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Abstract: Several sectors, such as agriculture and renewable energy systems, rely heavily on weather
variables that are characterized by intermittent patterns. Many studies use regression and deep learn-
ing methods for weather forecasting to deal with this variability. This research employs regression
models to estimate missing historical data and three different time horizons, incorporating long
short-term memory (LSTM) to forecast short- to medium-term weather conditions at Quinta de Santa
Bárbara in the Douro region. Additionally, a genetic algorithm (GA) is used to optimize the LSTM
hyperparameters. The results obtained show that the proposed optimized LSTM effectively reduced
the evaluation metrics across different time horizons. The obtained results underscore the importance
of accurate weather forecasting in making important decisions in various sectors.

Keywords: forecast horizon; weather variables; regression; long short-term memory; genetic algorithm

1. Introduction

Weather variables play a vital role in many sectors and activities, affecting various
aspects of our daily lives. From aviation to energy production, weather conditions have
a significant impact on the performance and results of various sectors. Agriculture and
renewable energy production are two sectors that are highly dependent on weather vari-
ables [1].

Weather variability presents significant challenges related with the variability and
unpredictability of the data, making it difficult to rely on consistent patterns. Weather
forecasting plays an important role in improving the performance and efficiency of different
sectors, including agriculture, energy, and transportation [2,3]. However, there are some
problems associated with weather forecasts that can affect their accuracy such as traditional
forecasting methods may struggle to accurately predict sudden changes, leading to less
reliable weather forecasts; historical data can be incomplete or inaccurate, impacting the
ability to model future conditions accurately; weather variables can have complex iterations
between them and capturing these interactions in forecasting models is challenging, often
requiring sophisticated algorithms and computational resources.

In fact, the accuracy and reliability of weather forecasts have a huge impact on decision
making, enabling effective planning, risk mitigation, and optimization of operations. For
example, understanding and accurately predicting weather variables is critical to optimiz-
ing renewable energy production, reducing costs and minimizing environmental impact.
By accurately forecasting weather conditions, grid operators can anticipate fluctuations
in renewable energy output and plan for backup power sources or storage solutions to
maintain a reliable supply of electricity.

In the agricultural sector, weather variables play a crucial role in shaping farming
practices, yield forecasting, and crop management. Farmers rely on a combination of
weather variables such as temperature, rainfall, humidity, and wind patterns to make
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informed decisions about planting, irrigation, and harvesting. In fact, understanding
weather patterns allows farmers to optimize their operations, mitigate risk, and ensure the
overall health and productivity of their crops. On the other hand, solar and wind energy
production is highly dependent on weather conditions, which determine the availability
and efficiency of these sustainable energy systems. Karevan and Suykens [4] emphasized
the importance of weather forecasting in these areas because of its impact on productivity,
resource allocation, and risk management. They proposed a transductive long short-term
memory (T-LSTM) method to extract local information in weather time series.

Regarding the historical data used in forecasts, missing values affect the accuracy
of forecasts. For this reason, it is important use resourceful and flexible techniques. Van
Buuren [5] emphasized the importance of addressing missing data in statistical anal-
ysis, and highlighted the advantages of the multiple imputation (MI) approach and
Doreswamy et al. [6] discussed the significance of handling missing data in weather
datasets, which is crucial for accurate climate forecasting impacting various sectors. The
paper proposes a new technique for addressing missing values in weather data using ma-
chine learning algorithms, such as kernel ridge regression, linear regression, random forest,
or support vector machine (SVM) imputation. In this paper, regarding the characteristics of
the places under studies, we chose to use regression methods to estimate missing values
due to their ability to leverage relationships between variables.

Long short-term memory (LSTM) networks are a type of recurrent neural network
(RNN) designed to model sequential data, making them highly suitable for weather fore-
casting. Since, weather data involve complex, non-linear interactions between various
variables, such as, wind speed or direction, LSTMs are capable of modeling these non-linear
relationships more effectively than traditional linear models, but also can effectively capture
long-term dependencies in sequential data, like the temperature [7,8].

The accuracy of LSTM forecasts can be influenced by various factors. Viedma et al. [9]
highlight the impact of classical time series pre-processing methods, with seasonal-component
removal being particularly effective, the importance of data quality, model architecture,
and hyperparameter tuning. The use of genetic algorithms (GA) to optimize the parameters
of LSTM forecasting methods has been shown to significantly improve their accuracy. The
authors in [10,11] both demonstrate the effectiveness of this approach in short-term load
forecasting, with the first achieving a small mean absolute percentage error and the second
improving prediction accuracy by 63%. Bouktif et al. [12] extend this to medium- and
long-term forecasting, highlighting the ability of the LSTM model, optimized with GAs,
to capture the characteristics of complex time series and reduce forecasting errors. These
studies collectively underscore the importance of using GAs to enhance the accuracy of
LSTM forecasting methods.

