Intra-Reliability of a Wearable Near-Infrared Sensor for Monitoring the Intensity of Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Body Composition Analysis
2.4. Exercise Protocol
2.5. Measurements of Muscle Oxygenation
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Future Research Perspective and Practical Applications
4.2. Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perrey, S.; Ferrari, M. Muscle Oximetry in Sports Science: A Systematic Review. Sports Med. 2018, 48, 597–616. [Google Scholar] [CrossRef]
- Lai, N.; Zhou, H.; Saidel, G.M.; Wolf, M.; McCully, K.; Gladden, L.B.; Cabrera, M.E.; Iannetta, D.; Okushima, D.; Inglis, E.C.; et al. Modeling oxygenation in venous blood and skeletal muscle in response to exercise using near-infrared spectroscopy. J. Appl. Physiol. 2009, 106, 1858–1874. [Google Scholar] [CrossRef]
- Poole, D.C.; Mathieu-Costello, O. Skeletal muscle capillary geometry: Adaptation to chronic hypoxia. Respir. Physiol. 1989, 77, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Vasquez Bonilla, A.A.; González-Custodio, A.; Timón, R.; Camacho-Cardenosa, A.; Camacho-Cardenosa, M.; Olcina, G. Training zones through muscle oxygen saturation during a graded exercise test in cyclists and triathletes. Biol. Sport. 2023, 40, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S. Muscle Oxygenation Unlocks the Secrets of Physiological Responses to Exercise: Time to Exploit it in the Training Monitoring. Front. Sports Act. Living 2022, 4, 864825. [Google Scholar] [CrossRef] [PubMed]
- Beltz, N.M.; Gibson, A.L.; Janot, J.M.; Kravitz, L.; Mermier, C.M.; Dalleck, L.C. Graded Exercise Testing Protocols for the Determination of VO2max: Historical Perspectives, Progress, and Future Considerations. J. Sports Med. 2016, 2016, 3968393. [Google Scholar] [CrossRef] [PubMed]
- Michalik, K.; Danek, N.; Zatoń, M. Comparison of the Ramp and Step Incremental Exercise Test Protocols in Assessing the Maximal Fat Oxidation Rate in Youth Cyclists. J. Hum. Kinet. 2021, 80, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Klusiewicz, A.; Rębiś, K.; Ozimek, M.; Czaplicki, A. The use of muscle near-infrared spectroscopy (NIRS) to assess the aerobic training loads of world-class rowers. Biol. Sport 2021, 38, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Bates, N.A.; McPherson, A.L.; Berry, J.D.; Hewett, T.E. Inter- and intra-rater reliability of performance measures collected with a single-camera motion analysis system. Int. J. Sports Phys. Ther. 2017, 12, 520–526. [Google Scholar]
- Miranda-Fuentes, C.; Guisado-Requena, I.M.; Delgado-Floody, P.; Arias-Poblete, L.; Pérez-Castilla, A.; Jerez-Mayorga, D.; Chirosa-Rios, L.J. Reliability of Low-Cost Near-Infrared Spectroscopy in the Determination of Muscular Oxygen Saturation and Hemoglobin Concentration during Rest, Isometric and Dynamic Strength Activity. Int. J. Environ. Res. Public Health 2020, 17, 8824. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Briceño, F.; Espinosa-Ramirez, M.; Hevia, G.; Llambias, D.; Carrasco, M.; Cerda, F.; López-Fuenzalida, A.; García, P.; Gabrielli, L.; Viscor, G. Reliability of NIRS portable device for measuring intercostal muscles oxygenation during exercise. J. Sports Sci. 2019, 37, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Crum, E.M.; O’Connor, W.J.; Van Loo, L.; Valckx, M.; Stannard, S.R. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur. J. Sport Sci. 2017, 17, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Yogev, A.; Arnold, J.; Nelson, H.; Clarke, D.C.; Guenette, J.A.; Sporer, B.C.; Koehle, M.S. Comparing the reliability of muscle oxygen saturation with common performance and physiological markers across cycling exercise intensity. Front. Sports Act. Living 2023, 5, 1143393. [Google Scholar] [CrossRef]
- van Hooff, M.; Meijer, E.J.; Scheltinga, M.R.M.; Savelberg, H.H.C.M.; Schep, G. Test-retest reliability of skeletal muscle oxygenation measurement using near-infrared spectroscopy during exercise in patients with sport-related iliac artery flow limitation. Clin. Physiol. Funct. Imaging 2022, 42, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Liow, D.K.; Hopkins, W.G. Velocity specificity of weight training for kayak sprint performance. Med. Sci. Sports Exerc. 2003, 35, 1232–1237. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 9001:2001; Quality Management Systems—Requirements. ISO: Geneva, Switzerland, 2001.
- Shibuya, K.; Tanaka, J. Skeletal muscle oxygenation during incremental exercise. Arch. Physiol. Biochem. 2003, 111, 475–478. [Google Scholar] [CrossRef]
- Richardson, J.T. Eta squared and partial eta squared as measures of effect size in educational research. Rev. Educ. Res. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Ludbrook, J. Confidence in Altman-Bland plots: A critical review of the method of differences. Clin. Exp. Pharmacol. Physiol. 2010, 37, 143–149. [Google Scholar] [CrossRef]
- Cicchetti, D. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instrument in psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Hopkins, W. Spreadsheets for Analysis of Validity and Reliability (Excel Spreadsheet). Internet Soc. Sport Sci. 2015, 19, 36–42. Available online: https://www.sportsci.org/resource/stats/xrely.xls (accessed on 25 June 2024).
