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Abstract: Accurately determining the attitude of non-cooperative spacecraft in on-orbit servicing (OOS)
has posed a challenge in recent years. In point cloud-based spatial non-cooperative target attitude
estimation schemes, high-precision point clouds, which are more robust to noise, can offer more accurate
data input for three-dimensional registration. To enhance registration accuracy, we propose a noise
filtering method based on moving least squares microplane projection (mpp-MLS). This method retains
salient target feature points while eliminating redundant points, thereby enhancing registration accuracy.
Higher accuracy in point clouds enables a more precise estimation of spatial target attitudes. For coarse
registration, we employed the Random Sampling Consistency (RANSAC) algorithm to enhance accuracy
and alleviate the adverse effects of point cloud mismatches. For fine registration, the J-ICP algorithm
was utilized to estimate pose transformations and minimize spacecraft cumulative pose estimation
errors during movement transformations. Semi-physical experimental results indicate that the proposed
attitude parameter measurement method outperformed the classic ICP registration method. It yielded
maximum translation and rotation errors of less than 1.57 mm and 0.071◦, respectively, and reduced
maximum translation and rotation errors by 56% and 65%, respectively, thereby significantly enhancing
the attitude estimation accuracy of non-cooperative targets.

Keywords: on-orbit service; ToF camera; point cloud; pose estimation; moving least squares

1. Introduction

Orbital technologies can provide essential on-orbit maintenance services for space-
crafts, including satellites and space stations, that have experienced malfunctions, depleted
fuel, or require module replacements [1]. These spacecrafts are classified as cooperative or
non-cooperative based on pre-installed identifiable markings [2]. Cooperative spacecrafts
are equipped with laser corner reflectors or optical markers that can actively communicate
with maintenance spacecraft. Non-cooperative spacecrafts or satellite debris in need of
on-orbit servicing lack such communication capabilities, and their structure, dimensions,
and kinematics may be partially or completely unknown [3]. Accurate measurements of
the relative positions and attitudes of these uncooperative spacecrafts are crucial for the
success of space missions [4,5].

Currently, the sensors commonly used for target vision measurement in on-orbit mis-
sions include vision cameras [6], infrared cameras [7], LiDAR [8,9], and time-of-flight (ToF)
cameras [10,11]. In space environments, vision cameras may encounter issues like overex-
posure blurring due to varying lighting conditions, while active sensors [12] can maintain
stable operation. Active sensors provide 3D point cloud data with spatial coordinates and
intensity information, offering unique advantages for spatial target attitude estimation.
Therefore, this paper selects active sensors as the hardware device for acquiring target 3D
point cloud data.
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Current position estimation schemes utilizing 3D point cloud data are typically cate-
gorized into template matching based schemes and point cloud feature matching-based
schemes. Template-based matching involves estimating position by matching a known
target model, which is basically difficult to obtain in advance in practical applications.
Opromolla et al. [13] developed an online 3D template matching method and proposed a
model-based attitude estimation approach [14]. Zhao et al. [15] introduced a lidar-based
fusion depth map and point cloud for attitude tracking, utilizing the Iterative Closest Point
(ICP) algorithm to align the simplified sparse point cloud with the known target model
point cloud to determine relative attitude. In simulation experiments, translation error
and rotation error were no more than 1 cm and 0.5◦, respectively. Liu et al. [16] used point
cloud data generated by the Flash Lidar sensor with a target model acquired in advance
to estimate the relative attitude for a close-range satellite using dense point cloud data
directly, although noise and artifacts were not considered in the experiment. Concerning
the feature matching approach, effectively performing noise reduction on acquired target
point cloud data is crucial for accurate matching. Martínez et al. [17] proposed a ToF-based
attitude estimation scheme, detecting changes in the target’s attitude at different time
points by identifying spacecraft components like nozzles and fairings. However, only
model data were used for validation in the experiments, leaving the performance in noisy
environments unknown. Wang et al. [18] utilized the ICP method for aligning two frames
of a point cloud and introduced a point median filtering technique to eliminate poorly
corresponding point pairs. However, this approach may not be suitable for tumbling
targets or complex geometric targets with high rotational speeds due to the simplistic target
geometry considered. Hu et al. [19] leveraged the initial positional attitude values and key
point information from stereo vision, obtained initial attitude data through joint calibration,
and used the ICP algorithm for inter-frame alignment to determine the final attitude of the
target. Zhou et al. [20] introduced a feature point selection method based on Neighborhood
Feature Variance (NFV) to remove redundant points and retain more significant points for
fine alignment, thereby enhancing the accuracy of attitude estimation for spatial targets.
A limitation of this method is that the accuracy of key point extraction is constrained by
the determination of the radius of the NFV neighborhood. It is evident that effectively
filtering out redundant point noise in the pose estimation process significantly influences
the accuracy of pose estimation.

