Application of Micro-Plane Projection Moving Least Squares and Joint Iterative Closest Point Algorithms in Spacecraft Pose Estimation
Abstract
:1. Introduction
2. Methods
2.1. Unordered Point Cloud Normal Vector Estimation
2.2. Fitting Micro-Planar Projections Using Moving Least Squares Process Based on Moving Least Squares Method
2.3. Point Cloud Alignment and Parameter Optimization Point Cloud Pose Estimation and Optimization
2.3.1. Coarse Registration
2.3.2. Fine Registration by J-ICP
3. Semi-Physical Experiment and Analysis
3.1. Experimental Environment Setup
3.2. Results of Semi-Physical Experiments
3.2.1. Coarse Registration after mpp-MLS Processing
3.2.2. Fine Registration by J-ICP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Huang, P.F.; Cai, J.; Meng, Z.J.; Liu, Z.X. A non-cooperative target grasping position prediction model for tethered space robot. Aerosp. Sci. Technol. 2016, 58, 571–581. [Google Scholar] [CrossRef]
- Opromolla, R.; Fasano, G.; Rufino, G.; Grassi, M. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations. Prog. Aeosp. Sci. 2017, 93, 53–72. [Google Scholar] [CrossRef]
- Wang, S.J.; Cao, Y.X.; Zheng, X.; Zhang, T. A learning system for motion planning of free-float dual-arm space manipulator towards non-cooperative object. Aerosp. Sci. Technol. 2022, 131, 11. [Google Scholar] [CrossRef]
- Pesce, V.; Haydar, M.F.; Lavagna, M.; Lovera, M. Comparison of filtering techniques for relative attitude estimation of uncooperative space objects. Aerosp. Sci. Technol. 2019, 84, 318–328. [Google Scholar] [CrossRef]
- Deng, Z.; Li, A. A large depth-of-field virtual measurement network for non-cooperative 6DOF pose estimation in occlusion scenes. Measurement 2023, 218, 113111. [Google Scholar] [CrossRef]
- Volpe, R.; Palmerini, G.B.; Sabatini, M. A passive camera based determination of a non-cooperative and unknown satellite’s pose and shape. Acta Astronaut. 2018, 151, 805–817. [Google Scholar] [CrossRef]
- Cassinis, L.P.; Fonod, R.; Gill, E. Review of the robustness and applicability of monocular pose estimation systems for relative navigation with an uncooperative spacecraft. Prog. Aeosp. Sci. 2019, 110, 14. [Google Scholar] [CrossRef]
- Perfetto, D.M.; Opromolla, R.; Grassi, M.; Schmitt, C. LIDAR-based model reconstruction for spacecraft pose determination. In Proceedings of the IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Torino, Italy, 19–21 June 2019; pp. 1–6. [Google Scholar]
- Zhu, W.S.; She, Y.C.; Hu, J.Q.; Wang, B.C.; Mu, J.Z.; Li, S. A hybrid relative navigation algorithm for a large-scale free tumbling non-cooperative target. Acta Astronaut. 2022, 194, 114–125. [Google Scholar] [CrossRef]
- May, S.; Dröschel, D.; Holz, D.; Wiesen, C.; Fuchs, S. 3D Pose Estimation and Mapping with Time-of-Flight Cameras. Int. Conf. Intell. Robot. Syst. (IROS) 2008. [Google Scholar] [CrossRef]
- Zhu, W.; Mu, J.; Shao, C.; Hu, J.; Wang, B.; Wen, Z.; Han, F.; Li, S. System design for pose determination of spacecraft using time-of-flight sensors. Space Sci. Technol. 2022, 2022, 9763198. [Google Scholar] [CrossRef]
- Tzschichholz, T.; Boge, T.; Schilling, K. Relative pose estimation of satellites using PMD-/CCD-sensor data fusion. Acta Astronaut. 2015, 109, 25–33. [Google Scholar] [CrossRef]
- Opromolla, R.; Fasano, G.; Rufino, G.; Grassi, M. A Model-Based 3D Template Matching Technique for Pose Acquisition of an Uncooperative Space Object. Sensors 2015, 15, 6360–6382. [Google Scholar] [CrossRef] [PubMed]
- Opromolla, R.; Fasano, G.; Rufino, G.; Grassi, M. Pose Estimation for Spacecraft Relative Navigation Using Model-Based Algorithms. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 431–447. [Google Scholar] [CrossRef]
- Zhao, G.P.; Xu, S.X.; Bo, Y.M. LiDAR-Based Non-Cooperative Tumbling Spacecraft Pose Tracking by Fusing Depth Maps and Point Clouds. Sensors 2018, 18, 3432. [Google Scholar] [CrossRef]
- Liu, L.J.; Zhao, G.P.; Bo, Y.M. Point Cloud Based Relative Pose Estimation of a Satellite in Close Range. Sensors 2016, 16, 824. [Google Scholar] [CrossRef] [PubMed]
- Martínez, H.G.; Giorgi, G.; Eissfeller, B. Pose estimation and tracking of non-cooperative rocket bodies using Time-of-Flight cameras. Acta Astronaut. 2017, 139, 165–175. [Google Scholar] [CrossRef]
- Wang, Q.S.; Lei, T.; Liu, X.F.; Cai, G.P.; Yang, Y.F.; Jiang, L.H.; Yu, Z.W. Pose Estimation of Non-Cooperative Target Coated With MLI. IEEE Access 2019, 7, 153958–153968. [Google Scholar] [CrossRef]
