologies.
We derive word vectors from dynamic API call logs associated with malware and integrate them
as features in collaboration with diverse classifiers. Our methodology involves the utilization of
Hidden Markov Models and Word2Vec to generate embeddings from API call logs. Additionally,
we amalgamate renowned models like BERT and ELMo, noted for their capacity to yield contextual-
ized embeddings. The resultant vectors are channeled into our classifiers, namely Support Vector
Machines (SVMs), Random Forest (RF), k-Nearest Neighbors (kNNs), and Convolutional Neural
Networks (CNNs). Through two distinct sets of experiments, our objective revolves around the
classification of both malware families and categories. The outcomes achieved illuminate the efficacy
of API call embeddings as a potent instrument in the domain of malware classification, particularly
in the realm of identifying malware families. The best combination was RF and word embeddings
generated by Word2Vec, ELMo, and BERT, achieving an accuracy between 0.91 and 0.93. This result
underscores the potential of our approach in effectively classifying malware.

Keywords: word embeddings; dynamic analysis; API calls; Hmm2Vec; Word2Vec; ELMo; BERT;
SVM; RF; kNN; CNN

1. Introduction

Over the course of recent decades, technology has become an indispensable com-
ponent of our daily lives, resulting in the pervasive presence of computers. With these
remarkable advancements, it comes as no surprise that attackers have devised diverse
methodologies to disrupt and impair computer systems for their own gain. These malev-
olent actors embed harmful code into ostensibly ordinary programs, leading to a range
of detrimental outcomes. Their actions include pilfering funds and personal data, over-
whelming computers with downloads to induce system failures, and even encrypting data
while demanding cryptocurrency ransoms. This malicious code collectively goes by the
term “malware”. Over time, malware has progressed to the extent that it can infiltrate
virtually any system, including laptops, mobile devices, and internet servers. According to
the 2023 SonicWall Cyber Threat Report, there has been a resurgence in malware attacks for
the first time in over three years, reaching a substantial tally of 5.5 billion [1]. Given these
circumstances, the need for malware detection and classification has intensified.

The classification of malware involves ascertaining the class or family to which a
specific malware variant belongs. The underlying rationale is that malware within the same
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families or categories exhibits akin behaviors during execution. This constitutes a foun-
dational issue in malware analysis. Existing tools often rely on signature-based detection
algorithms, maintaining a database of previously scrutinized malware signatures. How-
ever, this approach often falters when confronted with novel and unseen malware strains.
Furthermore, malware creators persistently devise novel evasion strategies. To counter this,
a substantial portion of recent research has centered around harnessing machine learning
for the purposes of malware detection and classification. Malware can be classified into
types like Worms and Trojans based on their interactions with systems, and these categories
can be further broken down into families. Malware within the same family shares common
attributes such as a shared code base or common authors. These shared traits can be
exploited for effective malware classification.

In this study, we investigate the utilization of API calls as features for the classification
of malware. We extract the API calls dynamically while the malware is running. The ratio-
nale here is to avoid techniques that may obfuscate API calls when statically extracted [2–4].
We deploy word embedding techniques to generate vector representations from these API
calls, which are subsequently employed as inputs to a variety of multi-class classifiers.
The word embedding methods scrutinized in this research are HMM2Vec, Word2Vec, Em-
beddings from Language Model (ELMo), and Bidirectional Encoder Representations from
Transformers (BERT). These techniques play a pivotal role in our classification process,
given that the quality of the generated embeddings substantially influences the capacity to
encapsulate latent features within call sequences. Across the board, we experiment with
a consistent ensemble of multi-class classifiers, specifically k-Nearest Neighbors (kNNs),
Support Vector Machines (SVMs), Random Forest (RF) classifiers, and Convolutional Neu-
ral Networks (CNNs). These hybrid methodologies are implemented and evaluated across
a diverse spectrum of malware samples. The findings derived from these experiments
are amalgamated within this report. Figure 1 provides an overview of the experimental
trajectory, commencing from malware analysis and log extraction, culminating in classifi-
cation endeavors. The overall procedure remains largely uniform across methodologies,
with the exception of HMM2Vec, which encompasses an additional step for mapping calls
to numerical values.

Figure 1. General layout of the experiments.
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The remainder of this paper is organized as follows. Section 2 discusses related
work and the previous literature on malware classification, followed by Section 3, which
describes the dataset used and provides an in-depth exploration of the background concepts
necessary to understand the work performed. In Section 4, the proposed experiments and
their results are presented in detail. Finally, Section 5 concludes the report and suggests
potential ideas for further improvement.

2. Related Work

Malware classification is among some of the most researched problems because of
its global impact, and as such, several machine learning techniques have been identified
to try to solve this problem. Within them, a common methodology is to study how the
malware interacts with a system and extract features from it which could be helpful in
understanding its behavior. These features may include a number of things such as opcodes,
register changes, file system changes, API calls made, and so on. These features can be
extracted using static analysis or dynamic analysis of the malware executable.