With this in mind, the main objective of this work was to analyze short- to medium-
term weather forecasting. To this end, combined methods of regression and LSTM tech-
niques were proposed and later evaluated to assess their accuracy and efficiency. Therefore,
the main contributions of this work are (1) estimation of historical data considering regres-
sion techniques; (2) short- and medium-term weather prediction using LSTM networks;
(3) evaluation of the model’s forecasting task considering specific metrics.

The subsequent parts of the paper are organized as follows: Section 2 presents some
work already developed regarding the proposed theme; Section 3 describes the sites
under study, the methodology, presenting the methods considered, their mathematical
formulation, the evaluation metrics used, and the case studies considered; Section 4 presents
the main results obtained, discussing the relevant points according to the results of accuracy
and efficiency of the evaluation metrics; finally, Section 5 presents the main conclusions of
the paper and future work.
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2. Related Work

Several works have studied the importance and accuracy of weather forecasting in
the literature. Regression and machine learning models are two of the main techniques
used, and some of the work is described below. Regression models are a type of statistical
model commonly used in forecasting techniques. In effect, statistical models use historical
data to predict new values by adjusting the parameters of the model by analyzing the
differences between the observed and predicted values [13]. Linear regression models
analyze the linear relationship between dependent and independent variables, improving
the accuracy and reducing the computational time of the model [14]. According to Jassena
and Kovoor [1], there are two main types of linear regression models: simple and multiple.
Simple linear regression describes the linear relationship between one dependent variable
and one independent variable. On the other hand, multiple linear regression (MLR) analy-
ses the linear relationship between a dependent variable and more than one independent
variable. In Ansarifar et al. [15], different regression models such as MLR or least absolute
shrinkage and selection operator (LASSO) regression were proposed to continuously
update weather and management data with future scenarios to obtain weekly crop yield
forecasts. The results showed that the proposed model achieved accurate and timely crop
yield predictions compared to machine learning algorithms. In Barriguinha et al. [16], a
systematic review was presented that analyzed multiple linear regression (MLR), as well as
partial least squares regression, and random forest regression, to estimate grape and wine
production by predicting climatic conditions such as temperature or precipitation. Overall,
the paper highlighted that the accuracy and reliability of regression models depend on the
quality and quantity of data, the selection of appropriate predictors, and the validation of
the model, but can be useful for estimating vineyard yield.

Similarly, in the renewable energy context, regression methods are often used to predict
climate variables. Amir and Zaheeruddin [17] analyzed the short-term prediction of solar
radiation and wind speed using regression models to assess the linear relationship between
the variables. The proposed model can effectively capture the dependencies between
the variables with an accuracy of 98.2%. Ridge regression models have been proposed
in [18,19] to predict solar radiation and wind speed. In the former, the main objective was to
reduce the problems associated with the intermittency of these variables, thus reducing the
associated forecast errors. The results showed that the proposed model had a correlation
coefficient of 0.903 and was able to improve the accuracy and generalization of the forecasts.

As regression methods are not as efficient at dealing with non-linear data and high
variability, machine learning methods, in particular deep learning (DL), are emerging as a
solution [20]. In fact, DL can automatically learn features from data, instead of considering
traditional selection techniques [21].

Extreme gradient boosting (XGBoost) is a powerful and versatile machine learning
algorithm that has demonstrated exceptional performance in various applications. It is
particularly effective in modeling complex systems, achieving high prediction accuracy,
and handling large-scale data. It has been successfully applied in various fields, including
weather forecasting for agriculture and renewable energy production. Phan et al. and
Wadhwa and Tiwary [22,23] demonstrated the effectiveness of XGBoost in improving the
accuracy of short-term solar power and wind power forecasts. Another useful method is
transformer networks. Transformer networks have been shown to significantly improve
the accuracy of weather variable forecasts. In [24], a hybrid system was introduced, H-
Transformer, which outperformed other models in predicting renewable energy production.
Nascimento et al. [25] presented a transformer-based model with wavelet transform for
wind speed and wind energy forecasting, showing superior performance compared to a
baseline LSTM model. However, Walczewski et al. [26] found that the performance of
transformer-based models varied depending on the specific forecasting task and the data
provided, with the LSTM model outperforming all others in predicting onshore wind and
photovoltaic energy.
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Recurrent neural networks (RNNs) are widely used in weather forecasting due to their
computational power, sophisticated algorithms, and storage capacity [27]. However, RNNs
have a drawback when it comes to handling long-term correlations, as they suffer from
gradient loss and explosion [28]. One solution to this problem is to use LSTMs, which are a
type of RNN-based model. They excel at solving both short- and long-term problems by
effectively predicting and storing temporal data [29,30].