- Hopkins, W.G.; Schabort, E.J.; Hawley, J.A. Reliability of power in physical performance tests. Sports Med. 2001, 31, 211–234. [Google Scholar] [CrossRef]
- Buchheit, M. Magnitudes matter more than beetroot juice. Sport Perform. Sci. Rep. 2015, 15, 1–3. [Google Scholar]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef]
- Šarabon, N.; Kozinc, Ž.; Ramos, A.G.; Knežević, O.M.; Čoh, M.; Mirkov, D.M. Reliability of Sprint Force-Velocity-Power Profiles Obtained with KiSprint System. J. Sports Sci. Med. 2021, 20, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Courel-Ibáñez, J.; Martínez-Cava, A.; Morán-Navarro, R.; Escribano-Peñas, P.; Chavarren-Cabrero, J.; González-Badillo, J.J.; Pallarés, J.G. Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training. Ann. Biomed. Eng. 2019, 47, 1523–1538. [Google Scholar] [CrossRef]
- Crenshaw, A.G.; Elcadi, G.H.; Hellstrom, F.; Mathiassen, S.E. Reliability of near-infrared spectroscopy for measuring forearm and shoulder oxygenation in healthy males and females. Eur. J. Appl. Physiol. 2012, 112, 2703–2715. [Google Scholar] [CrossRef] [PubMed]
- Biddulph, B.; Morris, J.G.; Lewis, M.; Hunter, K.; Sunderland, C. Reliability of Near-Infrared Spectroscopy with and without Compression Tights during Exercise and Recovery Activities. Sports 2023, 11, 23. [Google Scholar] [CrossRef]
- Desanlis, J.; Gordon, D.; Calveyrac, C.; Cottin, F.; Gernigon, M. Intra- and Inter-Day Reliability of the NIRS Portamon Device after Three Induced Muscle Ischemias. Sensors 2022, 22, 5165. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Cheung, S.S.; Jacobs, I. Variability of time to exhaustion during submaximal exercise. Can. J. Appl. Physiol. 1995, 20, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Turner, L.A.; Tecklenburg-Lund, S.; Chapman, R.F.; Stager, J.M.; Duke, J.W.; Mickleborough, T.D. Inspiratory loading and limb locomotor and respiratory muscle deoxygenation during cycling exercise. Respir. Physiol. Neurobiol. 2013, 185, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Zorgati, H.; Collomp, K.; Boone, J.; Guimard, A.; Buttelli, O.; Mucci, P.; Amiot, V.; Prieur, F. Effect of pedaling cadence on muscle oxygenation during high-intensity cycling until exhaustion: A comparison between untrained subjects and triathletes. Eur. J. Appl. Physiol. 2015, 115, 2681–2689. [Google Scholar] [CrossRef]
Workload (W) | 50 | 100 | 150 | 200 | 250 |
---|---|---|---|---|---|
SmO2 (%) T1 | 48.2 ± 6.8 [44.1, 52.3] | 46.2 ± 6.8 [42.1, 50.4] | 43.5 ± 7.5 [39.0, 48.1] | 39.4 ± 9.0 [33.9, 44.8] | 33.8 ± 10.6 [27.4, 40.2] |
SmO2 (%) T2 | 47.7 ± 5.9 [44.1, 51.3] | 44.9 ± 6.2 [41.2, 48.7] | 42.5 ± 6.6 [38.5, 46.4] | 38.1 ± 10.9 [31.5, 44.7] | 33.2 ± 10.6 [26.8, 39.5] |
ICC | 0.721 [0.30, 0.91] | 0.765 [0.41, 0.92] | 0.898 [0.71, 0.97] | 0.878 [0.66, 0.96] | 0.906 [0.72, 0.97] |
CV (%) | 7.2 [5.1, 11.2] | 6.9 [5.0, 11.4] | 5.1 [3.7, 8.5] | 9.1 [6.5, 15.0] | 9.9 [7.1, 16.5] |
SEM (%) | 3.4 [2.5, 5.7] | 3.1 [2.3, 5.2] | 2.2 [1.6, 3.6] | 3.5 [2.5, 5.8] | 3.3 [2.4, 5.5] |
SWC (%) | 1.3 [0.9, 2.1] | 1.3 [0.9, 2.2] | 1.4 [1.0, 2.3] | 2.0 [1.4, 3.3] | 2.1 [1.5, 3.5] |
MDC (%) | 9.5 [6.8, 15.7] | 8.8 [6.3, 14.4] | 6.1 [4.4, 10.1] | 9.7 [7.0, 16.1] | 9.2 [6.6, 15.3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalik, K.; Smolarek, M.; Nowak, M.; Pueo, B.; Żmijewski, P. Intra-Reliability of a Wearable Near-Infrared Sensor for Monitoring the Intensity of Exercise. Appl. Sci. 2024, 14, 5856. https://doi.org/10.3390/app14135856
Michalik K, Smolarek M, Nowak M, Pueo B, Żmijewski P. Intra-Reliability of a Wearable Near-Infrared Sensor for Monitoring the Intensity of Exercise. Applied Sciences. 2024; 14(13):5856. https://doi.org/10.3390/app14135856
Chicago/Turabian StyleMichalik, Kamil, Marcin Smolarek, Michał Nowak, Basilio Pueo, and Piotr Żmijewski. 2024. "Intra-Reliability of a Wearable Near-Infrared Sensor for Monitoring the Intensity of Exercise" Applied Sciences 14, no. 13: 5856. https://doi.org/10.3390/app14135856
APA StyleMichalik, K., Smolarek, M., Nowak, M., Pueo, B., & Żmijewski, P. (2024). Intra-Reliability of a Wearable Near-Infrared Sensor for Monitoring the Intensity of Exercise. Applied Sciences, 14(13), 5856. https://doi.org/10.3390/app14135856