An Automated Geographical Information System-Based Spatial Machine Learning Method for Leak Detection in Water Distribution Networks (WDNs) Using Monitoring Sensors
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Water Pressure Analysis
2.3. Water Flow Analysis
2.4. Chlorine Residual Analysis
2.5. Spatial Variability Maps
2.6. Data Preprocessing
2.7. Geographically Weighted Regression (GWR)
2.8. Local Outlier Factor Model
2.9. GIS-Based Interface Workflow
2.10. ArcGIS Model Builder
- Read the WDN sensor recordings of the three leakage predictors: pressure, flow, and chlorine.
- Apply the threshold values of the three readings.
- Use the buffer around the sensors’ locations and intersect operators to assess the variability in the three predictors throughout the WDN.
- Use IDW to create raster layers for pressure, flow, and chlorine in ArcGIS Pro for the WDN.
- Use GWR to seamlessly integrate the three predictors and, at the same time, automate the leak detection workflow.
- Identify potential leakage locations.
3. Results
3.1. Model Performances
3.2. GIS Interface
3.2.1. Autumn
3.2.2. Winter
3.2.3. Summer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WDN | Water distribution network |
GWR | Geographically Weighted Regression |
GIS | Geographical information system |
IDW | inverse distance weighting |
KNN | k-nearest neighbours |
SCADA | supervisory control and data acquisition |
CIS | customer information system |
LDA | linear discriminant analysis |
PRV | pressure reduction valves |
SEWA | Sharjah Electricity and Water Authority |
OLS | ordinary least squares |
VOI | Value of Information |
ML | Machine learning |
References
- Hunaidi, O.; Chu, W.T. Acoustical Characteristics of Leak Signals in Plastic Water Distribution Pipes. Appl. Acoust. 1999, 58, 235–254. [Google Scholar] [CrossRef]
- Awwad, A.; Yahyia, M.; Albasha, L.; Mortula, M.; Ali, T. Communication Network for Ultrasonic Acoustic Water Leakage Detectors. IEEE Access 2020, 8, 29954–29964. [Google Scholar] [CrossRef]
- Aslam, H.; Mortula, M.M.; Yehia, S.; Ali, T.; Kaur, M. Evaluation of the factors impacting the water pipe leak detection ability of GPR, infrared cameras, and spectrometers under controlled conditions. Appl. Sci. 2022, 12, 1683. [Google Scholar] [CrossRef]
- Hassani, R.A.; Ali, T.; Mortula, M.; Gawai, R. An Integrated Approach to Leak Detection in Water Distribution Networks (WDNs) Using GIS and Remote Sensing. Appl. Sci. 2023, 13, 10416. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, X.; Xin, K.; Boxall, J.; Yan, H.; Tao, T. Disturbance Extraction for Burst Detection in Water Distribution Networks Using Pressure Measurements. Water Resour. Res. 2020, 56, e2019WR025526. [Google Scholar] [CrossRef]
- Sala, D.A.; Kołakowski, P. Detection of Leaks in a Small-Scale Water Distribution Network Based on Pressure Data—Experimental Verification. Procedia Eng. 2014, 70, 1460–1469. [Google Scholar] [CrossRef]
- Chatzigeorgiou, D.; Youcef-Toumi, K.; Ben-Mansour, R. Design of a Novel In-Pipe Reliable Leak Detector. IEEE-ASME Trans. Mechatron. 2015, 20, 824–833. [Google Scholar] [CrossRef]
- Ishido, Y.; Takahashi, S. A New Indicator for Real-Time Leak Detection in Water Distribution Networks: Design and Simulation Validation. Procedia Eng. 2014, 89, 411–417. [Google Scholar] [CrossRef]
- Casillas, M.V.; Garza-Castañón, L.E.; Puig, V. Extended-Horizon Analysis of Pressure Sensitivities for Leak Detection in Water Distribution Networks: Application to the Barcelona Network. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland , 17–19 July 2013 ; 8, pp. 401–409. [Google Scholar] [CrossRef]