Thirunavukkaras et al. [31] proposed an LSTM method to efficiently predict solar
radiation 15 min ahead in certain areas with high intermittency. The proposed model
outperformed other models such as auto-regressive or persistence by about 40%, improving
the accuracy and efficiency of the model. Similarly, short-term wind energy forecasts are
prone to accuracy problems due to the intermittent nature of wind [32]. Thus, an LSTM
was proposed to deal with linear and non-linear components of time series of wind power
generated by offshore turbines. The proposed model increased the prediction accuracy by
13.2% compared to a baseline model.

Finally, in the agricultural sector, LSTM networks are also being considered for weather
forecasting. For example, in Salehin et al. [33] an LSTM was used to accurately determine
the amount of rainfall needed to increase crop yields and reduce agricultural costs. The
model takes into account weather variables such as temperature, humidity, and wind speed
to make predictions and reports an accuracy of 76% in predicting rainfall.

3. Data and Methods

The methodology developed in this paper involves a two-step approach: first, regres-
sion models are employed to estimate missing values in the input dataset; second, LSTM
networks are utilized to forecast weather variables for a specified future horizon. The
dataset and methods employed are detailed below.

3.1. Dataset

This work considers weather data collected from two locations: Pinhão town and
Quinta de Santa Bárbara. Quinta de Santa Bárbara is located at coordinates 41.172753◦ N,
−7.549335◦ W. The data were collected from a sensor located in Quinta de Santa Bárbara
between September 8 and 30 December 2022, totaling a sampling length of 114 days.
However, for a more robust forecast, a larger input dataset is advantageous to improve
the validation, stability, generalization, and accuracy of the forecasts. To this end, climate
data from the Portuguese Institute for Sea and Atmosphere (IPMA) station, located at
coordinates 41.172775◦ N, −7.548972◦ W, were also used, as it is in the same geographical
area as the study site, as shown in Figure 1. This additional dataset comprises a sample of
4748 days, covering the period from 1 January 2010, to 31 December 2022.

When analyzing the data from Pinhão, reading errors of the sensor were eliminated
for each of the variables studied. Since the data were collected daily, any outlier value for a
particular day was replaced with the average value for that day in the other years.

In turn, the range of values measured at Quinta de Santa Bárbara was presented
at 15-minute intervals. Thus, for each of the variables studied, the hourly values were
averaged, and then, the average of these values was used to obtain the daily values.

3.2. Forecasting with Regression Models

Given the data from the two locations, it was necessary to find a relation between
the variables measured at Pinhão and Quinta de Santa Bárbara, in order to predict the
missing values from the measurements at Quinta de Santa Bárbara. The regression methods
selected for this study included MLR [19], LASSO, and ridge regressions [34,35].
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Figure 1. Location of the studied site.

The MLR is given by

Y = β0 + β1 · x1 + β2 · x2 + · · ·+ βn · xn (1)

where Y is the dependent variable, which corresponds to the missing values between
2010 and 2022 at Quinta de Santa Bárbara; xi, i = 1, 2, . . . , n are the independent variables,
corresponding to the measurements in Pinhão; β0 is the constant term, βi with i = 1, 2, . . . ;
and n are the regression coefficients. For the LASSO and ridge models, the L1 and L2
regularization terms are added to Equation (1). Therefore, in order to take into account
the advantages of these three methods, a combined model was considered to predict the
missing data.

3.3. Forecasting with Long Short-Term Memory

Once the data from Quinta de Santa Bárbara between 2010 and 2022 had been esti-
mated, LSTM networks were used to predict the variables under study for the short- to
medium-term future.

According to [36], LSTM neural networks consist of three key components: input
gate it, forgetting gate ft, and output gate ot. These components regulate the storage
and removal of information within the network. This makes it possible to control when
a memory unit retains previous information and maintains a constant error during the
back-propagation process [27]. LSTMs have a cell state and a hidden state. The cell state
propagates through the input and output sequences, while the temporal information is
processed by the three gates responsible for incorporating, filtering, and selecting relevant
information for output. The mathematical formulation outlining the LSTM structure can be
represented by Equations (2)–(7) [32]:

ft = σ(W f [ht−1, xt] + b f ) (2)

it = σ(Wi[ht−1, xt] + bi) (3)

o(t) = σ(Wo[ht−1, xt] + bo) (4)

c′t = tanh(Ws[ht−1, xt] + bs) (5)

ct = ct−1 ⊙ ft + gt ⊙ it (6)

ht = tanh(ct)⊙ it (7)
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where [ht−1, xt] represents the input signal, which consists of the input neuron xt at time t
and the cell state ct−1 at time t − 1. W f , Wi, Wo, and Ws denote the weights that connect
the forgetting gate, input gate, output gate, and cell state, respectively, to the input signal.
b f , bi, bo, and bs represent the biases, and σ denotes the activation function. Additionally,
ht corresponds to the output value at time t. The operator ⊙ represents the element-
wise multiplication.