In order to enhance the accuracy of point cloud alignment and minimize computational
effort, this study introduces a novel point cloud-based approach for estimating the attitude
of non-cooperative targets in close-range operations. Existing methods for point cloud
alignment and attitude estimation often rely on model-based approaches or specific target
components. For example, traditional methods like the ICP [21] algorithm and its variants
such as Generalized Iterative Closest Point (GICP) [22] are widely used but have notable
limitations. One significant drawback of the ICP algorithm is its sensitivity to initial
alignment and noise, which can lead to suboptimal results, especially with high noise
levels and outliers. Variants like GICP attempt to address some of these issues but still
struggle with complex geometries and high-speed rotational targets. Additionally, methods
relying on typical target components (e.g., nozzles and fairings) or pre-acquired models
can be limited by their dependence on accurate prior knowledge, which may not always be
available or reliable in all scenarios.

To overcome these limitations, our approach employs a moving least squares (MLS)-
based microplanar projection technique. This technique transforms the original point
cloud into a series of smooth manifold surfaces, effectively filtering out redundant and
noisy points while preserving the geometric characteristics of the point cloud surface. By
doing so, it enhances the accuracy of point cloud alignment and reduces computational
effort. Furthermore, we introduce the Joint Iterative Closest Point (J-ICP) algorithm, which
mitigates cumulative errors and achieves robust alignment of point clouds from satellite
targets, addressing the issues of noise sensitivity and initial alignment dependency found
in traditional methods.
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The proposed method not only delivers significantly superior estimation results com-
pared to traditional alignment algorithms but also operates efficiently without relying
on extensive prior models or specific target features. This makes it particularly suitable
for close-range operations involving non-cooperative targets, where quick and accurate
attitude estimation is critical.

In summary, our main contributions are:
Introduction of the microplanar projection-based moving least squares (mpp-MLS)

preprocessing method: This method enhances point cloud alignment accuracy by removing
redundant and noisy points while preserving the geometric characteristics of the point
cloud surface.

Development of an improved J-ICP algorithm: This algorithm precisely aligns point
clouds by considering small angle transformations over multiple time points, thus avoiding
local optimization issues commonly encountered in single-frame data alignment.

Validation through semi-physical experiments: The proposed method has been vali-
dated through semi-physical experiments, demonstrating significant reductions in maxi-
mum translational and rotational errors compared to classical methods, with only a slight
increase in computational overhead. These results highlight the method’s potential for
practical applications in space mission control.

The subsequent sections of this paper are structured as follows: Section 2 elaborates
on the handling of redundant points and the alignment method. Section 3 presents the
validation of the proposed method through semi-physical experiments conducted on simu-
lated spatial targets. The results of these experiments showcase the method’s effectiveness
and robustness. Finally, Section 4 delves into the implications of the findings and outlines
potential future research directions.

2. Methods

This section outlines a non-cooperative target position estimation method utilizing
point cloud feature point matching. The system, illustrated in Figure 1, is segmented into
three key components for processing point cloud data collected at various time points:
preprocessing, coarse matching, and fine matching. To enhance point cloud alignment
accuracy and reduce computational load, initial on-site point cloud data containing the
target are preprocessed to eliminate redundant and noisy surfaces by transforming the
original point cloud into a series of smoother point clouds. Subsequently, rough alignment
of point clouds between frames is conducted, establishing point relationships through
calculation of Fast Point Feature Histograms (FPFH) [23] features to derive preliminary
matching outcomes. Finally, fine alignment is achieved using the J-ICP algorithm to refine
the estimated attitude parameters of the target.

2.1. Unordered Point Cloud Normal Vector Estimation

Current 3D sensing technology utilizes laser emissions to measure the time it takes for
the emitted light to reflect from a target surface to the sensor, enabling the determination of
point locations on the surface. However, the resulting point cloud data are often disordered
and contain varying levels of noise, both of which can directly impact the accuracy of
estimating normal vectors for the point cloud. Normal vectors are crucial as they describe
the orientation of an object’s surface in three-dimensional space, providing essential infor-
mation for understanding the object’s geometry. These normal vectors play a key role in
localized surface information for spatial target position estimation, aiding in tasks such as
surface fitting, feature extraction, and model matching.