Several studies have used API call logs as features to detect or classify malware, and
they have achieved good results. In fact, malware under execution may cause the system
to make different API calls, and these are good features for machine learning as they are
usually used in a specific way. To extract these calls, we need to run the malware executable,
which often requires a virtual environment [5]. The authors in [6] proposed a method for
selecting a subset of API calls and achieved 0.98 accuracy in malware classification using
algorithms like SVM and Random Forest. In a similar scheme, the authors in [7] proposed
enhancing the API call information using Term Frequency and Inverse document frequency
(TF-IDF) to select only the most important calls for malware detection, achieving near-
perfect accuracy. These results provide enough evidence to argue for the effectiveness of
API calls as a feature.

While algorithms like SVM and Random Forest generally perform well at classifica-
tion tasks, recent works have shown that techniques using deep neural networks can be
successfully used because of their ability to uncover and learn complex relationships. In [8],
the authors proposed a CNN-based architecture where they converted malware binaries
to images, recording an impressive 98% accuracy. In [9], the authors discuss data mining
techniques to select features and classify them using models like kNN and Naive Bayes.
The selection of appropriate techniques to enhance the relevance of information in the
features can be crucial in classifying malware.

Word embeddings are learned representations of text that are used in natural language
processing (NLP). Since their advent, they have been employed in a number of varied
tasks with very promising results. Among these, malware classification has also emerged
as a field where these techniques prove useful. This statement is supported by the work
carried out in [10], where API call sequences are converted to numeric vectors using various
methods. Another popular algorithm used to generate these representations is Word2Vec,
developed at Google [11]. In [12], the author uses Word2Vec to extract vectors from machine
code instructions and demonstrates the algorithm’s ability in tasks of malware detection.

Hidden Markov Models (HMMs) have found an effective use case in malware analysis
because of their ability to determine patterns in sequences that are generally not directly
observable. Several research works have tried modeling HMMs on various malware
features and have shown promising results. In [13], the authors conduct a comparison
between the efficacy of opcode sequences and API call sequences by training HMMs on
them and conclude that the latter performs better. In a similar study [14], the authors also
use HMMs and reach a similar conclusion. They argue that while opcodes are generally
good, they fail to predict some families due to obfuscation techniques that are likely to
affect them more than API calls. In [15], the author uses HMM2Vec, a technique for
generating vectors using HMMs opcodes as features. The work compares the performance
of HMM2Vec with Word2Vec and delivers promising results with an accuracy of about 93%
in both cases, thereby validating the HMM2Vec approach.
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One drawback of the Word2Vec algorithm is the inability to produce vectors that
have contextual information. Further developments in the field of NLP have led to the
development of several other models for generating embeddings that could overcome this
problem. One such model was introduced in [16] called Embeddings for Language Model
(ELMo), which is based on the biLSTM model, and it achieved state-of-the-art results in
several common NLP tasks. Another breakthrough came with the introduction of trans-
former architecture and the self-attention mechanism in [17]. With the increased interest
in transformer-based architecture, J. Delvin et al. [18] introduced Bidirectional Encoder
Representations from Transformers (BERT) which again achieved state-of-the-art results.
In [19], the authors used malware opcode and compared the performance of these newer
techniques with HMM2Vec and Word2Vec for the task of malware family classification.
Both approaches performed relatively well and showed improved performance over the
former two with results indicating that BERT slightly outperformed ELMo in the given
task. More on how each of these techniques work is discussed in Section 3. This research
is highly motivated by the work performed in [15,19]. The work performed here follows
a similar structure to these works, but instead of opcode sequences, we rely on API call
sequences for classification.

3. Background

This section provides an overview of the fundamental tools and technologies em-
ployed in this research. We commence with an exploration of malware analysis and the
procedure for extracting API calls from a given executable. Subsequently, we offer a con-
cise explanation of the functioning of the utilized word embedding models: HMM2Vec,
Word2Vec, BERT, and ELMo. Finally, we examine the diverse multi-class classifiers em-
ployed in this study. Specifically, we discuss Support Vector Machines (SVMs), k-Nearest
Neighbors (kNNs), Random Forest, and Convolutional Neural Networks (CNNs).

3.1. Malware Analysis

Any program that is created with the intent to disrupt or harm a computer system can
be defined as malware. As such, based on its behavior, malware can take many different
forms and present as one among various categories such as Ransomware and Trojan. This
broad categorization, dependent on malware’s characteristics, behavior, and aim, is referred
to as the category of malware. On the other hand, a malware family is a more specific
characterization within a category wherein we group them based on functional similarities
such as the code base or origin, i.e., a single category has multiple families. Due to this,
the classification of malware by category is generally more complex than classification by
family. In this paper, we focus on both of these categorizations, and our experiments try to
classify malware in both groups.

