Effects of Different Pretreatments on the GABA Content of Germinated Brown Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Germinated Brown Rice with Various Soaking Solutions
2.3. Physical Pretreatments of HPP or Ultrasonic in Germinated Brown Rice
2.4. Cold Air-Drying Germinated Brown Rice
2.5. Moisture Content Determination
2.6. Color Determination
2.7. Water Absorption Percentage Determination
2.8. γ-Aminobutyric Acid (GABA) Content Determination
2.9. Total Polyphenols Content Determination
2.10. Flavonoids Content Determination
2.11. DPPH Radical Scavenging Activity Determination
2.12. Analysis of Taste Value
2.13. Statistical Analysis
3. Results and Discussion
3.1. Effect of Soaking on Brown Rice Germination
3.2. Effect of Various Soaking Solutions on GABA and Antioxidants of Germinated Brown Rice
3.3. Effect of HPP and Ultrasonic Treatment on GABA and Antioxidants of Germinated Brown Rice
3.4. Effect of Pretreatments on the Quality of Germinated Brown Rice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abhilasha, P.; Pal, U.S.; Panda, M.K.; Sahoo, G.; Nayak, R.; Rayaguru, K.; Sahoo, N.R. Standardisation of cooking and conditioning methods for preparation of quick cooking germinated brown rice. J. Indian Chem. Soc. 2021, 98, 100093. [Google Scholar] [CrossRef]
- Wu, F.; Yang, N.; Touré, A.; Jin, Z.; Xu, X. Germinated brown rice and its role in human health. Crit. Rev. Food Sci. Nutr. 2013, 53, 451–463. [Google Scholar] [CrossRef]
- Kim, H.; Kim, O.-W.; Ahn, J.-H.; Kim, B.-M.; Oh, J.; Kim, H.-J. Metabolomic analysis of germinated brown rice at different germination stages. Foods 2020, 9, 1130. [Google Scholar] [CrossRef]
- Cho, D.-H.; Lim, S.-T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef]
- Wu, N.-N.; Li, R.; Li, Z.-J.; Tan, B. Effect of germination in the form of paddy rice and brown rice on their phytic acid, GABA, γ-oryzanol, phenolics, flavonoids and antioxidant capacity. Food Res. Int. 2022, 159, 111603. [Google Scholar] [CrossRef]
- Choe, H.; Sung, J.; Lee, J.; Kim, Y. Effects of calcium chloride treatment on bioactive compound accumulation and antioxidant capacity in germinated brown rice. J. Cereal Sci. 2021, 101, 103294. [Google Scholar] [CrossRef]
- Castanho, A.; Pereira, C.; Lageiro, M.; Oliveira, J.C.; Cunha, L.M.; Brites, C. Improving γ-oryzanol and γ-aminobutyric acid contents in rice beverage amazake produced with brown, milled and germinated rices. Foods 2023, 12, 1476. [Google Scholar] [CrossRef]
- Li, Z.; Huang, T.; Tang, M.; Cheng, B.; Peng, Y.; Zhang, X. iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera). Plant Physiol. Biochem. 2019, 145, 216–226. [Google Scholar] [CrossRef]
- Guo, Z.; Lv, J.; Dong, X.; Du, N.; Piao, F. Gamma-aminobutyric acid improves phenanthrene phytotoxicity tolerance in cucumber through the glutathione-dependent system of antioxidant defense. Ecotoxicol. Environ. Saf. 2021, 217, 112254. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, P.; Wang, M.; Sun, M.; Gu, Z.; Yang, R. GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. Food Chem. 2019, 270, 593–601. [Google Scholar] [CrossRef]
- Nishimura, M.; Yoshida, S.; Haramoto, M.; Mizuno, H.; Fukuda, T.; Kagami-Katsuyama, H.; Tanaka, A.; Ohkawara, T.; Sato, Y.; Nishihira, J. Effects of white rice containing enriched gamma-aminobutyric acid on blood pressure. J. Tradit. Complement. Med. 2016, 6, 66–71. [Google Scholar] [CrossRef]
- Yu, L.; Han, X.; Cen, S.; Duan, H.; Feng, S.; Xue, Y.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; et al. Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiol. Res. 2020, 233, 126409. [Google Scholar] [CrossRef]
- Teng, J.; Zhou, W.; Zeng, Z.; Zhao, W.; Huang, Y.; Zhang, X. Quality components and antidepressant-like effects of GABA green tea. Food Funct. 2017, 8, 3311–3318. [Google Scholar] [CrossRef]