- Ferrandez-Gamot, L.; Busson, P.; Blesa, J.; Tornil-Sin, S.; Puig, V.; Duviella, E.; Soldevila, A. Leak Localization in Water Distribution Networks Using Pressure Residuals and Classifiers. IFAC-PapersOnLine 2015, 48, 220–225. [Google Scholar] [CrossRef]
- Sadeghioon, A.M.; Metje, N.; Chapman, D.; Anthony, C. SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines. J. Sens. Actuator Netw. 2014, 3, 64–78. [Google Scholar] [CrossRef]
- Asgari, H.; Maghrebi, M.F. Application of Nodal Pressure Measurements in Leak Detection. Flow Meas. Instrum. 2016, 50, 128–134. [Google Scholar] [CrossRef]
- Ayadi, A.; Ghorbel, O.; Obeid, A.; BenSaleh, M.S.; Abid, M. Leak Detection in Water Pipeline by Means of Pressure Measurements for WSN. In Proceedings of the 3rd International Conference on Advanced Technologies for Signal and Image Processing, ATSIP 2017, Fez, Morocco, 22–24 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wong, L.; Deo, R.N.; Rathnayaka, S.; Shannon, B.; Zhang, C.; Chiu, W.K.; Kodikara, J.; Widyastuti, H. Leak Detection in Water Pipes Using Submersible Optical Optic-Based Pressure Sensor. Sensors 2018, 18, 4192. [Google Scholar] [CrossRef]
- Sadeghioon, A.M.; Metje, N.; Chapman, D.; Anthony, C. Water Pipeline Failure Detection Using Distributed Relative Pressure and Temperature Measurements and Anomaly Detection Algorithms. Urban Water J. 2018, 15, 287–295. [Google Scholar] [CrossRef]
- Abdulshaheed, A.; Mustapha, F.; Anuar, M.F.M. Pipe Material Effect on Water Network Leak Detection Using a Pressure Residual Vector Method. J. Water Resour. Plan. Manag. 2018, 144, 05018006. [Google Scholar] [CrossRef]
- Amoatey, P.K.; Bàrdossy, A.; Steinmetz, H. Inverse Optimization Based Detection of Leaks from Simulated Pressure in Water Networks, Part 2: Analysis for Two Leaks. J. Water Manag. Model. 2018, 26, 1–10. [Google Scholar] [CrossRef]
- Salguero, F.J.; Cobacho, R.; Pardo, M.Á. Unreported Leaks Location Using Pressure and Flow Sensitivity in Water Distribution Networks. Water Sci. Technol. Water Supply 2018, 19, 11–18. [Google Scholar] [CrossRef]
- Khorshidi, M.A.; Nikoo, M.R.; Taravatrooy, N.; Sadegh, M.; Al-Wardy, M.; Al-Rawas, G. Pressure Sensor Placement in Water Distribution Networks for Leak Detection Using a Hybrid Information-Entropy Approach. Inf. Sci. 2020, 516, 56–71. [Google Scholar] [CrossRef]
- Manzi, D.; Brentan, B.M.; Lima, G.M.; Izquierdo, J.; Luvizotto, E. Pattern Recognition and Clustering of Transient Pressure Signals for Burst Location. Water 2019, 11, 2279. [Google Scholar] [CrossRef]
- Geelen, C.V.C.; Yntema, D.; Molenaar, J.; Keesman, K.J. Monitoring Support for Water Distribution Systems Based on Pressure Sensor Data. Water Resour. Manag. 2019, 33, 3339–3353. [Google Scholar] [CrossRef]
- Shao, Y.; Li, X.; Zhang, T.; Chu, S.; Liu, X. Time-Series-Based Leakage Detection Using Multiple Pressure Sensors in Water Distribution Systems. Sensors 2019, 19, 3070. [Google Scholar] [CrossRef]
- Soldevila, A.; Fernandez-Canti, R.M.; Blesa, J.; Tornil-Sin, S.; Puig, V. Leak Localization in Water Distribution Networks Using Bayesian Classifiers. J. Process Control 2017, 55, 1–9. [Google Scholar] [CrossRef]
- Aymon, L.; Decaix, J.; Carrino, F.; Mudry, P.-A.; Mugellini, E.; Khaled, O.A.; Baltensperger, R. Leak Detection Using Random Forest and Pressure Simulation. In Proceedings of the 2019 6th Swiss Conference on Data Science (SDS), Bern, Switzerland, 14 June 2019. [Google Scholar] [CrossRef]