We focus on performing a dynamic analysis of the malware sample by extracting
the API calls at runtime. The term dynamic analysis can be explained as the analysis of
software that is executed in a controlled environment. In contrast, static analysis refers to
the analysis of software that is not under execution. Although dynamic analysis usually
incurs a larger overhead, previous work has shown that they are suitable for deriving
an accurate model of the malware [6,14]. Common information that can be derived from
dynamic analysis of a malware executable is API calls, system calls, and register changes,
and these can be useful as features in several malware tasks. In this research, we specifically
focus on the API calls extracted. In the lifetime of its execution, malware may use various
API calls for different purposes such as accessing a file system or connecting to a remote
server. This behavior can be exploited to understand the malware better.

There are a lot of tools that can help us in extracting the required information. The tool
that was used in this research is called Buster Sandbox Analyzer (BSA) version 1.92 [20].
BSA is a free, open-source dynamic analysis tool designed to detect if processes exhibit ma-
licious activities. BSA works by executing the malware in a controlled virtual environment
so the host system is not affected by any harmful activities. It does so by working in con-
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junction with another software called Sandboxie, which provides a sandboxed environment
to run programs in [21]. One of the best features of BSA is that it can capture an executable’s
workings and automatically generate reports based on it, including details such as API calls,
network communications, file system changes, and various other information. Together,
BSA and Sandboxie provide a powerful method of analyzing malware and, as such, are
used in this research to analyze the malware samples.

3.2. Word Embedding Techniques

As mentioned previously, word embedding techniques are primarily used in natural
language processing tasks to numerically quantify the distance between words in a vo-
cabulary. In this research, we use these techniques to generate features for our classifiers.
It is expected that, by using these techniques, we will be able to identify relationships
that can be better understood by the classification algorithms. In this section, we discuss
the embedding techniques used in this research starting with HMM2Vec, an embedding
technique based on HMMs, followed by the well-known Word2Vec. Finally, we discuss
some of the relatively newer techniques ELMo and BERT which can understand the context
of the words in our vocabulary.

3.2.1. HMM2Vec

The Hidden Markov Model is a statistical model in which a system is assumed to be a
Markov process of order one with a number of hidden states that are not directly observable.
The aim of an HMM is to figure out the most probable sequence of states that could have
generated the data. Usually, HMM can be represented by three matrices A, B, and Pi which
denote the hidden state transition probability, the observation probability matrix, and the
initial state probabilities, respectively [22]. The number of hidden states that the HMM may
infer is denoted by N and is usually selected by the user. Other notations that are used are
T, to define the length of the observation sequence, and M, which represents the number of
unique symbols in the vocabulary. The values of M and T are most commonly derived on
the basis of the training dataset.

HMM2Vec is a technique in which we calculate the cosine similarity between any
two vectors. We consider the row of the converged B-transpose matrix as the vector
representation of that particular letter. This means that for each individual letter, we have a
vector of length 2. The length of the vector depends on the number of hidden states.

More detailed information on HMMs and how they work can be accessed at [22]. More
details on HMM2Vec can be found at [15,23].

3.2.2. Word2Vec

Word2Vec is a word embedding technique introduced by Tomas Mikolov at Google in
2013 [11]. The algorithm is based on a shallow neural network that can be used to embed
features in a high-dimensional space. The trained extracted embeddings can be used in
several tasks as the words that are similar in context are represented closely together.

Word2Vec consists of two algorithms that can be trained to generate the embeddings
for words, which are the Common Bag of Words (CBOW) and Skip N-gram. In CBOW,
the embedding for a given word is generated by combining the distributed representations
of the other words that appear in its context. The context is usually defined as a window
where the word to be represented is the middle word, and all others are the context. In Skip
N-gram, the model tries to model a given word by trying to predict the neighboring words
that would appear in its context, i.e., given an input word, the model tries to predict what
the words are that either appear immediately before or after.

While both of these models are quite effective for generating embeddings, the Skip-
gram model is more powerful as it models every single word in the vocabulary. However,
due to this, it also incurs a high overhead compared to the CBOW. In our experiments, we
use the default model available which is based on the CBOW architecture.
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Since the Word2Vec similarity is also based on the cosine similarity discussed in the
previous section, the experiments are somewhat analogous to the HMM2Vec experiments.
However, Word2Vec offers some advantages over the HMM2Vec. The main one is that
HMM2Vec is based on a Markov model of order one, which means it is limited in the
context information it may capture compared to Word2Vec. Another drawback with HMM
is the training time, being slower to train for long sequences as in our case.

3.2.3. ELMo

ELMo was introduced by Matthew E. Peters et al. in [16] in 2018. ELMo is a bidirec-
tional language model capable of generating contextualized vectors for a particular word
by capturing both the semantics as well as the syntax for said word [19]. This means that
similar words represented in different contexts are represented differently, which allows
us to capture subtle differences in the language. The architecture of ELMo consists of two
LSTM networks called the Forward layer and Backward layer. These layers are trained on
the tasks of next-word prediction and previous-word prediction, respectively, and work
in conjunction, thereby processing input in both directions and capturing meaningful
relationships in both directions. The final word embedding is generated by concatenat-
ing these contextualized embeddings and scaling them with the help of a normalizing
factor. These bidirectional layers are also supported by a task-specific layer on top which
helps transform the embeddings from our layers into a suitable form for the task at hand,
by usually projecting them into a lower dimension.