- Hu, L.; Sun, D.Q.; Duan, H.X.; Shu, A.; Zhou, S.S.; Pei, H.D. Non-Cooperative Spacecraft Pose Measurement with Binocular Camera and ToF Camera Collaboration. Appl. Sci. 2023, 13, 1420. [Google Scholar] [CrossRef]
- Zhou, Y.R.; Li, X.L.; Hu, H.X.; Su, L.X.; Du, H.; Fu, W.M.; Xu, L.J. Neighbor feature variance (NFV) based feature point selection method for three dimensional (3D) registration of space target. Measurement 2023, 222, 11. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A Method for registration of 3-D shapes. In Proceedings of the Sensor Fusion Conference: Control Paradigms and Data Structures, Boston, MA, USA, 12–15 November 1991; pp. 586–606. [Google Scholar]
- Segal, A.V.; Haehnel, D.; Thrun, S. Generalized-ICP. In Robotics: Science and Systems V; Trinkle, J., Matsuoka, Y., Castellanos, J.A., Eds.; The MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Li, R.H.; Yang, B.; Lu, Q. Rough Registration Method for Point Cloud of Spatial Non-cooperative Target by Improving FPFH. In Proceedings of the 6th Symposium on Novel Optoelectronic Detection Technology and Applications, Beijing, China, 3–5 December 2019. [Google Scholar]
- Alexa, M.; Behr, J.; Cohen-Or, D.; Fleishman, S.; Levin, D.; Silva, C.T. Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Graph. 2003, 9, 3–15. [Google Scholar] [CrossRef]
- Levin, D. Mesh-independent surface interpolation. In Geometric Modeling for Scientific Visualization; Springer: Berlin/Heidelberg, Germany, 2004; pp. 37–49. [Google Scholar]
- Wong, J.M.; Kee, V.; Le, T.; Wagner, S.; Mariottini, G.L.; Schneider, A.; Hamilton, L.; Chipalkatty, R.; Hebert, M.; Johnson, D.M.S.; et al. SegICP: Integrated Deep Semantic Segmentation and Pose Estimation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)/Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics, Vancouver, BC, Canada, 24–28 September 2017; pp. 5784–5789. [Google Scholar]
- Chen, J.; Wu, X.J.; Wang, M.Y.; Li, X.F. 3D shape modeling using a self-developed hand-held 3D laser scanner and an efficient HT-ICP point cloud registration algorithm. Opt. Laser Technol. 2013, 45, 414–423. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 1848–1853. [Google Scholar]
- Le, V.H.; Vu, H.; Nguyen, T.T.; Le, T.L.; Tran, T.H. Acquiring qualified samples for RANSAC using geometrical constraints. Pattern Recognit. Lett. 2018, 102, 58–66. [Google Scholar] [CrossRef]
- Kluger, F.; Rosenhahn, B. PARSAC: Accelerating Robust Multi-Model Fitting with Parallel Sample Consensus. arXiv 2024, arXiv:2401.14919. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Resolution | 640 × 480 px, 0.3 MP |
Pixel Size | 10.0 µm (H) × 10.0 µm (V) |
Illumination | 4 × VCSEL laser diodes, Class1, @ 850 nm |
Lens Field of View | 69° × 51° (nominal) |
ICP | GICP | J-ICP | |
---|---|---|---|
Mean Translation Error—X (mm) | 2.06 (±1.50) | 1.36 (±0.94) | 1.07 (±0.81) |
Mean Translation Error—Y (mm) | 3.59 (±3.02) | 2.46 (±2.01) | 1.57 (±1.14) |
Mean Translation Error—Z (mm) | 0.54 (±0.42) | 0.35 (±0.27) | 0.25 (±0.20) |
Mean Rotation Error—pitch (°) | 0.162 (±0.135) | 0.112 (±0.89) | 0.071 (±0.052) |
Mean Rotation Error—yaw (°) | 0.089 (±0.065) | 0.056 (±0.041) | 0.046 (±0.036) |
Mean Rotation Error—roll (°) | 0.055 (±0.041) | 0.059 (±0.043) | 0.019 (±0.013) |
Time Consumption (ms) | Method | ||
---|---|---|---|
ICP | GICP | J-ICP | |
Mean | 83 | 92 | 98 |
Std. Dev | 4 | 6 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Han, Y.; Yao, J.; Wang, Y.; Zheng, F.; Sun, Z. Application of Micro-Plane Projection Moving Least Squares and Joint Iterative Closest Point Algorithms in Spacecraft Pose Estimation. Appl. Sci. 2024, 14, 5855. https://doi.org/10.3390/app14135855
Li Y, Han Y, Yao J, Wang Y, Zheng F, Sun Z. Application of Micro-Plane Projection Moving Least Squares and Joint Iterative Closest Point Algorithms in Spacecraft Pose Estimation. Applied Sciences. 2024; 14(13):5855. https://doi.org/10.3390/app14135855
Chicago/Turabian StyleLi, Youzhi, Yuan Han, Jiaqi Yao, Yanqiu Wang, Fu Zheng, and Zhibin Sun. 2024. "Application of Micro-Plane Projection Moving Least Squares and Joint Iterative Closest Point Algorithms in Spacecraft Pose Estimation" Applied Sciences 14, no. 13: 5855. https://doi.org/10.3390/app14135855
APA StyleLi, Y., Han, Y., Yao, J., Wang, Y., Zheng, F., & Sun, Z. (2024). Application of Micro-Plane Projection Moving Least Squares and Joint Iterative Closest Point Algorithms in Spacecraft Pose Estimation. Applied Sciences, 14(13), 5855. https://doi.org/10.3390/app14135855