- Sun, Y.; Mehmood, A.; Battino, M.; Xiao, J.; Chen, X. Enrichment of gamma-aminobutyric acid in foods: From conventional methods to innovative technologies. Food Res. Int. 2022, 162, 111801. [Google Scholar] [CrossRef]
- Liao, J.; Wu, X.; Xing, Z.; Li, Q.; Duan, Y.; Fang, W.; Zhu, X. γ-Aminobutyric acid (GABA) accumulation in tea (Camellia sinensis L.) through the GABA shunt and polyamine degradation pathways under anoxia. J. Agric. Food Chem. 2017, 65, 3013–3018. [Google Scholar] [CrossRef]
- Baum, G.; Chen, Y.; Arazi, T.; Takatsuji, H.; Fromm, H. A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. J. Biol. Chem. 1993, 268, 19610–19617. [Google Scholar] [CrossRef]
- Balakrishna, A.K.; Wazed, M.A.; Farid, M. A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules 2020, 25, 2369. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, L.; Xu, C.; Mei, J.; Li, Y. Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chem. 2017, 214, 533–542. [Google Scholar] [CrossRef]
- Shigematsu, T.; Hayashi, M.; Nakajima, K.; Uno, Y.; Sakano, A.; Murakami, M.; Narahara, Y.; Ueno, S.; Fujii, T. Effects of high hydrostatic pressure on distribution dynamics of free amino acids in water soaked brown rice grain. J. Phys. Conf. Ser. 2010, 215, 012171. [Google Scholar] [CrossRef]
- Kim, M.Y.; Lee, S.H.; Jang, G.Y.; Li, M.; Lee, Y.R.; Lee, J.; Jeong, H.S. Influence of applied pressure on bioactive compounds of germinated rough rice (Oryza sativa L.). Food Bioprocess Technol. 2015, 8, 2176–2181. [Google Scholar] [CrossRef]
- Kim, M.Y.; Lee, S.H.; Jang, G.Y.; Park, H.J.; Li, M.; Kim, S.; Lee, Y.R.; Noh, Y.H.; Lee, J.; Jeong, H.S. Effects of high hydrostatic pressure treatment on the enhancement of functional components of germinated rough rice (Oryza sativa L.). Food Chem. 2015, 166, 86–92. [Google Scholar] [CrossRef]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Feng, H.; Barbosa-Canovas, G.; Weiss, J. (Eds.) Ultrasound Technologies for Food and Bioprocessing; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Yang, H.; Gao, J.; Yang, A.; Chen, H. The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts. Food Res. Int. 2015, 77, 704–710. [Google Scholar] [CrossRef]
- Ding, J.; Ulanov, A.V.; Dong, M.; Yang, T.; Nemzer, B.V.; Xiong, S.; Zhao, S.; Feng, H. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication. Ultrason. Sonochem. 2018, 40, 791–797. [Google Scholar] [CrossRef]
- Wu, N.-T.; Hsu, H.-Y.; Chen, S.-D. Quality of germinated brown rice by pretreatment of soaking solution and high pressure processing (HPP). Taiwan J. Agric. Chem. Food Sci. 2024, 62, accepted. [Google Scholar]
- Hung, C.-H.; Chen, S.-D. Study of inducing factors on resveratrol and antioxidant content in germinated peanuts. Molecules 2022, 27, 5700. [Google Scholar] [CrossRef]
- AACC Approved Methods of Analysis, 10th ed.; Method 44-15.02. Moisture-air oven methods. Approved November 3, 1999; Cereals & Grains Association: St. Paul, MN, USA, 1999. [CrossRef]
- Le, P.H.; Verscheure, L.; Le, T.T.; Verheust, Y.; Raes, K. Implementation of HPLC analysis for γ-aminobutyric acid (GABA) in fermented Food Matrices. Food Anal. Method 2020, 13, 1190–1201. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Tang, C.-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Pao, C.-C.; Wu, S.-T.; Chang, C.-Y. Effect of different germination conditions on antioxidative properties and bioactive compounds of germinated brown rice. BioMed Res. Int. 2015, 2015, 608761. [Google Scholar] [CrossRef]
- Yen, Y.-F.; Lin, J.-D.; Chen, S.-D. Study of processing and application of germinated brown rice. Taiwan. J. Agric. Chem. Food Sci. 2016, 54, 160–168. [Google Scholar] [CrossRef]
- CXS 198-1995; Standard for Rice. FAO/WHO Codex Alimentarius: Rome, Italy, 1995. Available online: https://www.fao.org (accessed on 20 June 2024).