Apart from generating contextualized vectors, ELMo offers another advantage over
the previously mentioned techniques, wherein we do not necessarily have to handle
out-of-vocabulary words as ELMo can create embeddings for these using character-level
representations. This makes ELMo quite powerful in tasks that are highly domain-specific
and may contain lots of out-of-vocabulary words. More information on ELMo can be found
here [16].

3.2.4. BERT

BERT, standing for Bidirectional Encoder Representations from Transformers, was
introduced in [18] at Google. It is based on the transformer architecture that was introduced
in 2017 by Vaswani et al. [17]. The transformer architecture introduced the concept of
self-attention, in which each input embedding is represented as three vectors, namely the
query, key, and value vectors. These vectors are then used to calculate attention scores
among the different units and combined to produce a final sum. This was a key improve-
ment over other models as it meant that we could now capture long-range dependencies
without having fixed-size windows. Like ELMo, BERT uses self-attention and also produces
contextualized word embeddings.

The architecture of BERT consists of just a stack of encoder models, twelve in number
to be precise. The BERT model produces embeddings by following a two-step procedure of
pre-training and fine-tuning. During pre-training, the model is trained on a very huge amount
of text data and also undergoes training on a couple of specific tasks which are next-sentence
prediction (NSP) and masked language modeling (MLM). In MLM, some of the words in the
input are masked, and the model is tasked with predicting the original masked word which
helps the model learn robustly. In NSP, the model is tasked with deciding which among two
of the input sentences precedes the other in a text. This helps the model learn relationships
between sentences. Following all this, fine-tuning of these pre-trained parameters is carried
out. This fine-tuning is based on the task to be performed and incorporates training on a
labeled dataset to optimize the parameters generated in pre-training.

3.3. Classifiers

Given a labeled dataset, classification can be defined as the process of predicting
the label for a given input. This prediction relies on input features that are analyzed to
uncover similarities between the input and previously scrutinized inputs. Numerous
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models have been developed and demonstrated to be highly valuable in classification tasks,
with SVM being one such example. In our research, we harness the vectors produced
by word embedding techniques as features to attempt the classification of malware into
their respective classes or families. We employ a variety of classifiers, and the forthcoming
section elucidates the underlying principles upon which these classifiers operate. All
the classifiers employed herein have demonstrated efficacy in the domain of malware
classification using diverse features, as indicated by the works conducted in [8,13,15,19].

3.3.1. Support Vector Machine

Support Vector Machines (SVMs) are a set of supervised machine learning algorithms
that are hugely popular in classification tasks. In order to maximize the distance between
classes, SVM tries to construct a hyperplane that can act as a separator. In [19], the authors
used SVM for the classification of malware features generated using word embedding
techniques and achieved promising results. SVM can help us identify subtle changes in
malware samples as the hyperplane is capable of working in a higher dimensional space
with the help of a kernel trick in cases where the data are not linearly separable. There are
a number of kernel functions that we can use to achieve this high-dimensional mapping.
Another important part of the algorithm is the cost regularization parameter C which
helps avoid overfitting. It does so by allowing some classes into the boundary of the
hyperplane. Once the hyperplane is set, the algorithm predicts classes by mapping data
points to the high-dimension space and judging the relative position with the hyperplane.
More information on SVM and its mathematical proof has been provided in the following
sources [24–26].

3.3.2. Random Forest

Random Forest (RF) is an ensemble learning technique that uses multiple decision
trees to predict a class label, introduced by Breiman in [27]. A decision tree is a supervised
machine learning algorithm that works by recursively splitting up the input into smaller
similar subsets. While it has its advantages, a single decision tree tends to overfit as the
depth and complexity of the tree increase. Random Forest tries to solve this problem by
combining the decisions from several decision trees. This is because, since the algorithm
bags features along with the observations, the trees tend to protect each other from individ-
ual errors and avoid overfitting. The algorithm works by assigning samples at random to
different decision trees and then averaging the results. The class label predicted is the one
that receives the most votes from the individual trees. A good explanation of how to use
these algorithms can be found at [28].

3.3.3. k-Nearest Neighbors

k-Nearest Neighbors is a simple supervised machine learning algorithm that makes
use of a sample’s neighboring data points to predict where it belongs. First, the k nearest
samples are taken, and then, the distance between them and the input sample to be
predicted is calculated. The distance measure is a parameter that we can decide based on
the use case such as Euclidean distance or Minkowski distance, and this value is what the
prediction is based on. The algorithm does not include a training phase which is why is
referred to as a lazy classifier. When implementing kNN, the value of k is of paramount
concern, as too small values can lead to overfitting, while very large values can lead to
performance and accuracy degradation [19].