When dealing with disordered point cloud data and unknown actual normal vectors,
it is typical to assess the consistency between the estimated normal vectors of a point and
those of its neighboring points. It is desirable for neighboring points to exhibit similar
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normal orientations in regions that are geometrically similar. The angular difference in the
estimated normal vectors of neighboring points ∆θij can be calculated as Equation (1).

∆θij = cos−1

(
ni · nj

∥ ni ∥∥ nj ∥

)
(1)
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If the distribution of normal angle differences in the input point cloud is concen-
trated, it suggests that the normal of the point cloud closely aligns with those of its
neighboring points. This indicates that the local surface of the point cloud experiences
minimal directional changes, resulting in accurate and consistent normal estimation within
that region. Conversely, a significant difference in normal directions signifies inaccurate
normal estimation.

2.2. Fitting Micro-Planar Projections Using Moving Least Squares Process Based on Moving Least
Squares Method

In order to enhance the registration accuracy of point cloud data, it is crucial to
address the challenges posed by uneven sampling and the presence of noisy redundant
points affecting normal vector estimation. Preprocessing the input point cloud set is
essential not only to alleviate computational burden on the on-board computer but also
to enhance alignment efficiency and accuracy by eliminating unnecessary details. While
existing downsampling techniques like random, distance, and uniform methods exist, they
primarily rely on a simplistic global selection approach that overlooks the local geometric
characteristics of the point cloud. Building upon previous research by Marc et al. [24], we
introduce a microplanar projection-based moving least squares (mpp-MLS) downsampling
method for selecting projected points. This method aims to enhance alignment accuracy and
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efficiency by fitting a microplane to a local region of the target point cloud and effectively
removing redundant points through projection.

First, from a piece of the point cloud with measurement noise, select the local region
point set Pi ∈ R3, i ∈ {1, . . . , N} centered on the index point r. We estimate a local
plane by fitting these points with a cubic polynomial H =

{
x
∣∣< n, x > −D = 0, x ∈ R3},

n ∈ R3, ||n|| = 1. The goal of the fit is to minimize the points Pi to the plane H by reducing
the sum of the weighted distances from the Pi to the center point r of the plane, with the
weight determined by the distance to the center point. Then the plane H can be obtained
by locally minimizing Equation (2),

N

∑
i=1

(⟨n, pi⟩ − D)2θ(∥ pi − q ∥) (2)

where θ is a smooth monotonically decreasing, constant positive function, and q is the
projection of r on the H, r moves to the plane H along the direction of the plane normal
vector n, which denotes that q is the projection of r on the H. Here, we could define
q = r + tn where t ∈ R, Equation (3) is redefined as follows:

N

∑
i=1

⟨n, pi − r − tn⟩2θ(∥ pi − r − tn ∥) (3)

where the smaller r is, the closer the local tangent plane H is to r, and q is the origin of the
standard orthogonal coordinate system on the local tangent plane H.

Then, the surface in r domain is fitted by binary polynomial (as illustrated in Figure 2)
to make qi be the projection of pi on H, and fi is the distance between pi and H. We can
obtain the approximate coefficients of the polynomial g by minimizing the Equation (4).

N

∑
i=1

(g(xi, yi)− fi)
2θ(∥ pi − q ∥) (4)

where (xi, yi) is the local coordinate representation of qi in H. The Gaussian function
proposed in [25]:

θ(d) = e−
d2

h2 (5)

is used as the weight function, and the constant parameter h determines the selection range
of the neighborhood point set. The features with dimensions smaller than h are smoothed
out. The larger the h is, the smoother the projected point cloud will be.
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In this study, we utilized satellite model point cloud data collected by a ToF camera
and applied the mpp-MLS algorithm for processing the input point cloud. As shown
in Figure 3, the initial point cloud is depicted in blue, while the point cloud processed
by the algorithm is shown in red. It is evident that the red point cloud preserves the
geometric features of the satellite surface while eliminating redundant and noisy points. By
observing the XZ planar view, we further verified that the mpp-MLS algorithm accurately
represents the planar features of the satellite point cloud. These findings indicate that mpp-
MLS not only eliminates redundant noise points in the point set, but also more precisely
captures the curvature and geometric features of the point set’s surface, thereby enhancing
alignment accuracy.
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resampled point cloud. (a) XY view; (b) XZ view.