- Oh, S.H.; Choi, W.G. Changes in the levels of [gamma]-aminobutyric acid and glutamate decarboxylase in developing soybean seedlings. J. Plant Res. 2001, 114, 309. [Google Scholar] [CrossRef]
- Wu, Y.; He, S.; Pan, T.; Miao, X.; Xiang, J.; Ye, Y.; Cao, X.; Sun, H. Enhancement of γ-aminobutyric acid and relevant metabolites in brown glutinous rice (Oryza sativa L.) through salt stress and low-frequency ultrasound treatments at pre-germination stage. Food Chem. 2023, 410, 135362. [Google Scholar] [CrossRef] [PubMed]
- Poojary, M.M.; Dellarosa, N.; Roohinejad, S.; Koubaa, M.; Tylewicz, U.; Gómez-Galindo, F.; Saraiva, J.A.; Rosa, M.D.; Barba, F.J. Influence of innovative processing on γ-aminobutyric acid (GABA) contents in plant food materials. Compr. Rev. Food Sci. Food Saf. 2017, 16, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Gomes, W.F.; Tiwari, B.K.; Rodriguez, Ó.; de Brito, E.S.; Fernandes, F.A.N.; Rodrigues, S. Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Food Chem. 2017, 218, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, D.; He, L.; Wang, T.; Lu, H.; Yang, F.; Deng, F.; Chen, Y.; Tao, Y.; Li, M.; et al. Correlation of taste values with chemical compositions and Rapid Visco Analyser profiles of 36 indica rice (Oryza sativa L.) varieties. Food Chem. 2021, 349, 129176. [Google Scholar] [CrossRef]
- Shi, S.; Wang, E.; Li, C.; Cai, M.; Cheng, B.; Cao, C.; Jiang, Y. Use of protein content, amylose content, and RVA parameters to evaluate the taste quality of rice. Front. Nutr. 2022, 8, 758547. [Google Scholar] [CrossRef]
Time (min) | Phase A (%) | Phase B (%) | Flow Rate (mL/min) |
---|---|---|---|
0 | 92 | 8 | 1.0 |
20 | 60 | 40 | 1.0 |
28 | 92 | 8 | 1.0 |
Germination Treatment | GABA (mg/100 g) |
---|---|
Ungermination | 7.10 ± 2.53 c |
Water | 22.33 ± 7.87 b |
Soaking | |
0.1% CaCl2 | 42.51 ± 11.37 a |
0.1% Glu | 44.64 ± 2.95 a |
0.2% CaCl2 | 30.09 ± 9.51 b |
0.2% Glu | 27.40 ± 7.89 b |
Germination Treatment | Total Polyphenols (mg Gallic Acid Equivalent/g) | Flavonoids (µg Quercetin Equivalent/g) | Scavenging DPPH Free Radicals (%) |
---|---|---|---|
Ungermination | 0.91 ± 0.01 ab | 3.68 ± 0.00 a | 87.01 ± 0.11 d |