3.3.4. Convolutional Neural Networks

Neural networks are algorithms modeled to work like the human brain. A Convolu-
tional Neural Network or a CNN is a type of feedforward deep neural network introduced
in [29] that has found success in several image classification tasks. A CNN consists of several
layers including an input layer, several hidden layers, and an output layer. Among these,
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the convolutional layer is the core building block. It contains a set of filters that slide over
an input to extract relevant features by exploiting any spatial patterns.

3.4. Dataset

The dataset employed in this project encompasses a collection of Windows executable
files. These executables underwent analysis within the Buster Sandbox Analyzer, leading to
the extraction of API logs that the malware invoked during execution. In total, 782 samples
were extracted from the initial raw dataset, subsequently divided into two distinct sets.
One set consisted of approximately 583 samples categorized by types, while the other,
comprising about 492 samples, was categorized by families. These datasets serve as the
foundation for the experiments detailed in the forthcoming sections. For the category
classification, the 583 samples were segregated into 11 distinct malware categories. The dis-
tribution of sample counts for each of these categories within the dataset is provided in
Table 1. Additionally, in the case of family classification, the samples were classified into
seven malware families. The corresponding sample counts for each of these families within
the dataset can be found in Table 2.

Table 1. Number of samples for each malware category.

Malware Category Sample Count

Adware 50
Backdoor 53
Modifier 52

PWS 50
Rogue 53
Tool 60

Trojan 53
Trojan Downloader 52

Trojan Monitoring Service 53
Virus 55
Worm 52

Table 2. Number of samples for each malware family.

Malware Family Sample Count

Adload 70
Bancos 71

Onlinegames 70
VBInject 70
Vundo 71

Winwebsec 70
Zwangi 70

Each entry in the dataset comprises an API call log sequence corresponding to a specific
malware instance. These logs generally contain the API name alongside supplementary
details like file paths. To streamline the information, we preprocessed these files to retain
solely the API call names. Consequently, for each sample, we processed a sequence of API
calls executed during its runtime. The aggregate count of unique API calls encountered
across the datasets tallies up to 94. Although employing the complete array of calls
could yield valuable insights, it would entail extensive processing time when generating
embeddings. Thus, it becomes pivotal to cherry-pick the most pertinent or crucial calls.
The importance of an individual API call is determined by how frequently it appears in the
dataset. In our experiments, we emphasized the most commonly occurring calls—the top
20 and top 40—which created two distinct groups of features. The percentage of total calls
covered by these feature sets in relation to the entire range of calls is detailed in Table 3.
Remarkably, even when focusing exclusively on the top 40 calls, we managed to capture
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over 99% of the entire set of calls. Conducting experiments with the complete API call
values did not result in enhanced performance. As a result, we chose to present only the
experiments involving these two sets of percentage distributions.

Table 3. Percentage distribution of top calls.

Calls Count (Percentage)

Total (Category) 233,539 (100%)
Top 40 (Category) 232,080 (99.37%)
Top 20 (Category) 223,698 (95.78%)

Total (Family) 160,813 (100%)
Top 40 (Family) 159,987 (99.48%)
Top 20 (Family) 154,868 (96.3%)

In both the cases of families and categories, we observed that the same API call
(VirtualAllocEx) had the highest frequency.

4. Results

Presented here are the outcomes of both experiments, that is, the classification of
samples into their respective malware categories, as well as the classification into their
corresponding malware families.

You can find supplementary details in the Appendix A, including confusion matrices,
loss metrics, and training accuracy data from all our experiments.

4.1. Malware Category Classification

In this section, we present a series of experiments involving the classification of mal-
ware types. These experiments were conducted using hybrid classification methodologies.

4.1.1. HMM2Vec

For the HMM2Vec experiments, the best accuracy we achieved was with the Random
Forest classifier at 0.69. kNN performed very closely, reaching 0.68, followed by SVM at
0.62. The worst performance was from CNN with 0.61 accuracy.

From these results, we observed a common pattern where the Worm category was
continually misidentified with all classifiers. This may be because of the high amount of
variance within the samples in this class. With respect to the calls retained, for HMM2Vec,
we saw that the Top 40 calls performed better than the Top 20 calls, although not by too big
of a margin. Figure 2 shows the accuracy achieved in both cases. Table 4 shows additional
metrics for the individual categories.

Table 4. Classification report for HMM2Vec category classification.

Category Precision Recall F1-Score

Adware 0.64 0.90 0.75
Backdoor 0.50 0.27 0.35

PWS 0.82 0.90 0.86
Modifier 0.82 0.90 0.86

Rogue 0.89 0.73 0.80
Tool 0.67 0.67 0.67

Trojan 0.73 0.73 0.73
Trojan Downloader 0.78 0.70 0.74

Trojan Spy 0.58 0.64 0.61
Worm 0.50 0.36 0.42
Virus 0.64 0.90 0.75
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Figure 2. Top 20 calls vs. Top 40 calls for HMM2Vec category classification.