The point cloud data acquired from 3D sensors typically lack normal vector informa-
tion. In such cases, a parameter is utilized to estimate the approximate normal vector of
the input point cloud. The mpp-MLS processing technique is applied to the input point
cloud, which maintains its structural integrity and effectively smooths the surface while
preserving key features. Figure 4 illustrates this process, where (a) shows the normal vector
estimation directly on the original point cloud with noticeable dispersion in normal vector
directions. In contrast, (b) depicts the normal vector estimation results after applying the
mpp-MLS method, showcasing highly consistent normal vector directions in the point
cloud’s planar neighborhood.
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Figure 4. Unordered point cloud normal vector estimation results. (a) Estimation of normal vectors of
the original point cloud; (b) point cloud normal vector estimation results after mpp-MLS processing.

The normal vector consistency of the neighboring points in the two point clouds is
calculated separately. The results are illustrated in Figure 5. Approximately 80% of the
normal vector angle difference values estimated from the original point cloud fall within
the range from 20◦ to 160◦, whereas around 80% of the normal vector angle difference
values estimated from the point cloud after mpp-MLS processing are distributed between
0◦ and 20◦. This indicates that the algorithm proposed in this study effectively enhances the
uniformity of the normal vector direction in the disordered point cloud, thereby improving
registration accuracy.
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Figure 5. Point cloud phase consistency detection.

2.3. Point Cloud Alignment and Parameter Optimization Point Cloud Pose Estimation and
Optimization

The point cloud-based position estimation process is essentially a point cloud align-
ment operation. As the source point cloud Psource = {pi} and the target point cloud
Qtarget = {qi} are given, the relative transformation relation T = (R, t) is calculated
through the common feature part between them [26,27]. Given the resilient nature of local
features within point clouds when faced with occlusion and noise, this study utilized the
local features of a non-cooperative target’s point cloud to predict the bit position. The
process flow is illustrated in Figure 1. Initially, the local features of two preprocessed point
clouds were compared to establish correspondence and obtain a preliminary registration
result. Following this, the transformation matrix was refined based on the coordinate
positions of the points to achieve precise attitude adjustment.

2.3.1. Coarse Registration

Feature Description: In this study, we utilized the Fast Point Feature Histograms
(FPFH) [28] descriptor to extract local features from a 3D point cloud. This method involves
constructing a multidimensional point cloud by analyzing the spatial variances between
the target point and its neighboring points, including the angular disparities among the
normal vectors of the cloud. The resulting histogram accurately characterizes the geometric
attributes of the point within its vicinity.

The FPFH descriptor captures the surface characteristics of a point cloud by consid-
ering the spatial and geometric relationships of each point and its neighborhood. The
accuracy of the FPFH feature space heavily relies on the quality of normal vector estimates
for points in the neighborhood. To enhance these estimates, this study employed the
mpp-MLS algorithm, previously discussed, to handle point clouds with non-cooperative
targets. The refined normal vector estimation achieved through the mpp-MLS algorithm
enhances the precision and performance of FPFH descriptors in local feature extraction.

Feature Matching: The feature matching process between the source and target point
clouds involves calculating the translation and rotation parameters. This is achieved
by establishing one-to-one matching pairs through the calculation of point cloud FPFH
features. Each point in the target point cloud is traversed to find the nearest-neighbor similar
matching points in the source point cloud using the KD-tree search algorithm. By obtaining
these matching pairs, we can determine the correspondence between the two sets of point
clouds and subsequently calculate the necessary translation and rotation parameters.

During the feature matching process, a small number of mismatched pairs can have
a significant impact on subsequent pose estimation. To mitigate this, the RANSAC al-
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gorithm [29] was employed in this study to enhance the robustness of the initial pose
estimation. The algorithm operates by treating the dataset as comprising ‘inlier points’
(correctly matched pairs) and ‘outlier points’ (mismatched pairs or noise), and iteratively
optimizes the model through random sampling and computation. This process aims to
acquire higher accuracy results of the final pose estimation by effectively handling outliers
and optimizing model parameters.

2.3.2. Fine Registration by J-ICP

After the coarse alignment, the two point clouds have been roughly aligned, but it is
not sufficient to meet the accuracy requirements. Therefore, fine registration after coarse
registration is a necessary step in the process of acquiring precise registration results of the
given point cloud set.