- Güngör, M.; Yarar, U.; Cantürk, Ü.; Fırat, M. Increasing Performance of Water Distribution Network by Using Pressure Management and Database Integration. J. Pipeline Syst. Eng. Pract. 2019, 10, 04019003. [Google Scholar] [CrossRef]
- Mulholland, M.; Purdon, A.; Latifi, M.A.; Brouckaert, C.J.; Buckley, C.A. Leak Identification in a Water Distribution Network Using Sparse Flow Measurements. Comput. Chem. Eng. 2014, 66, 252–258. [Google Scholar] [CrossRef]
- Farah, E.; Shahrour, I. Leakage Detection Using Smart Water System: Combination of Water Balance and Automated Minimum Night Flow. Water Resour. Manag. 2017, 31, 4821–4833. [Google Scholar] [CrossRef]
- Al-Washali, T.M.; Sharma, S.; Al-Nozaily, F.; Haidera, M.; Kennedy, M.D. Modelling the Leakage Rate and Reduction Using Minimum Night Flow Analysis in an Intermittent Supply System. Water 2018, 11, 48. [Google Scholar] [CrossRef]
- Jiménez-Cabas, J.; Romero-Fandiño, E.; Torres, L.; Sanjuán, M.; López-Estrada, F. Localization of Leaks in Water Distribution Networks Using Flow Readings. IFAC-PapersOnLine 2018, 51, 922–928. [Google Scholar] [CrossRef]
- Pal, A.; Kant, K. Water Flow Driven Sensor Networks for Leakage and Contamination Monitoring in Distribution Pipelines. ACM Trans. Sens. Netw. 2019, 15, 1–43. [Google Scholar] [CrossRef]
- Tornyeviadzi, H.M.; Mohammed, H.; Seidu, R. Semi-supervised anomaly detection methods for leakage identification in water distribution networks: A comparative study. Mach. Learn. Appl. 2023, 14, 100501. [Google Scholar] [CrossRef]
- Alghushairy, O.; Alsini, R.; Soule, T.; Ma, X. A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams. Big Data Cogn. Comput. 2021, 5, 1. [Google Scholar] [CrossRef]
- Desmet, A.; Delore, M. Leak Detection in Compressed Air Systems Using Unsupervised Anomaly Detection Techniques. In Proceedings of the Annual Conference of the PHM Society, St. Petersburg, FL, USA, 2–5 October 2017; Volume 9. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 2010, 28, 281–298. [Google Scholar] [CrossRef]
- Sheehan, K.R.; Strager, M.P.; Welsh, S.A. Advantages of Geographically Weighted Regression for Modeling Benthic Substrate in Two Greater Yellowstone Ecosystem Streams. Environ. Model. Assess. 2012, 18, 209–219. [Google Scholar] [CrossRef]
- Koh, E.; Lee, E.-H.; Lee, K. Application of Geographically Weighted Regression Models to Predict Spatial Characteristics of Nitrate Contamination: Implications for an Effective Groundwater Management Strategy. J. Environ. Manag. 2020, 268, 110646. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of Urbanization and Landscape Pattern on Habitat Quality Using OLS and GWR Models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Nugroho, W.; Iriawan, N. Effect of the Leakage Location Pattern on the Speed of Recovery in Water Supply Networks. J. Phys. 2019, 1402, 022023. [Google Scholar] [CrossRef]
- Ghorbanian, V.; Karney, B.W.; Guo, Y. Pressure Standards in Water Distribution Systems: Reflection on Current Practice with Consideration of Some Unresolved Issues. J. Water Resour. Plan. Manag. 2016, 142, 04016023. [Google Scholar] [CrossRef]
- National Research Council, Division on Earth, Life Studies, Water Science, Technology Board, Committee on Public Water Supply Distribution Systems, Assessing, and Reducing Risks. Drinking Water Distribution Systems: Assessing and Reducing Risks; National Academies Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Łangowski, R.; Brdyś, M.A. An Optimised Placement of the Hard Quality Sensors for a Robust Monitoring of the Chlorine Concentration in Drinking Water Distribution Systems. J. Process Control 2018, 68, 52–63. [Google Scholar] [CrossRef]