For experiments performed where we replaced all calls outside of the selected ones
with a constant symbol, the performance decreased. This may be because the number of
these calls that lie outside our selected set may add up to a higher number masking what
the sequence actually represents in the output matrices. For these experiments, the best
accuracy we achieved was with the Random Forest classifier at 0.62. Figure 3 shows the
accuracy of this approach compared to the one where we deleted the calls.

Figure 3. Top 40 calls vs. Top 40 calls for HMM2Vec category classification.
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4.1.2. Word2Vec

For the Word2Vec experiments, the best accuracy we achieved was with the Random
Forest and kNN classifiers at 0.77. Overall, this was the highest accuracy achieved in the
task of malware category classification. Word2Vec-SVM performed slightly worse at 0.76,
whereas CNN was last with about 0.74.

Once more, we observed that the Worm class exhibited the lowest level of accuracy.
Nevertheless, a comparison with the outcomes of the HMM2Vec experiments reveals a
noteworthy trend: Word2Vec exhibited improved accuracy in predicting the Backdoor
category. This improvement likely contributed to the overall boost in accuracy observed.
In terms of the retained calls, our findings indicate an interesting difference between
Word2Vec and HMM2Vec. Specifically, in the case of Word2Vec, the Top 40 calls displayed
markedly superior performance compared to the Top 20 calls, a contrast to the behavior
observed in HMM2Vec experiments. The accuracy achieved for both scenarios is illustrated
in Figure 4. Table 5 shows additional metrics for the individual categories.

Table 5. Classification report for Word2Vec category classification.

Category Precision Recall F1-Score

Adware 0.80 0.80 0.80
Backdoor 0.58 0.64 0.61

PWS 0.91 1.00 0.95
Modifier 0.80 0.80 0.80

Rogue 0.82 0.82 0.82
Tool 0.53 0.67 0.59

Trojan 0.83 0.91 0.87
Trojan Downloader 0.89 0.70 0.84

Trojan Spy 0.89 0.73 0.80
Worm 0.83 0.45 0.59
Virus 0.75 0.90 0.82

Figure 4. Top 20 calls vs. Top 40 calls for Word2Vec category classification.
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4.1.3. ELMo

In the context of the ELMo experiments, the RF model once again emerged as the
top performer, attaining an accuracy of 0.77. However, it is worth noting that kNN did
not fare as well, lagging behind at 0.71. On a similar note, the performance of SVM and
CNN remained somewhat less satisfactory, recording accuracies of approximately 0.70 and
0.67, respectively.

As observed with Word2Vec, ELMo also demonstrated improved performance when
utilizing the Top 40 calls, compared to its performance with the Top 20 calls. The additional
metrics for individual categories are instead shown in Table 6.

Table 6. Classification report for ELMo-RF category classification.

Category Precision Recall F1-Score

Adware 0.80 0.80 0.80
Backdoor 0.80 0.36 0.50

PWS 1.00 1.00 1.00
Modifier 0.82 0.90 0.86

Rogue 0.80 0.73 0.76
Tool 0.58 0.58 0.58

Trojan 0.75 0.82 0.78
Trojan Downloader 0.75 0.90 0.81

Trojan Spy 0.80 0.72 0.75
Worm 0.50 0.58 0.53
Virus 0.63 0.91 0.75

4.1.4. BERT

The methodology applied to BERT closely mirrors that of ELMo, yielding similar
outcomes. In a manner reminiscent of earlier findings, both kNN and RF achieved the
highest accuracy, standing at 0.74. Although this accuracy fell short of ELMo’s performance,
an intriguing twist was the superior performance of SVM in the context of BERT, where it
attained an accuracy of 0.74. Conversely, CNN lagged behind the other three techniques,
registering an accuracy of 0.67.

The accuracy results for the retained calls are depicted in Figure 5. Although the Top
40 calls exhibited slightly superior performance once more, the margin is not substantial.
For a more detailed breakdown, please refer to Table 7, which presents additional metrics
for individual categories.

Table 7. Classification report for BERT-RF category classification.

Category Precision Recall F1-Score

Adware 0.82 0.90 0.86
Backdoor 0.57 0.36 0.44

PWS 0.91 1.00 0.95
Modifier 0.77 1.00 0.87

Rogue 1.00 0.73 0.84
Tool 0.54 0.58 0.56

Trojan 0.58 0.64 0.61
Trojan Downloader 0.89 0.80 0.84

Trojan Spy 0.67 0.91 0.77
Worm 0.62 0.73 0.67
Virus 1.00 0.50 0.67
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Figure 5. Top 20 calls vs. Top 40 calls for BERT category classification.