Water | 0.84 ± 0.01 b | 4.41 ± 0.00 a | 84.61 ± 2.61 e |
Soaking | |||
0.1% CaCl2 | 0.90 ± 0.03 ab | 4.17 ± 0.42 a | 89.98 ± 0.24 abc |
0.1% Glu | 0.85 ± 0.02 b | 3.68 ± 0.00 a | 89.39 ± 0.17 bc |
0.2% CaCl2 | 0.90 ± 0.07 ab | 4.17 ± 0.85 a | 88.94 ± 1.83 c |
0.2% Glu | 0.93 ± 0.01 a | 3.68 ± 0.00 a | 88.69 ± 0.25 cd |
Vitamin C | 91.72 ± 0.00 a | ||
BHA | 91.06 ± 0.00 ab |
Germination Treatment | GABA (mg/100 g) |
---|---|
Ungermination | 7.10 ± 2.53 f |
Water | 22.33 ± 7.87 e |
Soaking/HPP (100 MPa, 10 min) | |
Water | 67.17 ± 3.99 d |
0.1% CaCl2 | 83.10 ±1.65 c |
0.1% Glu | 64.29 ± 2.38 d |
0.2% CaCl2 | 62.58 ± 3.34 d |
0.2% Glu | 62.62 ± 7.91 d |
Soaking/ultrasonic treatment (400 W, 20 min) | |
Water | 84.85 ± 1.45 c |
0.1% CaCl2 | 102.38 ± 6.53 ab |
0.1% Glu | 96.73 ± 11.28 b |
0.2% CaCl2 | 81.24 ± 5.48 c |
0.2% Glu | 110.88 ± 6.02 a |
Germination Treatment | Total Polyphenols (mg Gallic Acid Equivalent/g) | Flavonoids (µg Quercetin Equivalent/g) | Scavenging DPPH Free Radicals (%) |
---|---|---|---|
Ungermination | 0.91 ± 0.01 c | 3.68 ± 0.00 c | 87.01 ± 0.11 d |
Water | 0.84 ± 0.01 d | 4.41 ± 0.00 abc | 84.61 ± 2.61 e |
Soaking/HPP (100 MPa, 10 min) | |||
Water | 0.90 ± 0.02 c | 3.92 ± 0.42 c | 86.62 ± 1.23 d |
0.1% CaCl2 | 0.94 ± 0.01 c | 5.15 ± 1.27 a | 89.58 ± 0.71 c |
0.1% Glu | 0.89 ± 0.04 c | 3.68 ± 0.00 c | 86.83 ± 1.48 d |
0.2% CaCl2 | 0.93 ± 0.02 c | 3.92 ± 0.74 c | 89.14 ± 0.05 c |
0.2% Glu | 1.00 ± 0.06 b | 4.90 ± 0.42 ab | 86.33 ± 0.44 d |
Soaking/ultrasonic treatment (400 W, 20 min) | |||
Water | 1.06 ± 0.02 a | 3.92 ± 0.42 c | 92.50 ± 0.51 ab |
0.1% CaCl2 | 1.06 ± 0.01 a | 3.94 ± 0.00 c | 93.10 ± 0.10 ab |
0.1% Glu | 1.08 ± 0.03 a | 3.92 ± 0.42 c | 93.21 ± 0.09 a |
0.2% CaCl2 | 1.08 ± 0.02 a | 4.15 ± 0.46 bc | 93.08 ± 0.08 a |
0.2% Glu | 1.06 ± 0.01 a | 4.41 ± 0.00 abc | 93.00 ± 0.21 a |
Vitamin C | 91.72 ± 0.00 ab | ||
BHA | 91.06 ± 0.00 b |
Germination Treatment | L* | a* | b* | △E |
---|---|---|---|---|
Ungermination | 55.33 ± 1.34 bcd | 2.19 ± 0.21 d | 16.92 ± 1.15 d | 0 |
Water | 55.65 ± 0.13 bcd | 2.58 ± 0.45 cd | 18.83 ± 2.15 bc | 1.98 |
Soaking | ||||
0.1% CaCl2 | 56.16 ± 0.73 bcd | 3.01 ± 0.32 abcd | 17.62 ± 1.22 cd | 1.36 |