The ICP algorithm [21] has become a classic algorithm in point cloud fine alignment
due to its wide range of applications. This algorithm is based on matching point pairs to
align surfaces. It involves finding nearest-neighbor point pairs between a source and target
point cloud, calculating transformation parameters and an objective function, applying
the transformation to a subset of the source cloud, and iteratively optimizing the objective
function to achieve convergence and obtain the optimal transformation matrix. In essence,
the ICP algorithm is employed to determine the transformation matrix between two frames
by minimizing a specific objective function:

After the coarse alignment, the two sets of point clouds have been roughly overlapped,
but they do not meet the required accuracy. Therefore, fine alignment is necessary to
improve the accuracy of the point cloud alignment results. The ICP algorithm [21] is a well-
known method for accurate point cloud alignment, which involves surface fitting based on
aligning pairs of points. This algorithm identifies nearest-neighbor point pairs between the
target and source point, calculates transformation parameters and an objective function,
and then operates on a subset of the source point cloud. Through continuous iterations,
the algorithm optimizes the objective function to achieve convergence conditions and
determine the optimal transformation matrix. In essence, the ICP algorithm is utilized to
estimate the transformation matrix between two frames in order to minimize the objective
function defined in Equation (6).

min
R,t

E(R, t) =
i=1

∑
N

∥ Rpi + t − pclosest ∥2
2 (6)

pclosest = argmin
qj∈Q

∥ pi − qi ∥2
2 (7)

where pi represents a point in the point cloud set of the current frame, while qi is the
corresponding point in the next frame, and Q denotes the set of all points in the point cloud
of the next frame. The relationship between them is expressed in Equation (7).

When aligning point cloud data acquired during small angle tumbling maneuver for
targets with symmetry features, it has been observed that the traditional ICP algorithm
often becomes stuck in local optimal solutions, resulting in a notable increase in alignment
error. To address this issue, this paper introduces a novel approach called Joint Iterative
Closest Point (J-ICP), which aims to minimize the distance between point clouds from
multiple frames by taking into account the point cloud data obtained at various time points
during small angle transformations. Assuming that the point clouds P1, P2, . . . , Pn are
acquired separately at t1, t2, . . . , tn time, the goal of J-ICP is to find a set of transformations
{T1, T2, . . . , Tn−1} to align each point cloud Pi with reference Pr and minimize the total
alignment error of multiple frames by iterating. The target function can be expressed as:

E(T1, T2, . . . , Tn−1) =
n−1

∑
i=1

∑
p∈Pi

∥ Ti(p)− NNPr (Ti(p)) ∥2 (8)
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where NNPr (p) denotes that the point p is the nearest neighbor in the reference point cloud
Pr, and ∥ · ∥2 denotes the squared Euclidean distance. The transformation Ti is a rigid-body
transformation with rotational and translational components that could align each of the Pi
with the Pr.

For the transformation matrix under different frames obtained by the iterative nearest

point algorithm Tji =

[
R t
0 1

]
, which consists of a rotation matrix R and translation matrix

t. The subscript letters indicate the transformation direction of this matrix, and the Tji
subscript letter indicates the direction of transformation of the matrix, which is denoted as
pi frame to pj frame to frame transformation, assuming that the current acquisition of three
frames of the target point cloud data Pi, Pj, Pk That is, the joint alignment optimization
formula is expressed as:

∆Tkj =

(
Tki − Tji

)
+ Tkj

2
(9)

where ∆Tkj denotes the transformation matrix obtained by joint alignment of three frames
from j frame to k frame. As the calculation process shown in Figure 6, we can find that
this method can effectively avoid the local optimization problem caused by the symmetry
feature of single-frame data alignment for it relies on the interrelationship of cross-frame
data to guide the alignment process.
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From the perspective of computational complexity, the proposed J-ICP algorithm
has a complexity of O(kn log n), where k is the number of iterations and n is the number
of points in the point cloud. This complexity encompasses nearest neighbor search and
transformation matrix computation, which is comparable to the complexity of the ICP
algorithm. In contrast, the GICP algorithm, which incorporates point covariance infor-
mation, has a computational complexity of O(kn log n + kn). Although the theoretical
complexity of J-ICP is similar to that of ICP, J-ICP reduces cumulative error and enhances
registration accuracy by combining multiple ICP processes. Consequently, J-ICP maintains
computational efficiency while typically achieving superior registration accuracy.

3. Semi-Physical Experiment and Analysis

In order to verify the effectiveness of the estimation algorithm proposed above, we
conducted ground semi-physical experiments.

3.1. Experimental Environment Setup

The satellite model was considered a non-cooperative target, with its motion simulated
by controlling the slide’s translation and the turntable’s rotation. The slide’s position control
error was kept below 0.1 mm, while the rotary table’s angle control error was maintained
under 0.01◦, as illustrated in Figure 7.
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The servicing spacecraft’s vision system was equipped with a ToF camera, whose
specifications are detailed in Table 1. The point cloud of the target mockup was captured
by the ToF camera at a frequency of one frame per second during the experiment.