4.1.5. Discussion on Malware Category Classification

On the whole, the classification of malware categories falls short in comparison to
the family-level classification. This outcome is expected, given the increased complexity
of predicting malware categories, where individual malware instances within a category
can belong to diverse families and exhibit distinct behaviors. Our dataset underscores
this challenge—across 11 categories, there are approximately 90 distinct families, a factor
that likely contributes to the relatively lower accuracy scores observed. Figure 6 visually
represents the achieved accuracies for the various hybrid techniques. Notably, instances
of misclassification are prevalent in the Worm and Backdoor categories. The highest
accuracy attained stands at around 0.77, achieved by the Word2Vec-RF combination. ELMo
paired with RF also yields commendable results. Among the embedding techniques,
both Word2Vec and ELMo perform remarkably well, producing comparable outcomes.
Additionally, a significant observation emerges, that is, agreement among the embedding
techniques in designating RF as the most effective classifier. Furthermore, a trend emerges
where RF and kNN generally perform on par with each other, while SVM and CNN trail
slightly behind. SVM showcases a comparable performance to RF and kNN in conjunction
with BERT. This could be attributed to SVM’s capability to handle high-dimensional data,
which aligns well with BERT’s complex embeddings.
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Figure 6. Comparison of hybrid machine learning approaches for malware category.

4.2. Malware Family Classification

The conducted experiments revolve around seven malware families as outlined in
Section 3.4. Due to the consistent superiority of the Top 40 calls over the Top 20 calls across
all our hybrid techniques, we have excluded the features associated with the Top 20 Calls
for this specific segment of our research.

4.2.1. HMM2Vec

In the context of the HMM2Vec experiments, the highest accuracy was attained using
Random Forest, reaching 0.85. The remaining classifiers displayed closely aligned perfor-
mance, achieving accuracies of 0.84, 0.84, and 0.82 for SVM, kNN, and CNN, respectively.
The additional metrics for individual families are shown in Table 8.

We observed a recurring pattern of misclassification, particularly involving samples
from various malware families, which were wrongly categorized as belonging to the
Bancos and Onlinegames families. This trend was evident across multiple experiments
and might signify the necessity for a more robust feature selection technique to enhance
classification accuracy.

Table 8. Classification report for best HMM2Vec family classification.

Category Precision Recall F1-Score

Adload 0.93 0.93 0.93
Bancos 0.69 0.73 0.71

Onlinegames 0.81 0.93 0.87
Vbinject 0.92 0.79 0.85
Vundo 0.75 0.86 0.80

Winwebsec 1.00 0.79 0.88
Zwangi 0.93 0.93 0.93
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4.2.2. Word2Vec

Out of all the word embedding techniques, the Word2Vec-RF combination emerged
as the top performer for family classification, achieving an impressive accuracy of 0.93.
This result is particularly noteworthy because this approach demonstrates its ability to
predict a substantial number of samples effectively. The other classifiers also demonstrated
commendable performance, with SVM, kNN, and CNN achieving accuracies of 0.90, 0.92,
and 0.89, respectively. The additional metrics for individual families are shown in Table 9.

Table 9. Classification report for best Word2Vec family classification.

Category Precision Recall F1-Score

Adload 0.93 1.00 0.97
Bancos 0.93 0.93 0.93

Onlinegames 0.93 0.93 0.93
Vbinject 0.87 0.93 0.90
Vundo 0.93 0.87 0.90

Winwebsec 0.92 0.86 0.89
Zwangi 1.00 0.93 0.97

4.2.3. ELMo

In the context of the ELMo experiments, the achieved accuracies, ranked in ascending
order, were as follows: 0.86 for CNN, 0.9 for both SVM and k-Nearest Neighbors (kNNs),
and finally, 0.91 for Random Forest. The additional metrics for individual families are
shown in Table 10.

Table 10. Classification report for best ELMo family classification.

Category Precision Recall F1-Score

Adload 1.00 1.00 1.00
Bancos 0.82 0.93 0.87

Onlinegames 0.83 0.71 0.77
Vbinject 0.87 0.93 0.90
Vundo 1.00 1.00 1.00

Winwebsec 0.97 0.93 0.90
Zwangi 1.00 0.86 0.92

4.2.4. BERT

The BERT model attained its highest accuracy of 0.92 when paired with RF. In line with
the earlier category experiments, it is noteworthy that SVM outperformed kNN, achieving
an accuracy of 0.90 compared to kNN’s 0.88. Lastly, CNN concluded with an accuracy of
approximately 0.88. The additional metrics for individual families are shown in Table 11.

Table 11. Classification report for best BERT family classification.

Category Precision Recall F1-Score

Adload 1.00 0.93 0.97
Bancos 0.87 0.87 0.87

Onlinegames 0.93 1.00 0.97
Vbinject 0.93 1.00 0.97
Vundo 0.93 0.93 0.93

Winwebsec 0.85 0.79 0.82
Zwangi 0.93 0.93 0.93
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4.2.5. Discussion on Malware Family Classification

By employing hybrid techniques, we achieved improved accuracy levels for the
malware family classification when compared with the malware category classification
results. The pinnacle was reached at 0.93 accuracy when utilizing Word2Vec-RF. Figure 7
visually portrays the attained accuracies across the various techniques. In the context of
HMM2Vec, the highest accuracy, around 0.85, was achieved in combination with RF. This
accuracy figure stands as the lowest among all our employed word embedding techniques.
We observed that in instances where the count of distinct API calls was relatively low,
the resultant feature vectors contained comparatively less information than those obtained
from other techniques. This could possibly explain the lower scores observed. Furthermore,
a prevalent misclassification pattern involved samples initially labeled as Winwebsec,
which were often predicted as belonging to the Bancos or Onlinegames families.