In this paper, instead of using tanh as the activation function, the rectified linear unit
(ReLU) was considered. In brief, it returns the input value if it is positive, and zero if it is
negative, introducing non-linearity to the model.

Since the hyperparameters that characterize an LSTM affect the accuracy of forecasts, a
GA was considered to improve the performance. The fitness function uses the mean square
error (MSE) between the predicted and observed values to guide the GA in finding the best
LSTM parameter combination.

3.4. Genetic Algorithm

Genetic algorithm (GA) is a search and optimization technique inspired by natural
selection. The GA simulates the evolution of a population of chromosomes, each one
representing a potential solution to a problem. These chromosomes or individuals are
scored according to their fitness, which determines their likelihood of being selected for
reproduction. During the reproduction phase, genes from high-performing chromosomes
are usually selected, combined, and mutated to produce offspring “solutions” potentially
better than their progenitors. This iterative selection, reproduction, and mutation process
allows the population to evolve towards increasingly optimal solutions over time. Genetic
algorithms are powerful methods for solving problems, particularly where no traditional
algorithm exists or where traditional optimization methods struggle due to large solution
spaces and intricate variable relationships.

3.5. Evaluation Metrics

The coefficient of determination R2 was used to evaluate the regression models, and
the MSE, root mean square error (RMSE), and mean absolute error (MAE) were considered
to evaluate the LSTM models.

The statistical measure R2, where 0 ≤ R2 ≤ 1, assess the goodness of fit of the model
and measure the predictive power of the independent variables, Equation (8). The higher
the R2 value, the better the model fits the data.

R2 = 1 − SSres

SStot
(8)

where n is the sample size, SSres is the sum of squared residuals, SSres = ∑n
i=1(yi − y′i)

2,
SStot is the sum of squared differences between the observed values and the mean of ob-
served values, SStot = ∑n

i=1(yi − ȳ)2, yi is the observed value, and y′i is the predicted value.
The MSE measures the average of the squared differences between the observed and

predicted values:

MSE =
1
n

n

∑
i=1

(yi − y′i)
2 (9)

The MAE measures the average of the absolute differences between observed and
predicted values:

MAE =
1
n

n

∑
i=1

|yi − y′i| (10)

Finally, the RMSE takes into account the square root of the differences between the
observed and predicted values:



Appl. Sci. 2024, 14, 5769 7 of 23

RMSE =

√
1
n

n

∑
i=1

(yi − y′i)
2 (11)

These metrics therefore play an important role in the case studies that have been
developed, as they make it possible to compare the different results obtained. They were
calculated considering the forecast and observed data from the testing dataset for the time
range of predictions.

Figure 2 shows the methodology applied in this paper. Considering the two locations,
the datasets were pre-processed. After that, regression models were used to estimate the
missing values for Quinta de Santa Bárbara between 2010 and 2022, considering the data
obtained from Pinhão. After obtaining the new dataset for Quinta de Santa Bárbara, an
LSTM network was considered to forecast short- to medium-term weather variables. A
GA was also considered to optimize the hyperparameters of the network. Finally, the
proposed evaluation metrics allow us to evaluate and compare the forecast results of each
proposed network.

Figure 2. Applied methodology, considering the datasets and methods used for short- to medium-
term weather forecasting.

The following cases have been proposed to evaluate the accuracy of weather forecast-
ing using LSTM networks for short- and medium-term horizons:

• Case I: Short- and medium-term forecasting using LSTM.
• Case II: Short- and medium-term forecasting using an optimized LSTM with a GA.

4. Results and Discussion

This section presents the results obtained in relation to the estimated values and the
forecast weather variables. Regression models were used to estimate and fill the missing
data for Quinta de Santa Bárbara. Subsequently, LSTM networks were employed to forecast
weather variables for 3 to 15 days.