Table 1. Technical specifications of the ToF cameras.

Parameter Value

Resolution 640 × 480 px, 0.3 MP
Pixel Size 10.0 µm (H) × 10.0 µm (V)

Illumination 4 × VCSEL laser diodes, Class1, @ 850 nm
Lens Field of View 69◦ × 51◦ (nominal)

To validate the robustness of the algorithm, we compared the method proposed in
this paper with classical methods (ICP, GICP). All the algorithms mentioned above were
implemented on a PC (I7-2.8 GHz, I7-7700 with 8 GB RAM) using Visual Studio 2019.

3.2. Results of Semi-Physical Experiments

In this study, we captured the point cloud data of a satellite model and the surrounding
background using a ToF camera in a laboratory setting. Without proper preprocessing,
the resulting attitude estimation would only be suitable for a dynamic target in a static
environment and may not be applicable to real-world space environments.

We calculated the relative pose of the target following the process in Figure 1 The
three-axis translation is represented by the three components of the translation vector t,
and the three-axis rotational Euler angles need to be decomposed by the rotation matrix
R. In this study, we assumed that the rotation angles α, β, and γ around the XYZ axes
represented the roll, pitch, and yaw in the Euler angles, respectively.

Figure 8 illustrates the impact of the mpp-MLS algorithm discussed in Section 2.2. The
point cloud data before optimization contained substantial noise due to the system noise,
ambient light noise, and multi-path reflection noise inherent to the ToF camera. When
displaying multiple frames of point cloud data, the XZ view showed the data overlapping,
which complicated the accurate calculation of the attitude information for each frame.
However, after applying the mpp-MLS algorithm, the XZ view clearly revealed significant
angular rotation displacement in the point cloud data acquired at different frame rates.
This processing greatly aided in the subsequent precise calculation of attitude parameters.
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Figure 8. Point cloud before and after optimization using the mpp-MLS algorithm.

3.2.1. Coarse Registration after mpp-MLS Processing

Point cloud coarse alignment aims to approximately align two frames of point clouds
that are initially far apart, with the objective of establishing a reliable initial estimate for
subsequent fine alignment. This study explored the impact of resolution and noise criteria
on point cloud alignment algorithms and employed the Random Sample Consistency
(RANSAC) alignment algorithm to enhance the precision of coarse alignment.

In order to assess the robustness of the mpp-MLS algorithm under varying levels of
noise, this study employed the RANSAC algorithm to conduct a comparative experiment
on coarse alignment with noise both before and after processing, as illustrated in Figure 9.
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Figure 9. Coarse registration results (model point cloud in blue, field point cloud after alignment in red).
(a) Coarse registration without mpp-MLS processing; (b) coarse registration after mpp-MLS processing.

In order to verify the robustness of the features extracted by the algorithm to the point
cloud noise, in the experiments of this paper, we superimposed the Gaussian noise with
the mean value µ = 0 and standard deviation σ = 0.01, 0.02, 0.03, 0.04, 0.05, 0.07 in the
x, y, z directions of the original point cloud of the satellite to simulate the measurement
noise of the 3D sensor. Coarse alignment was achieved by changing the noise standard
of the point cloud and using the RANSAC algorithm. The obtained rotation error and
translation error are shown in Figure 10. The results show that the alignment results using
the point cloud processed by the algorithm proposed in this paper were better than those
using the point cloud without processing, both in terms of point cloud resolution and point
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cloud noise criterion. Moreover, the error stability was also better than before in the case of
low noise.
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3.2.2. Fine Registration by J-ICP

To evaluate the accuracy of point cloud registration and relative pose measurement
of the proposed algorithm, the transformation matrix Tpred of the source point cloud
P was computed using the registration algorithm for a given target point cloud Q. The
actual transformation matrix between the two point cloud sets is denoted as Tgt. The
transformation error ∆T from Q to P is defined as in Equation (10).

∆T = Tpred
(
Tgt
)−1

=

[
∆R ∆t
0 1

]
(10)

where ∆R is the 3× 3 rotation residual matrix, and ∆t is the 3× 1 translation residual vector.
Ideally, if Tgt is entirely accurate, ∆t should be the identity matrix. To represent the rotation
error of the algorithm, we converted ∆R into Euler angles according to the ZYX rotation
sequence. The three elements of ∆T were taken as the translation error.

In order to enhance the accuracy of position estimation results, this study utilized the J-ICP
algorithm in conjunction with coarse alignment results to achieve precise target positioning.