Figure 7. Comparison of hybrid machine learning approaches for malware family.

5. Conclusions

In this study, we conducted an array of experiments to assess the efficacy of utilizing
API call information as a feature for both malware category and family classification. Our
approach involved testing hybrid machine learning techniques, wherein diverse word
embedding methods were combined to engineer features. We evaluated the performance
of four distinct embedding techniques—Hmm2Vec, Word2Vec, ELMo, and BERT—paired
with four classifiers, namely SVM, RF, kNN, and CNN. The results of our experiments un-
equivocally demonstrate Word2Vec’s superior performance, achieving the highest accuracy
of 0.93 for family classification and 0.77 for category classification. However, Word2Vec’s
training time was relatively shorter compared to other techniques. Interestingly, BERT’s
performance did not surpass Word2Vec, which was somewhat anticipated. This might
be attributed to the dataset size. BERT necessitates a substantial training dataset to grasp
meaningful relationships, implying that an increase in sample size could potentially lead to
improved performance. Another potential factor is the input length limitation of 512 tokens
in BERT, where we employ the initial 512 tokens in our sequences. Given the length of some
sequences, we could be losing crucial information. Utilizing alternate token selections,
such as the last 512 tokens or a custom approach, might yield better outcomes. Across
classifiers, a consistent trend emerged: Random Forest consistently outperformed other
classifiers. Our documented outcomes underscore the valuable potential of API calls as a
robust feature for effective malware classification.
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For future work, the scope of the experiments conducted herein can be extended
to encompass a broader range of malware categories and families. Exploring analogous
experiments with alternate features, such as byte n-grams or combinations thereof, could
yield promising results. In addition, ensemble learning could be tested to understand its
benefit with these specific types of data. Also, additional study on the effect of obfuscation
techniques on the embeddings could be an interesting follow-up to this work. While this
research relied on frequency-based feature selection, techniques like TF-IDF [7] and Fisher
score [30] have shown efficacy in similar tasks, and employing them could enhance scores,
especially for HMM2Vec, by eliminating irrelevant features. Furthermore, an exploration
into other embedding methods is warranted. GPT-based models, which have gained
substantial traction, merit investigation to gauge their performance against the techniques
assessed in this study.
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Appendix A. Additional Results

Figure A1. Confusion matrix for HMM2Vec-SVM category classification.

https://drive.google.com/drive/folders/1eDv1gSO-RUjILiZobprOyoflNMy65Oe4?usp=sharing
https://drive.google.com/drive/folders/1eDv1gSO-RUjILiZobprOyoflNMy65Oe4?usp=sharing


Appl. Sci. 2024, 14, 5731 18 of 30

Figure A2. Confusion matrix for HMM2Vec-KNN category classification.

Figure A3. Confusion matrix for HMM2Vec-CNN category classification.
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(a) Accuracy (b) Loss

Figure A4. Training model accuracy vs. loss for Hmm2Vec-CNN for category.

Figure A5. Confusion matrix for Word2Vec-SVM category classification.
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Figure A6. Confusion matrix for Word2Vec-KNN category classification.

Figure A7. Confusion matrix for Word2Vec-CNN category classification.
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(a) Accuracy (b) Loss

Figure A8. Training model accuracy vs. loss for Word2Vec-CNN for category.

Figure A9. Confusion matrix for ELMo-SVM category classification.
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Figure A10. Confusion matrix for ELMo-KNN category classification.

Figure A11. Confusion matrix for ELMo-CNN category classification.
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(a) Accuracy (b) Loss

Figure A12. Training model accuracy vs. loss for ELMo-CNN for category.

Figure A13. Confusion matrix for BERT-SVM category classification.
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Figure A14. Confusion matrix for BERT-KNN category classification.

Figure A15. Confusion matrix for BERT-CNN category classification.
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(a) Accuracy (b) Loss

Figure A16. Training model accuracy vs. loss for BERT-CNN for category.

Figure A17. Confusion matrix for HMM2Vec-SVM category classification with other symbol (41 calls).
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Figure A18. Confusion matrix for HMM2Vec-KNN category classification with other symbol (41 calls).

Figure A19. Confusion matrix for HMM2Vec-CNN category classification with other symbol (41 calls).
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Figure A20. Confusion matrix for HMM2Vec-KNN category classification with calls in all categories.

Figure A21. Confusion matrix for HMM2Vec-CNN category classification with calls in all categories.
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Figure A22. Confusion matrix for Word2Vec-SVM category classification with calls in all categories.

Figure A23. Confusion matrix for Word2Vec-RF category classification with calls in all categories.
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Figure A24. Confusion matrix for Word2Vec-CNN category classification with calls in all categories.
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