The models used in this study were built using the Python 3.11 programming lan-
guage [37]. The LSTM networks were implemented using the TensorFlow tool [38], a widely
used framework for deep learning applications in Python, and the regression models were
developed using the Scikit-learn library [39].
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4.1. Forecasting with Regression Models

The linear relation between the two sites was analyzed for each of the variables in the
time interval common to both sets of data, i.e., between 8 September and 30 December 2022.

To take advantage of the regression techniques described in Section 3, a combined
model was developed to predict missing data. The measurements recorded at Quinta de
Santa Bárbara were used as dependent variables, while those from Pinhão were considered
as independent variables.

Figure 3 shows the scatter plots of the observed values (blue dots) and the trend line
that fits the data.

(a) (b)

(c)

(d) (e)

Figure 3. Linear relationship between the values observed in Pinhão and Quinta de Santa
Bárbara: (a) daily average temperature, (b) daily wind direction, (c) daily average wind speed,
(d) daily instantaneous wind speed, and (e) daily solar radiation.

For the daily average temperature (FFMED), the values observed in the two locations
have a strong linear relation. In turn, for the other variables, the observed values are
dispersed around the trend line, which also shows that the proposed model is capable of
making accurate predictions for these variables. However, in order to verify whether the
MLR model fits the dataset, we evaluated the R2 values and its residuals.

Table 1 shows the R2 values for each of the variables under study. Analyzing the R2

values, it can be seen that they are relatively high for all the variables except the daily wind
direction (DDMED), which had a value less than 0.5.
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Table 1. R2 values for each dependent variable studied.

Variable Description R2

T_MED Daily average temperature 0.999
DD_MED Daily wind direction 0.477
FF_MED Daily average wind speed 0.821
FF_MAX Daily instantaneous wind speed 0.686
RG_TOT Daily solar radiation 0.754

The residuals of an MLR are analyzed by constructing scatter plots, which are a useful
tool for evaluating the fit of these models. Its representation consists of a graph, where
the y-axis shows the normalized residuals and the x-axis shows the normalized residuals;
Figure 4. In general, the results are randomly dispersed, with a mean of zero and a constant
variance, as intended.

(a) (b)

(c)

(d) (e)

Figure 4. Graphical representation of MLR residuals: (a) daily average temperature, (b) daily
wind direction, (c) daily average wind speed, (d) daily instantaneous wind speed, and (e) daily
solar radiation.

Having these results, the p-values of the coefficients were analyzed to determine
whether a given independent variable had a significant effect on the dependent variables.
Therefore, the p-values were analyzed for each of the dependent variables and the coeffi-
cients that did not meet the condition (P > |t|) < 0.05 were excluded. Once the coefficients
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had been excluded, the best regression method for predicting each variable was chosen
from among the MLR, ridge, and LASSO methods. Table 1 also shows the values of the
coefficients of determination (R2) for the new regression methods chosen.

Table 2 shows the method used for each variable, as well as the coefficients used to
calculate the values corresponding to each variable between 2010 and 2022 in Quinta de
Santa Bárbara. It can also be seen that the dependent variables do not depend on all the
independent variables. This means that for each variable to be calculated, the methods
select the variables that are highly correlated with the variable to be determined.

Table 2. Coefficients for the calculation of dependent variables.

Variable Method Coefficients InterceptTMED1 DDMED1 FFMED1 FFMAX1 RGTOT1

TMED Linear 1.0190 0 0 0 −0.0032 −0.1887
DDMED LASSO 0 0 24.9277 0 0 96.7312
FFMED Ridge 0 0.0124 7.7472 0 0 −7.2055
FFMAX LASSO 0 0 7.2770 1.6848 0 −5.3412
RGTOT Linear 1.1333 0.0957 0 0 0.4822 −22.3257

Finally, using the coefficients provided in Table 2, the mathematical models to calculate
the predicted daily values for each variable are given by Equations (12)–(16).

TMED = −0.1887 + 1.0190 · TMED1 − 0.0032 · RGTOT1 (12)

DDMED = 96.7312 + 24.9277 · FFMED1 (13)

FFMED = −7.2055 + 0.0124 · DDMED1 − 7.7472 · FFMED1 (14)

FFMAX = −5.3412 + 7.277 · FFMED1 + 1.6848 · FFMAX1 (15)

RGTOT = −22.3257 + 1.1333 · TMED1 + 0.0957 · DDMED1 + 0.4822 · RGTOT1 (16)

where TMED is the predicted average temperature, DDMED is the predicted average wind
direction, FFMED is the predicted average wind speed, FFMAX is the predicted maximum
instant wind speed, and RGTOT is the predicted solar radiation for Quinta de Santa Bár-
bara, and TMED1, DDMED1,FFMED1, FFMAX1, and RGTOT1 are the correspondent weather
variables observed in Pinhão.