- Al Alzarooni, E.; Ali, T.; Atabay, S.; Yilmaz, A.G.; Mortula, M.M.; Fattah, K.P.; Khan, Z. GIS-Based Identification of Locations in Water Distribution Networks Vulnerable to Leakage. Appl. Sci. 2023, 13, 4692. [Google Scholar] [CrossRef]
- Toubal, A.K.; Achite, M.; Ouillon, S.; Dehni, A. Soil Erodibility Mapping Using the RUSLE Model to Prioritize Erosion Control in the Wadi Sahouat Basin, North-West of Algeria. Environ. Monit. Assess. 2018, 190, 210. [Google Scholar] [CrossRef] [PubMed]
- Yahia, M.; Gawai, R.; Ali, T.; Mortula, M.M.; Albasha, L.; Landolsi, T. Non-Destructive Water Leak Detection Using Multitemporal Infrared Thermography. IEEE Access 2021, 9, 72556–72567. [Google Scholar] [CrossRef]
- Di, W.Y.; Li, S.P.; Liang, X. Analysis of Chinese Media Reports on Water Pipe Burst Events in 2010. Appl. Mech. Mater. 2013, 316–317, 727–731. [Google Scholar] [CrossRef]
- Mortula, M.; Ali, T.; Sadiq, R.; Idris, A.; Mulla, A.A. Impacts of Water Quality on the Spatiotemporal Susceptibility of Water Distribution Systems. Clean-Soil Air Water 2019, 47, 1800247. [Google Scholar] [CrossRef]
- Lu, H.; Li, S.P.; He, Y.; Zhou, W.; Zou, J. Statistical Analysis of Domestic Web News Reported Burst Events on Municipal Water Distribution System in 2011. Appl. Mech. Mater. 2012, 212–213, 619–627. [Google Scholar] [CrossRef]
- Ayad, A.; Khalifa, A.; Fawy, M. A Model—Based Approach for Leak Detection in Water Distribution Networks Based on Optimisation and GIS Applications. Civ. Environ. Eng. 2021, 17, 277–285. [Google Scholar] [CrossRef]
- Wols, B.A.; Van Thienen, P. Impact of Weather Conditions on Pipe Failure: A Statistical Analysis. Aqua 2013, 63, 212–223. [Google Scholar] [CrossRef]
Pressure | Flow | Chlorine | Ratio-pf | |
---|---|---|---|---|
Shapiro–Wilk | 8.12 × 10−12 | 1.34 × 10−23 | 1.93 × 10−8 | 5.44 × 10−12 |
Kolmogorov–Smirnov | 0.0 | 0.0 | 5.11 × 10−216 | 3.69 × 10−175 |
Pressure | Flow | Chlorine | Ratio-pf | |
---|---|---|---|---|
Anderson–Darling | 5.461 | 26.021 | 6.831 | 6.086 |
n_Neighbours | ||||
---|---|---|---|---|
Contamination | 2 | 5 | 10 | 15 |
0.005 | 0.0247 | 0.0688 | 0.2525 | 0.3478 |
0.010 | 0.0080 | 0.1050 | 0.2144 | 0.3404 |
0.050 | −0.0476 | 0.0038 | 0.1480 | 0.1378 |
0.100 | −0.0298 | 0.0091 | 0.0659 | 0.0774 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshazly, D.; Gawai, R.; Ali, T.; Mortula, M.M.; Atabay, S.; Khalil, L. An Automated Geographical Information System-Based Spatial Machine Learning Method for Leak Detection in Water Distribution Networks (WDNs) Using Monitoring Sensors. Appl. Sci. 2024, 14, 5853. https://doi.org/10.3390/app14135853
Elshazly D, Gawai R, Ali T, Mortula MM, Atabay S, Khalil L. An Automated Geographical Information System-Based Spatial Machine Learning Method for Leak Detection in Water Distribution Networks (WDNs) Using Monitoring Sensors. Applied Sciences. 2024; 14(13):5853. https://doi.org/10.3390/app14135853
Chicago/Turabian StyleElshazly, Doha, Rahul Gawai, Tarig Ali, Md Maruf Mortula, Serter Atabay, and Lujain Khalil. 2024. "An Automated Geographical Information System-Based Spatial Machine Learning Method for Leak Detection in Water Distribution Networks (WDNs) Using Monitoring Sensors" Applied Sciences 14, no. 13: 5853. https://doi.org/10.3390/app14135853
APA StyleElshazly, D., Gawai, R., Ali, T., Mortula, M. M., Atabay, S., & Khalil, L. (2024). An Automated Geographical Information System-Based Spatial Machine Learning Method for Leak Detection in Water Distribution Networks (WDNs) Using Monitoring Sensors. Applied Sciences, 14(13), 5853. https://doi.org/10.3390/app14135853