Position estimation of a non-cooperative target was conducted under translational and
rotational motions, with motion constraints set at a moving distance of 570 mm and a total
change angle of 57◦. The experimental results, depicted in Figure 11, illustrate the motion
estimation curves and errors for the target with unknown motion. For spatial motion, the
average estimation errors in the XYZ-axis direction for translation were 1.1 mm, 1.5 mm,
and 0.25 mm, respectively. Additionally, the average errors for Eulerian roll, pitch, and yaw
in the XYZ-axis were 0.045◦, 0.019◦, and 0.071◦ respectively.

As illustrated in Figure 12, we compared the fine alignment results obtained by
applying three fine alignment methods (J-ICP, ICP, GICP) after coarse alignment. After the
satellite model underwent translation and rotation by the slide rail and turntable, point
cloud data were registered frame by frame. The XYZ axis translation error measured
utilizing the GICP algorithm was (1.36, 2.46, 0.35) mm, while the XYZ axis Euler angle error
was (0.112, 0.056, 0.059)◦. However, by applying the method proposed above, those could
be reduced to (1.07, 1.57, 0.25) mm and (0.071, 0.046, 0.019)◦ respectively. By implementing
a joint registration algorithm, this research successfully eliminated cumulative errors and
achieved improved accuracy in pose estimation parameters.

By comparing the performance of the proposed J-ICP algorithm with classical algo-
rithms ICP and GICP in terms of mean translation error and mean rotation error, as shown
in Table 2, we found that our algorithm significantly outperformed the classical algorithms.
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Specifically, compared to the classical ICP algorithm, the average translation error was re-
duced by approximately 48%, 56%, and 54%, while the average rotation error was reduced
by approximately 56%, 48%, and 65%, respectively. These results clearly demonstrate the
superiority of the J-ICP algorithm in pose estimation, not only enhancing the accuracy of
attitude measurement but also significantly reducing system errors. This establishes a solid
theoretical and experimental foundation for the practical application of pose estimation for
non-cooperative spacecraft.
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Figure 11. Pose-estimation results of our method for the translation experiment. (a) Translation of
the XYZ axis; (b) rotation of the XYZ axis; (c) position errors of the XYZ axis; (d) rotation error of the
XYZ axis.
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Table 2. Comparison of pose parameter errors among the ICP, J-ICP, and GICP algorithms.

ICP GICP J-ICP

Mean Translation
Error—X (mm)

2.06
(±1.50)

1.36
(±0.94)

1.07
(±0.81)

Mean Translation
Error—Y (mm)

3.59
(±3.02)

2.46
(±2.01)

1.57
(±1.14)

Mean Translation
Error—Z (mm)

0.54
(±0.42)

0.35
(±0.27)

0.25
(±0.20)

Mean Rotation
Error—pitch (◦)

0.162
(±0.135)

0.112
(±0.89)

0.071
(±0.052)

Mean Rotation
Error—yaw (◦)

0.089
(±0.065)

0.056
(±0.041)

0.046
(±0.036)

Mean Rotation
Error—roll (◦)

0.055
(±0.041)

0.059
(±0.043)

0.019
(±0.013)

In addition, we compared the computational effort of different algorithms and used
computation time as an evaluation metric. In order to ensure that no other irrelevant
variables were introduced in the process of fine alignment, all methods underwent a
standardized preprocessing step on the initial input point cloud before analysis. As depicted
in Table 3, the total time taken by the methods presented in this paper for a single-frame
point cloud estimation was approximately 98 ms, with a tracking frequency of up to 10 Hz.

In summary, compared with the classical method, this paper achieved a 56% reduction
in maximum translational error in position estimation and a 65% reduction in maximum
rotational error, with an 18.1% increase in computational consumption. These results
suggests that the proposed method has the huge application potential in practical control.



Appl. Sci. 2024, 14, 5855 15 of 17

Table 3. Comparison of the amount of computation for different methods.

Time Consumption (ms)
Method

ICP GICP J-ICP

Mean 83 92 98
Std. Dev 4 6 5

4. Discussion

The proposed algorithm was validated using a mockup point cloud, which introduces
several notable differences compared to an actual spacecraft’s point cloud data. These
differences are essential to consider for the practical application of the algorithm.