Finally, the input dataset was divided into training, validation, and testing sets. The
main purpose of selecting these datasets is to assess the accuracy of the models’ performance
and also to ensure that they can be generalized to new data. For the variables under study,
the values were divided into training, validation, and testing sets, with a split of 70%, 15%,
and 15%, respectively, as shown in Figure 5.

4.2. Case I

In this case, each variable was forecast for 3 to 15 days, using an LSTM with specific
hyperparameters characterized in Table 3. Each LSTM network had a ReLU activation
function, a dense layer with 1 neuron, to obtain the output value, a dropout layer equal to
0.2, with 10 neurons, and they were optimized using Adam optimization with a learning
rate of 0.001 in order to minimize the MSE.
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Table 3. LSTM’s parameters.

Parameter Value

Number of LSTM layers 1
Number of LSTM units 50
Batch size 32
Number of epochs 40

(a) (b)

(c)

(d) (e)

Figure 5. Train (blue), validation (green), and testing (yellow) sets: (a) daily average temperature,
(b) daily wind direction, (c) daily average wind speed, (d) daily instantaneous wind speed, and
(e) daily solar radiation.

Figures 6–8 show the results for the 3-, 7-, and 15-day forecasts, respectively. For each
variable, the last 15 days of the test set and the predicted values for that period are also
shown. In general, the predicted variables showed a similar behavior for all time periods,
without significant fluctuations compared to the testing data.
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(a) (b)

(c)

(d) (e)

Figure 6. Last 15 days of the testing set (blue) and the predicted data (red) for 3 days ahead in
the future for (a) daily average temperature, (b) daily average wind direction, (c) daily average
wind speed, (d) daily instant wind speed, and (e) daily solar radiation predicted values (red), using
an LSTM.
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(a) (b)

(c)

(d) (e)

Figure 7. Last 15 days of the testing set (blue) and the predicted data (red) for 7 days ahead in
the future for (a) daily average temperature, (b) daily average wind direction, (c) daily average
wind speed, (d) daily instant wind speed, and (e) daily solar radiation predicted values (red), using
an LSTM.
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(a) (b)

(c)

(d) (e)

Figure 8. Last 15 days of the testing set (blue) and the predicted data (red) for 15 days ahead in
the future for (a) daily average temperature, (b) daily average wind direction, (c) daily average
wind speed, (d) daily instant wind speed, and (e) daily solar radiation predicted values (red), using
an LSTM.
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4.3. Case II

In this case, the LSTM hyperparameters were optimized with a GA method. The
purpose of using this algorithm was to find the best LSTM hyperparameters that minimize
the MSE of the network (Table 4). Table 5 shows the GA parameters used in this paper.

Table 4. Range of LSTM hyperparameters.

Parameter Value

Number of LSTM layers [1, 3]
Number of LSTM units [50, 150]
Batch size [16, 64]
Number of epochs [20, 40]

Table 5. Genetic algorithm parameters.

Parameter Value

Maximum number of iterations 5
Population size 10
Mutation rate 0.1
Elit rate 0.1
Crossover rate 0.5
Parents portion 0.3
Crossover type Two point

Table 6 shows the LSTM hyperparameter optimization results for each variable. These
results correspond to the parameters that minimize the MSE metric for each variable,
according to the time period of the forecasts.

Table 6. Optimization results, case II.

Variable LSTM Layers LSTM Units Batch Size Epochs

3 days

T_MED 3 87 49 34
DD_MED 2 70 38 20
FF_MED 3 98 50 27
FF_MAX 3 50 17 21
RG_TOT 1 76 41 31

7 days

T_MED 1 86 34 39
DD_MED 2 91 21 21
FF_MED 3 57 31 21
FF_MAX 2 72 16 30
RG_TOT 1 116 16 30

15 days

T_MED 1 118 31 30
DD_MED 2 120 20 39
FF_MED 2 124 54 29
FF_MAX 3 134 25 20
RG_TOT 2 109 42 32

Figures 9–11 show the prediction results for case II. In general, the behavior of each
variable is different for each time period chosen. In this case, the predicted values behave
similarly to the observed data, with a more fluctuating shape than in case I.
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(a) (b)

(c)

(d) (e)

Figure 9. Last 15 days of the testing set (blue) and the predicted data (red) for 3 days ahead in the
future for (a) daily average temperature, (b) daily average wind direction, (c) daily average wind
speed, (d) daily instant wind speed, and (e) daily solar radiation predicted values (red), using an
optimized LSTM.
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(a) (b)

(c)

(d) (e)

Figure 10. Last 15 days of the testing set (blue) and the predicted data (red) for 7 days ahead in the
future for (a) daily average temperature, (b) daily average wind direction, (c) daily average wind
speed, (d) daily instant wind speed, and (e) daily solar radiation predicted values (red), using an
optimized LSTM.