0.1% Glu | 54.55 ± 1.97 cd | 2.93 ± 0.34 abcd | 16.65 ± 0.42 d | 1.11 |
0.2% CaCl2 | 54.62 ± 1.16 cd | 2.86 ± 0.45 bcd | 17.35 ± 0.67 cd | 1.07 |
0.2% Glu | 54.21 ± 0.79 d | 3.22 ± 0.32 abc | 17.34 ± 0.52 cd | 1.58 |
Soaking/HPP (100 MPa, 10 min) | ||||
Water | 56.77 ± 1.21 abc | 3.69 ± 1.22 ab | 18.20 ± 1.22 bcd | 2.44 |
0.1% CaCl2 | 58.92 ± 1.70 a | 2.47 ± 0.33 cd | 17.72 ± 1.26 cd | 3.69 |
0.1% Glu | 56.18 ± 0.94 bcd | 3.91 ± 0.30 a | 19.53 ± 0.56 ab | 3.24 |
0.2% CaCl2 | 55.88 ± 1.04 bcd | 3.70 ± 0.66 ab | 20.66 ± 0.77 a | 4.07 |
0.2% Glu | 57.12 ± 0.79 ab | 3.71 ± 0.79 ab | 19.79 ± 0.63 ab | 3.71 |
Soaking/ultrasonic treatment (400 W, 20 min) | ||||
Water | 55.81 ± 1.43 bcd | 3.12 ± 0.58 abcd | 17.67 ± 0.24 cd | 1.29 |
0.1% CaCl2 | 56.12 ± 1.45 bcd | 3.06 ± 0.55 abcd | 19.00 ± 0.37 abc | 2.39 |
0.1% Glu | 55.92 ± 0.16 bcd | 3.22 ± 0.48 abc | 18.85 ± 0.66 bc | 2.27 |
0.2% CaCl2 | 57.31 ± 2.17 ab | 3.21 ± 0.17 abc | 19.59 ± 1.06 ab | 3.48 |
0.2% Glu | 55.96 ± 0.76 bcd | 2.60 ± 0.05 cd | 18.97 ± 0.12 abc | 2.18 |
Germination Treatment | Moisture (%) | Protein (%) | Amylose (%) | Fatty Acid (mg/100 mg KOH) | Taste Value |
---|---|---|---|---|---|
Ungermination | 14.5 | 6.9 | 18.8 | 19 | 78 |
Water | 14.8 | 7.9 | 18.2 | 14 | 70 |
0.1% CaCl2 | 14.9 | 7.8 | 18.8 | 16 | 69 |
0.1% CaCl2 + HPP | 14.5 | 7.8 | 18.3 | 12 | 71 |
0.1% CaCl2 + US | 13.2 | 5.7 | 17.2 | 21 | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsou, S.-F.; Hsu, H.-Y.; Chen, S.-D. Effects of Different Pretreatments on the GABA Content of Germinated Brown Rice. Appl. Sci. 2024, 14, 5771. https://doi.org/10.3390/app14135771
Tsou S-F, Hsu H-Y, Chen S-D. Effects of Different Pretreatments on the GABA Content of Germinated Brown Rice. Applied Sciences. 2024; 14(13):5771. https://doi.org/10.3390/app14135771
Chicago/Turabian StyleTsou, Shao-Fu, Hsin-Yun Hsu, and Su-Der Chen. 2024. "Effects of Different Pretreatments on the GABA Content of Germinated Brown Rice" Applied Sciences 14, no. 13: 5771. https://doi.org/10.3390/app14135771
APA StyleTsou, S. -F., Hsu, H. -Y., & Chen, S. -D. (2024). Effects of Different Pretreatments on the GABA Content of Germinated Brown Rice. Applied Sciences, 14(13), 5771. https://doi.org/10.3390/app14135771