One significant aspect is the resolution of the point cloud data. The ToF camera used in
our laboratory had a resolution of 640 × 480 pixels, whereas LiDAR systems typically used
for actual spacecraft produce higher-quality data. While this study focused on algorithm
validation, future research must explore how variations in imaging resolution impact
the algorithm’s performance. Another critical difference lies in the noise characteristics.
Laboratory-acquired mockup data may include system noise from the camera, ambient
light noise, and multipath reflection noise, which are relatively stable and controllable.
In contrast, point cloud data from an actual on-orbit spacecraft would be subject to more
diverse and complex noise sources, including space radiation, temperature fluctuations,
and other environmental factors. Addressing these complex noise characteristics is crucial
for ensuring the robustness of the proposed algorithm in real-world conditions. The surface
reflectivity properties of the mockup and actual spacecraft also differ significantly. The
materials and structures of the satellite model used in our experiments are simplified
compared to those of real spacecrafts, which have more complex materials and reflectivity
characteristics. These differences can affect the quality and accuracy of the point cloud data,
necessitating future studies to investigate how varied reflectivity properties influence the
performance of pose estimation algorithms. Additionally, the geometric complexity of the
model used in the experiments presents another difference. The 1:35 scale Beidou satellite
model lacks the detailed geometric intricacies of an actual spacecraft due to its smaller size.
Real spacecrafts would produce point cloud data with richer geometric texture information.
Therefore, future work should focus on validating the algorithm using actual spacecraft
models to capture these complex details.

To enhance the applicability of the proposed algorithm to actual spacecraft, several
measures can be considered. These include advanced data preprocessing and filtering
techniques, such as Gaussian filtering, median filtering, and neighborhood-based statistical
filtering, to reduce sensor noise and improve data reliability. Employing dual cameras
to capture point cloud data and applying interpolation or downsampling techniques can
help match the resolution of LiDAR scan data. Optimizing algorithm parameters and
models based on actual spacecraft data, and validating the algorithm’s performance in
real-world environments through simulations or practical tests, will ensure its robustness
and applicability under various conditions.

The results from our experiments indicate that the proposed method significantly
improves the accuracy of point cloud alignment and robustness against noise and outliers.
However, the computational efficiency of our approach can still be further enhanced. In
the context of accelerating algorithmic performance, integrating machine learning methods
like PARSAC [30] can provide substantial benefits. PARSAC addresses the computational
bottlenecks found in traditional methods such as CONSAC by predicting sample weights
for all model instances simultaneously. Adopting a similar strategy, future work could
focus on integrating a neural network to predict sample weights for the coarse registration
process in point cloud alignment. By predicting both sample and inlier weights, the
alignment process could be handled in parallel, significantly accelerating the computation.
This would particularly benefit scenarios where rapid and accurate alignment is crucial,
such as in dynamic space missions involving non-cooperative targets.
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In the next step, we will focus on the following aspects: (1) leveraging machine
learning techniques such as PARSAC for coarse registration can potentially reduce the
computational overhead and improve the efficiency of point cloud alignment; (2) conduct-
ing pose estimation experiments on non-geometric targets in complex scenes to test the
universality of this method; (3) introducing visible or near-infrared cameras to further
enhance the target surface feature extraction, eliminate redundant features, and improve
the accuracy of the attitude estimation; (4) deploying this paper’s method on an embedded
platform for real-time performance verification.

5. Conclusions

This study introduces a novel technique for relative attitude estimation of non-
cooperative targets using point cloud data. The proposed method enhances inter-frame
alignment accuracy by selecting local regions of the point cloud for planar fitting, projecting
noisy points at various distance scales, and implementing noise suppression techniques,
including a noise filtering method based on moving least squares microplane projection
(mpp-MLS) that preserves local features.

A key advancement presented in this research is the enhancement of the ICP alignment
algorithm, referred to as the J-ICP algorithm. The J-ICP algorithm incorporates small-angle
transformed poses between neighboring frames, effectively mitigating error growth in
position estimation and reducing computational time. This approach significantly improves
the accuracy and efficiency of the pose estimation process.

A semi-physical experimental platform was established to validate the methodology
proposed in this paper. The experimental findings demonstrate that during coarse align-
ment, the method exhibited strong robustness towards noise interference encountered
during point cloud acquisition. Furthermore, in fine alignment, the J-ICP method outper-
formed the traditional ICP approach by minimizing translation and Euler angle errors.
Specifically, the cumulative translation error remained below 1.57 mm, while the cumu-
lative Euler angle error stayed within 0.071 degrees, achieving a reduction of maximum
translation and rotation errors by 56% and 65%, respectively. The total elapsed time for the
process was approximately 98 ms, which enabled a pose tracking frequency up to 10 Hz.
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