Appl. Sci. 2024, 14, 5769 18 of 23

(a) (b)

(c)

(d) (e)

Figure 11. Last 15 days of the testing set (blue) and the predicted data (red) for 15 days ahead in the
future for (a) daily average temperature, (b) daily average wind direction, (c) daily average wind
speed, (d) daily instant wind speed, and (e) daily solar radiation predicted values (red), using an
optimized LSTM.

4.4. Results Discussion

The evaluation metrics obtained for each proposed case were compared with two
benchmark methods: XGBoost and transformer. Similarly to the proposed cases, a GA was
also applied to these methods. The average numerical results obtained for each case and
for the benchmark method, are presented in Table 7. The evaluation metrics represent each
metric’s average daily value according to the time range studied.
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Table 7. Average evaluation metrics for climatic variables by each scenario and benchmark method.

3 Days
T_MED DD_MED FF_MED FF_MAX RG_TOT

Case I
MSE 0.0182 0.1512 0.1512 0.3555 0.0126
MAE 0.1266 0.3756 0.575 0.5811 0.1014
RMSE 0.1348 0.3888 0.6166 0.5962 0.1123

Case II
MSE 0.0453 0.0082 0.0085 0.0648 0.0071
MAE 0.1926 0.0846 0.0863 0.2306 0.0733
RMSE 0.2129 0.0903 0.0924 0.2545 0.0841

XGBoost
MSE 45.9822 307.0847 33.0072 102.5079 3432.2502
MAE 5.7409 13.2791 4.3613 7.8988 51.9629
RMSE 6.781 17.5238 5.7452 10.1246 58.5854

XGBoost-GA
MSE 46.8364 352.1824 33.6135 119.3655 3208.583
MAE 5.7277 14.1451 4.5121 8.4562 50.3719
RMSE 6.8437 18.7665 5.7977 10.9255 56.6444

Transformer
MSE 0.0026 0.0061 0.0053 0.0305 0.001
MAE 0.0415 0.0696 0.0612 0.1622 0.0318
RMSE 0.0506 0.07832 0.0726 0.1747 0.0321

Transformer-GA
MSE 0.0024 0.0057 0.0048 0.0253 0.0011
MAE 0.0412 0.0655 0.0575 0.1393 0.0312
RMSE 0.0492 0.0757 0.0695 0.1589 0.0335

7 days
T_MED DD_MED FF_MED FF_MAX RG_TOT

Case I
MSE 0.0078 0.0867 0.2034 0.1985 0.0205
MAE 0.0778 0.2505 0.3774 0.385 0.1205
RMSE 0.0882 0.2944 0.451 0.4456 0.1433

Case II
MSE 0.003 0.0328 0.0681 0.1633 0.0069
MAE 0.0778 0.1596 0.2211 0.3682 0.0708
RMSE 0.0882 0.1812 0.261 0.4042 0.08291

XGBoost
MSE 45.9822 307.0847 33.0072 102.5079 3432.2502
MAE 5.7409 13.2791 4.3613 7.8988 51.9629
RMSE 6.781 17.5238 5.7452 10.1246 58.5854

XGBoost-GA
MSE 46.9001 352.1685 33.6112 115.7482 3333.5516
MAE 5.7328 14.1547 4.5106 8.4012 51.0867
RMSE 6.8484 18.7662 5.7975 10.7586 57.7369

Transformer
MSE 0.003 0.034 0.0052 0.0291 0.0035
MAE 0.0518 0.1569 0.0643 0.1513 0.0502
RMSE 0.0548 0.1896 0.072 0.1706 0.0591

Transformer-GA
MSE 0.0037 0.0395 0.0059 0.0285 0.0024
MAE 0.0546 0.1633 0.0675 0.1439 0.0392
RMSE 0.0611 0.1988 0.0766 0.1689 0.0493

15 days
T_MED DD_MED FF_MED FF_MAX RG_TOT

Case I
MSE 0.0081 0.047 0.107 0.1116 0.0239
MAE 0.073 0.1528 0.2305 0.2623 0.1368
RMSE 0.0898 0.2166 0.3271 0.3341 0.1547

Case II
MSE 0.005 0.0337 0.0818 0.1254 0.0042
MAE 0.0602 0.1408 0.2179 0.2919 0.054
RMSE 0.0706 0.1835 0.286 0.3542 0.0647

XGBoost
MSE 45.9822 307.0847 33.0072 102.5079 3432.2502
MAE 5.7409 13.2791 4.3613 7.8988 51.9629
RMSE 6.781 17.5238 5.7452 10.1246 58.5854

XGBoost-GA
MSE 46.7768 352.1688 33.6143 118.2286 3316.611
MAE 6.8394 18.7662 5.7978 10.8733 57.59
RMSE 5.7214 14.1526 4.5125 8.4312 50.9951

Transformer
MSE 0.0057 0.0169 0.0082 0.0324 0.0044
MAE 0.0575 0.1065 0.0783 0.1521 0.0563
RMSE 0.0754 0.1301 0.0905 0.1799 0.0665

Transformer-GA
MSE 0.0059 0.0242 0.0053 0.0245 0.0046
MAE 0.0634 0.1554 0.0726 0.1566 0.0677
RMSE 0.077 0.1554 0.0726 0.1566 0.0676
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Regarding the predicted variables, it can be seen that they generally have good results
for the metrics, with values less than 1, which indicates that the proposed models are
capable of predicting climate variables in the short and medium term. In general, when
comparing the case studies considered, it can be seen that optimizing the characteristic
parameters of the LSTM improved the metric values for all prediction horizons. The use of
the GA minimized the MSE value for all variables, regardless of the horizon considered. For
example, for a 3-day forecast, the MSE, MAE, and RMSE values for temperature (T_MED)
decreased by 97%, 81%, and 81%, respectively, for mean wind speed (FF_MED) by 94%,
85%, and 85%, and for solar radiation (RG_TOT) by 44%, 28%, and 25%, respectively. On
the other hand, for a 7-day forecast horizon, the values for T_MED decreased by 63%, 34%,
and 52%, for FF_MED by 67%, 41%, and 42% and for RG_TOT by 66%, 41%, and 42%,
respectively. Finally, for 15 days, the MSE, MAE, and RMSE values decreased by 38%,
18%, and 22% for T_MED, by 25%, 5%, and 13% for FF_MED, and by 82%, 61%, and 22%
for RG_TOT.

Comparing our results with the benchmark methods it can be observed that both
cases perform better than the XGBoost methods, and perform as well as the transformer
methods. In relation to the results obtained with GA, the optimization of XGBoost does not
significantly improve its performance, and both models struggle with higher errors.

Overall, the results show that transformers and LSTM methods are advanced neu-
ral network architectures capable of handling sequential data and capturing long-term
dependencies. In fact, LSTM models, while computationally intensive, can be generally
efficient, particularly for smaller datasets. Therefore, LSTMs are a good solution for weather
forecasting. They are likely to provide accurate predictions, especially when optimized
with techniques like GA.

5. Conclusions and Future Work

Accurate weather forecasts are crucial for decision making and planning in vari-
ous sectors. Understanding weather patterns is essential for making informed decisions,
optimizing operations, and mitigating risks in industries such as agriculture and renew-
able energy.

Solar radiation and temperature are more stable compared to wind speed, which
can be unpredictable. Our numerical results show that regression models are better at
estimating average temperature than wind-related variables, highlighting the reliability of
these weather elements.

When it comes to LSTM predictions, the results are generally smoother and less
variable compared to the input data. This is due to LSTM’s ability to capture and learn
long-term dependencies within a sequence of data using memory cells and gates to store
past information and selectively forget or update it as new data are introduced. Finally,
using a GA method to optimize the LSTM hyperparameters minimized the evaluation
metrics, especially the MSE value, improving the accuracy of the LSTM in forecasting
weather variables.

In LSTM predictions, the results are usually smoother and have less variation com-
pared to the input data. This is because LSTM can capture and learn long-term depen-
dencies in a sequence of data by using memory cells and gates to store past information
while selectively forgetting or updating it as new data are introduced. Additionally, using a
GA approach to fine-tune LSTM hyperparameters led to a reduction in evaluation metrics,
especially the MSE value, thereby improving the accuracy of the LSTM in forecasting
weather variables.

The evaluation of the metrics revealed promising results. The LSTM-based models
consistently provided accurate and precise weather forecasts, regardless of the time horizon
considered. This underscores the effectiveness and reliability of LSTM technology in
weather forecasting.

The quality and quantity of available data posed a significant challenge in this work.
Techniques for data augmentation and improvement may be explored in future studies.
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On the other hand, the computational cost of training the models emerged as a critical con-
sideration. Investigating more efficient training algorithms, transfer learning, or utilizing
distributed computing resources could be valuable work for future research.
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